1887

Abstract

This study was undertaken to determine the antibacterial activity of eight cationic antimicrobial peptides towards strains of genomovars I–V of the complex (Bcc) in time–kill assays. All but one of the peptides failed to show activity against the panel of test strains. The exception was magainin II, a 23 aa peptide isolated from the epidermis of the African clawed frog, , which exhibited significant bactericidal activity for Bcc genomovars most frequently associated with lung infection of patients with cystic fibrosis. studies indicated that magainin II protected a human bronchial epithelial cell line (BEAS-2B) from killing by Bcc and suggest that this peptide may have therapeutic potential against these organisms.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.008128-0
2009-07-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/jmm/58/7/923.html?itemId=/content/journal/jmm/10.1099/jmm.0.008128-0&mimeType=html&fmt=ahah

References

  1. Agerberth, B., Gunne, J., Odeberg, P., Kogner, H., Boman, H. G. & Gudmundsson, G. H. ( 1995; ). FALL-39, a putative human peptide antibiotic, is cysteine-free and expressed in bone marrow and testis. Proc Natl Acad Sci U S A 92, 195–199.[CrossRef]
    [Google Scholar]
  2. Albiol Matanic, V. C. & Castilla, V. ( 2004; ). Antiviral activity of antimicrobial cationic peptides against Junin virus and herpes simplex virus. Int J Antimicrob Agents 23, 382–389.[CrossRef]
    [Google Scholar]
  3. Bessalle, R., Kapitkovsky, A., Gorea, A., Shalit, I. & Fridkin, M. ( 1990; ). All-d-magainin: chirality, antimicrobial activity and proteolytic resistance. FEBS Lett 274, 151–155.[CrossRef]
    [Google Scholar]
  4. Bobek, L. A. & Situ, H. ( 2003; ). MUC7 20-mer: investigation of antimicrobial activity, secondary structure, and possible mechanism of antifungal action. Antimicrob Agents Chemother 47, 643–652.[CrossRef]
    [Google Scholar]
  5. Bonacorsi, S., Fitoussi, F., Lhopital, S. & Bingen, B. ( 1999; ). Comparative in vitro activities of meropenem, imipenem, temocillin, piperacillin, and ceftazidime in combination with tobramycin, rifampin, or ciprofloxacin against Burkholderia cepacia isolates from patients with cystic fibrosis. Antimicrob Agents Chemother 43, 213–217.
    [Google Scholar]
  6. Bowdish, D. M., Davidson, D. J., Scott, M. G. & Hancock, R. E. W. ( 2005; ). Immunomodulatory activities of small host defense peptides. Antimicrob Agents Chemother 49, 1727–1732.[CrossRef]
    [Google Scholar]
  7. Brogden, K. A., de Lucca, A. J., Bland, J. & Elliott, S. ( 1996; ). Isolation of an ovine pulmonary surfactant-associated peptide bactericidal for Pasteurella haemolytica. Proc Natl Acad Sci U S A 93, 412–416.[CrossRef]
    [Google Scholar]
  8. Chopra, I. ( 1993; ). The magainins: antimicrobial peptides with potential for topical application. J Antimicrob Chemother 32, 351–353.[CrossRef]
    [Google Scholar]
  9. Coenye, T., Vandamme, P., Govan, J. R. W. & Lipuma, J. J. ( 2001; ). Taxonomy and identification of the Burkholderia cepacia complex. J Clin Microbiol 39, 3427–3436.[CrossRef]
    [Google Scholar]
  10. Cole, A. M., Kim, Y. H., Tahk, S., Hong, T., Weis, P., Waring, A. J. & Ganz, T. ( 2001; ). Calcitermin, a novel antimicrobial peptide isolated from human airway secretions. FEBS Lett 504, 5–10.[CrossRef]
    [Google Scholar]
  11. Denyer, S. P. & Maillard, J. Y. ( 2002; ). Cellular impermeability and uptake of biocides and antibiotics in Gram-negative bacteria. J Appl Microbiol 92, 35S–45S.[CrossRef]
    [Google Scholar]
  12. Frackenpohl, J., Arvidsson, P. I., Schreiber, J. V. & Seebach, D. ( 2001; ). The outstanding biological stability of β- and γ-peptides towards proteolytic enzymes: an in vitro investigation with fifteen peptidases. ChemBioChem 2, 445–455.[CrossRef]
    [Google Scholar]
  13. Fuchs, P. C., Barry, A. L. & Brown, S. D. ( 1998; ). In vitro antimicrobial activity of MSI-78, a magainin analog. Antimicrob Agents Chemother 42, 1213–1216.
