1887

Abstract

Two carbapenem-non-susceptible isolates, Z2554 and Z2110, were collected from a hospital in China and analysed by PFGE. Z2554 and Z2110 were genetically unrelated and showed resistance to ertapenem, and reduced susceptibility to imipenem and meropenem. Analysis of their -lactamases indicated that Z2554 produced TEM-1 and CTX-M-14 -lactamases, whilst Z2110 produced a plasmid-mediated AmpC -lactamase, DHA-1, in addition to TEM-1 and CTX-M-14. SDS-PAGE analysis of the outer-membrane proteins (OMPs) revealed that both isolates lacked an OMP of ∼39 kDa (OmpK36), whilst Z2110 had an additional protein with an approximate molecular mass of 26 kDa. Analysis of the OMP-encoding genes demonstrated that the sequence of Z2554 and Z2110 contained a number of silent mutations. In , several insertions and deletions of short DNA fragments (1–6 bp) were detected in both isolates. The N-terminal sequence of the ∼26 kDa protein band identified in Z2110 had no similarity to the sequence of OmpK36. Instead, it shared high similarity with hypothetical protein KPN_03267 originating from e subsp. MGH 78578. It was concluded that -lactamase production combined with OmpK36 deficiency results in ertapenem resistance, and reduced imipenem and meropenem susceptibility, in Z2554 and Z2110. OmpK36 may play an important role in the resistance or reduced susceptibility to carbapenems in producing AmpC, extended-spectrum -lactamase or broad-spectrum -lactamase.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.008094-0
2009-09-01
2024-10-08
Loading full text...

Full text loading...

/deliver/fulltext/jmm/58/9/1196.html?itemId=/content/journal/jmm/10.1099/jmm.0.008094-0&mimeType=html&fmt=ahah