    [Google Scholar]
  14. Ganz, T. ( 2001; ). Fatal attraction evaded: how pathogenic bacteria resist cationic polypeptides. J Exp Med 193, F31–F33.[CrossRef]
    [Google Scholar]
  15. Giacometti, A., Cirioni, O., Prete, M. S., Barchiesi, F., Fortuna, M., Drenaggi, D. & Scalise, G. ( 2000; ). In vitro activities of membrane-active peptides alone and in combination with clinically used antimicrobial agents against Stenotrophomonas maltophilia. Antimicrob Agents Chemother 44, 1716–1719.[CrossRef]
    [Google Scholar]
  16. Giacometti, A., Cirioni, O., Kamysz, W., Silvestri, C., Licci, A., Riva, A., Lukasiak, J. & Scalise, G. ( 2005a; ). In vitro activity of amphibian peptides alone and in combination with antimicrobial agents against multidrug-resistant pathogens isolated from surgical wound infection. Peptides 26, 2111–2116.[CrossRef]
    [Google Scholar]
  17. Giacometti, A., Cirioni, O., Kamysz, W., D'Amato, G., Silvestri, C., Del Prete, M. S., Licci, A., Riva, A., Lukasiak, J. & Scalise, G. ( 2005b; ). In vitro activity of the histatin derivative P-113 against multidrug-resistant pathogens responsible for pneumonia in immunocompromised patients. Antimicrob Agents Chemother 49, 1249–1252.[CrossRef]
    [Google Scholar]
  18. Giovannini, M. G., Poulter, L., Gibson, B. W. & Williams, D. H. ( 1987; ). Biosynthesis and degradation of peptides derived from Xenopus laevis prohormones. Biochem J 243, 113–120.
    [Google Scholar]
  19. Gottler, L. M. & Ramamoorthy, A. ( 2008; ). Structure, membrane orientation, mechanism, and function of pexiganan – a highly potent antimicrobial peptide designed from magainin. Biochim Biophys Acta (Epub ahead of print)
    [Google Scholar]
  20. Guina, T., Yi, E. C., Wang, H. L., Hackett, M. & Miller, S. I. ( 2000; ). A PhoP-regulated outer membrane protease of Salmonella enterica serovar Typhimurim promotes resistance to α-helical antimicrobial peptides. J Bacteriol 182, 4077–4086.[CrossRef]
    [Google Scholar]
  21. Hancock, R. E. W. & Lehrer, R. ( 1998; ). Cationic peptides: a new source of antibiotics. Trends Biotechnol 16, 82–88.[CrossRef]
    [Google Scholar]
  22. Hancock, R. E. W. & Scott, M. G. ( 2000; ). The role of antimicrobial peptides in animal defenses. Proc Natl Acad Sci U S A 97, 8856–8861.[CrossRef]
    [Google Scholar]
  23. Holak, T. A., Engstroem, A., Kraulis, P. J., Lindeberg, G., Bennich, H., Jones, T. A., Gronenborn, A. M. & Clore, G. M. ( 1988; ). The solution conformation of the antibacterial peptide cecropin A: a nuclear magnetic resonance and dynamical simulated annealing study. Biochemistry 27, 7620–7629.[CrossRef]
    [Google Scholar]
  24. Isles, A., Maclusky, I., Corey, M., Gold, R., Prober, C., Fleming, P. & Levison, H. ( 1984; ). Pseudomonas cepacia infection in cystic fibrosis: an emerging problem. J Pediatr 104, 206–210.[CrossRef]
    [Google Scholar]
  25. Jones, A. M. & Webb, A. K. ( 2003; ). Recent advances in cross infection in cystic fibrosis: Burkholderia cepacia complex, Pseudomonas aeruginosa, MRSA and Pandorea spp. J R Soc Med 96 (Suppl. 43), 66–72.[CrossRef]
    [Google Scholar]
  26. Lessie, T. G., Hendrickson, W., Manning, B. D. & Devereux, R. ( 1996; ). Genomic complexity and plasticity of Burkholderia cepacia. FEMS Microbiol Lett 144, 117–128.[CrossRef]
    [Google Scholar]
  27. Lillard, J. W., Jr, Boyaka, P. N., Chertov, O., Oppenheim, J. J. & McGhee, J. R. ( 1999; ). The role of antimicrobial peptides in innate immunity. Proc Natl Acad Sci U S A 96, 651–656.[CrossRef]
    [Google Scholar]
  28. Linde, C. M., Grundström, S., Nordling, E., Refai, E., Brennan, P. J. & Andersson, M. ( 2005; ). Conserved structure and function in the granulysin and NK-lysin peptide family. Infect Immun 73, 6332–6339.[CrossRef]
    [Google Scholar]
  29. Mahenthiralingam, E. & Drevinek, P. ( 2007; ). Comparative genomics of Burkholderia species. In Burkholderia: Molecular Biology and Genomics. Edited by T. Coenye & P. Vandamme. Norwich, UK: Horizon Scientific Press.
  30. Mahenthiralingam, E., Coenye, T., Chung, J. W., Speert, D. P., Govan, J. R. W., Taylor, P. & Vandamme, P. ( 2000; ). Diagnostically and experimentally useful panel of strains from the Burkholderia cepacia complex. J Clin Microbiol 38, 910–913.
    [Google Scholar]
  31. Mahenthiralingam, E., Baldwin, A. & Dowson, C. G. ( 2008; ). Burkholderia cepacia complex bacteria: opportunistic pathogens with important natural biology. J Appl Microbiol 104, 1539–1551.[CrossRef]
    [Google Scholar]
  32. Matsuzaki, K., Sugishita, K., Fujii, N. & Miyajima, K. ( 1995; ). Molecular basis for membrane selectivity of an antimicrobial peptide, magainin 2. Biochemistry 34, 3423–3429.[CrossRef]
    [Google Scholar]
  33. Niyonsaba, F., Iwabuchi, A., Someya, A., Hirata, M., Matsuda, H., Ogawa, H. & Nagaoka, I. ( 2002; ). A cathelicidin family of human antibacterial peptide LL-37 induces mast cell chemotaxis. Immunology 106, 20–26.[CrossRef]
    [Google Scholar]
  34. Ohsaki, Y., Gazdar, A. F., Chen, H. C. & Johnson, B. E. ( 1992; ). Antitumor activity of magainin analogues against human lung cancer cell lines. Cancer Res 52, 3534–3538.
    [Google Scholar]
  35. Ortega, X., Hunt, T. A., Loutet, S., Vinion-Dubiel, A. D., Dutta, A., Choudhury, B., Goldberg, J. B., Carlson, R. & Valvano, M. A. ( 2005; ). Reconstitution of O-specific lipopolysaccharide expression in Burkholderia cenocepacia strain J2315, which is associated with transmissible infections in patients with cystic fibrosis. J Bacteriol 187, 1324–1333.[CrossRef]
    [Google Scholar]
  36. Park, P. W., Pier, G. B., Hinkes, M. T. & Bernfield, M. ( 2001; ). Exploitation of syndecan-1 shedding by Pseudomonas aeruginosa enhances virulence. Nature 411, 98–102.[CrossRef]
    [Google Scholar]
  37. Rajyaguru, J. M. & Muszynski, M. J. ( 1997; ). Enhancement of Burkholderia cepacia antimicrobial susceptibility by cationic compounds. J Antimicrob Chemother 40, 345–351.[CrossRef]
    [Google Scholar]
  38. Reik, R., Spilker, T. & Lipuma, J. J. ( 2005; ). Distribution of Burkholderia cepacia complex species among isolates recovered from persons with or without cystic fibrosis. J Clin Microbiol 43, 2926–2928.[CrossRef]
    [Google Scholar]
  39. Schmidtchen, A., Frick, I. M., Andersson, E., Tapper, H. & Björck, L. ( 2002; ). Proteinases of common pathogenic bacteria degrade and inactivate the antibacterial peptide LL-37. Mol Microbiol 46, 157–168.[CrossRef]
    [Google Scholar]
  40. Scott, M. G., Yan, H. & Hancock, R. E. W. ( 1999; ). Biological properties of structurally related α-helical cationic antimicrobial peptides. Infect Immun 67, 2005–2009.
    [Google Scholar]
  41. Sieprawska-Lupa, M., Mydel, P., Krawczyk, K., Wojcik, K., Puklo, M., Lupa, B., Suder, P., Silberring, J., Reed, M. & other authors ( 2004; ). Degradation of human antimicrobial peptide LL-37 by Staphylococcus aureus-derived proteinases. Antimicrob Agents Chemother 48, 4673–4679.[CrossRef]
    [Google Scholar]
  42. Steinberg, D. A., Hurst, M. A., Fujii, C. A., Kung, A. H., Ho, J. F., Cheng, F. C., Loury, D. J. & Fiddes, J. C. ( 1997; ). Protegrin-1: a broad spectrum, rapidly microbicidal peptide with in vivo activity. Antimicrob Agents Chemother 41, 1738–1742.
    [Google Scholar]
  43. Tew, G. N., Clements, D., Tang, H. Z., Arnt, L. & Scott, R. W. ( 2006; ). Antimicrobial activity of an abiotic host defense peptide mimic. Biochim Biophys Acta 1758, 1387–1392.[CrossRef]
    [Google Scholar]
  44. Thwaite, J. E., Hibbs, S., Titball, R. W. & Atkins, T. P. ( 2006; ). Proteolytic degradation of the human antimicrobial peptide LL-37 by Bacillus anthracis may contribute to virulence. Antimicrob Agents Chemother 50, 2316–2322.[CrossRef]
    [Google Scholar]
  45. Vanlaere, E., Lipuma, J. J., Baldwin, A., Henry, D., De Brandt, E., Mahenthiralingam, E., Speert, D., Dowson, C. & Vandamme, P. ( 2008; ). Burkholderia latens sp. nov., Burkholderia diffusa sp. nov., Burkholderia arboris sp. nov., Burkholderia seminalis sp. nov. and Burkholderia metallica sp. nov., novel species within the Burkholderia cepacia complex. Int J Syst Evol Microbiol 58, 1580–1590.[CrossRef]
    [Google Scholar]
  46. Zasloff, M. ( 1987; ). Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci U S A 84, 5449–5453.[CrossRef]
    [Google Scholar]
  47. Zasloff, M. ( 2002; ). Antimicrobial peptides of multicellular organisms. Nature 415, 389–395.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.008128-0
Loading
/content/journal/jmm/10.1099/jmm.0.008128-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error