References

  1. Aktas Z., Bal C., Midilli K., Poirel L., Nordmann P. 2006; First IMP-1-producing Klebsiella pneumoniae isolate in Turkey. Clin Microbiol Infect 12:695–696 [CrossRef]
    [Google Scholar]
  2. Albertí S., Rodríquez-Quinoñes F., Schirmer T., Rummel G., Tomás J. M., Rosenbusch J. P., Benedí V. J. 1995; A porin from Klebsiella pneumoniae : sequence homology, three-dimensional model, and complement binding. Infect Immun 63:903–910
    [Google Scholar]
  3. Bradford P. A., Urban C., Mariano N., Projan S. L., Rahal J. J., Bush K. 1997; Imipenem resistance in Klebsiella pneumoniae is associated with the combination of ACT-1, a plasmid-mediated AmpC β -lactamase, and the loss of an outer membrane protein. Antimicrob Agents Chemother 41:563–569
    [Google Scholar]
  4. Cai J. C., Zhou H. W., Zhang R., Chen G. X. 2008; Emergence of Serratia marcescens , Klebsiella pneumoniae and Escherichia coli possessing the plasmid-mediated carbapenem-hydrolyzing β -lactamase KPC-2 in intensive care units of a Chinese hospital. Antimicrob Agents Chemother 52:2014–2018 [CrossRef]
    [Google Scholar]
  5. Cao V. T., Arlet G., Ericsson B. M., Tammelin A., Courvalin P., Lambert T. 2000; Emergence of imipenem resistance in Klebsiella pneumoniae owing to combination of plasmid-mediated CMY-4 and permeability alteration. J Antimicrob Chemother 46:895–900 [CrossRef]
    [Google Scholar]
  6. CLSI 2006 Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically , approved standard M7–A7 Wayne, PA: Clinical and Laboratory Standards Institute;
    [Google Scholar]
  7. Crowley B., Benedí V. J., Doménech-Sánchez A. 2002; Expression of SHV-2 β -lactamase and of reduced amounts of OmpK36 porin in Klebsiella pneumoniae results in increased resistance to cephalosporins and carbapenems. Antimicrob Agents Chemother 46:3679–3682 [CrossRef]
    [Google Scholar]
  8. Doménech-Sánchez A., Hernández-Allés S., Martínez-Martínez L., Benedí V. J., Albertí S. 1999; Identification and characterization of a new porin gene of Klebsiella pneumoniae : its role in β -lactam antibiotic resistance. J Bacteriol 181:2726–2732
    [Google Scholar]
  9. Doménech-Sánchez A., Martínez-Martínez L., Hernández-Allés S., Conejo M. C., Pascual A., Tomás J. M., Albertí S., Benedí V. J. 2003; Role of Klebsiella pneumoniae OmpK35 porin in antimicrobial resistance. Antimicrob Agents Chemother 47:3332–3335 [CrossRef]
    [Google Scholar]
  10. Elliott E., Brink A. J., van Greune J., Els Z., Woodford N., Turton J., Warner M., Livermore D. M. 2006; In vivo development of ertapenem resistance in a patient with pneumonia caused by Klebsiella pneumoniae with an extended-spectrum β -lactamase. Clin Infect Dis 42:e95–e98 [CrossRef]
    [Google Scholar]
  11. Hernández-Allés S., Albertí S., Alvarez D., Doménech-Sánchez A., Martínez-Martínez L., Gil J., Tomás J. M., Benedí V. J. 1999; Porin expression in clinical isolates of Klebsiella pneumoniae . Microbiology 145:673–679 [CrossRef]
    [Google Scholar]
  12. Jacoby G. A., Mills D. M., Chow N. 2004; Role of β -lactamases and porins in resistance to ertapenem and other β -lactams in Klebsiella pneumoniae . Antimicrob Agents Chemother 48:3203–3206 [CrossRef]
    [Google Scholar]
  13. Kaczmarek F. M., Dib-Hajj F., Shang W., Gootz T. D. 2006; High-level carbapenem resistance in a Klebsiella pneumoniae clinical isolate is due to the combination of bla ACT-1 β -lactamase production, porin OmpK35/36 insertional inactivation, and down-regulation of the phosphate transport porin PhoE. Antimicrob Agents Chemother 50:3396–3406 [CrossRef]
    [Google Scholar]
  14. Koh T. H., Babini G. S., Woodford N., Sng L. H., Hall L. M., Livermore D. M. 1999; Carbapenem-hydrolysing IMP-1 β -lactamase in Klebsiella pneumoniae from Singapore. Lancet 353:2162 [CrossRef]
    [Google Scholar]
  15. Lee C. H., Chu C., Liu J. W., Chen Y. S., Chiu C. J., Su L. H. 2007a; Collateral damage of flomoxef therapy: in vivo development of porin deficiency and acquisition of bla DHA-1 leading to ertapenem resistance in a clinical isolate of Klebsiella pneumoniae producing CTX-M-3 and SHV-5 β -lactamases. J Antimicrob Chemother 60:410–413 [CrossRef]
    [Google Scholar]
  16. Lee K., Yong D., Choi Y. S., Yum J. H., Kim J. K., Woodford N., Livermore D. M., Chong Y. 2007b; Reduced imipenem susceptibility in Klebsiella pneumoniae clinical isolates with plasmid-mediated CMY-2 and DHA-1 β -lactamases co-mediated by porin loss. Int J Antimicrob Agents 29:201–206 [CrossRef]
    [Google Scholar]
  17. Lincopan N., McCulloch J. A., Reinert C., Cassettari V. C., Gales A. C., Mamizuka E. M. 2005; First isolation of metallo- β -lactamase-producing multiresistant Klebsiella pneumoniae from a patient in Brazil. J Clin Microbiol 43:516–519 [CrossRef]
    [Google Scholar]
  18. Macrina F. L., Kopecko D. J., Jones K. R., Ayers D. J., McCowen S. M. 1978; A multiple plasmid-containing Escherichia coli strain: convenient source of size reference plasmid molecules. Plasmid 1:417–420 [CrossRef]
    [Google Scholar]
  19. Martínez-Martínez L., Hernández-Allés S., Albertí S., Tomás J. M., Benedí V. J., Jacoby G. A. 1996; In vivo selection of porin-deficient mutants of Klebsiella pneumoniae with increased resistance to cefoxitin and expanded-spectrum cephalosporins. Antimicrob Agents Chemother 40:342–348
    [Google Scholar]
  20. Mathew A., Harris A. M., Marshall M. J., Ross G. W. 1975; The use of analytical isoelectric focusing for detection and identification of β -lactamase. J Gen Microbiol 88:169–178 [CrossRef]
    [Google Scholar]
  21. Mena A., Plasencia V., García L., Hidalgo O., Ayestarán J. I., Alberti S., Borrell N., Pérez J. L., Oliver A. 2006; Characterization of a large outbreak by CTX-M-1-producing Klebsiella pneumoniae and mechanisms leading to in vivo carbapenem resistance development. J Clin Microbiol 44:2831–2837 [CrossRef]
    [Google Scholar]
  22. Rice L. B., Carias L. L., Etter L., Shlase D. M. 1993; Resistance to cefoperazone-sulbactam in Klebsiella pneumoniae : evidence for enhanced resistance resulting from the coexistence of two different resistance mechanisms. Antimicrob Agents Chemother 37:1061–1064 [CrossRef]
    [Google Scholar]
  23. Smith Moland E., Hanson N. D., Herrera V. L., Black J. A., Lockhart T. J., Hossain A., Johnson J. A., Goering R. V., Thomson K. S. 2003; Plasmid mediated, carbapenem-hydrolysing β -lactamase, KPC-2, in Klebsiella pneumoniae isolates. J Antimicrob Chemother 51:711–714 [CrossRef]
    [Google Scholar]
  24. Tenover F. C., Arbeit R. D., Goering R. V., Mickelsen P. A., Murray B. E., Persing D. H., Swaminathan B. 1995; Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33:2233–2239
    [Google Scholar]
  25. Wei Z. Q., Du X. X., Yu Y. S., Shen P., Chen Y. G., Li L. J. 2007; Plasmid-mediated KPC-2 in a Klebsiella pneumoniae isolate from China. Antimicrob Agents Chemother 51:763–765 [CrossRef]
    [Google Scholar]
  26. Woodford N., Tierno P. M., Young K. Jr, Tysall L., Palepou M.-F. I., Ward E., Painter R. E., Suber D. F., Shungu D. other authors 2004; Outbreak of Klebsiella pneumoniae producing a new carbapenem-hydrolyzing class A β -lactamase, KPC-3, in a New York medical center. Antimicrob Agents Chemother 48:4793–4799 [CrossRef]
    [Google Scholar]
  27. Yan J. J., Ko W. C., Tsai S. H., Wu H. M., Wu J. J. 2001; Outbreak of infection with multidrug-resistant Klebsiella pneumoniae carrying bla IMP-8 in a university medical center in Taiwan. J Clin Microbiol 39:4433–4439 [CrossRef]
    [Google Scholar]
  28. Yan J. J., Ko W. C., Jung Y. C., Chuang C. L., Wu J. J. 2002; Emergence of Klebsiella pneumoniae isolates producing inducible DHA-1 β -lactamase in a university hospital in Taiwan. J Clin Microbiol 40:3121–3126 [CrossRef]
    [Google Scholar]
  29. Yigit H., Queenan A. M., Anderson G. J., Doménech-Sánchez A., Biddle J. W., Steward C. D., Albertí S., Bush K., Tenover F. C. 2001; Novel carbapenem-hydrolyzing β -lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae . Antimicrob Agents Chemother 45:1151–1161 [CrossRef]
    [Google Scholar]
  30. Yu Y., Ji S., Chen Y., Zhou W., Wei Z., Li L., Ma Y. 2007; Resistance of strains producing extended-spectrum β -lactamases and genotype distribution in China. J Infect 54:53–57 [CrossRef]
    [Google Scholar]
  31. Zhang R., Zhou H. W., Cai J. C., Chen G. X. 2007; Plasmid-mediated carbapenem-hydrolysing β -lactamase KPC-2 in carbapenem-resistant Serratia marcescens isolates from Hangzhou, China. J Antimicrob Chemother 59:574–576 [CrossRef]
    [Google Scholar]
  32. Zhang R., Yang L., Cai J. C., Zhou H. W., Chen G. X. 2008; High-level carbapenem resistance in a Citrobacter freundii clinical isolate is due to a combination of KPC-2 production and decreased porin expression. J Med Microbiol 57:332–337 [CrossRef]
    [Google Scholar]
/content/journal/jmm/10.1099/jmm.0.008094-0
Loading
/content/journal/jmm/10.1099/jmm.0.008094-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error