1887

Abstract

is a leading cause of hospital-acquired infections, mostly associated with the use of medical devices in seriously ill or immunocompromised patients. Currently, the clonal characteristics of in the hospital environment in China are unknown; neither is it known why these sequence types are easily disseminated in the hospital setting. In this study, multilocus sequence typing (MLST) was employed for the clonal analysis of 80 isolates collected from patients with infections. MLST revealed a total of 16 different sequence types among these isolates. ST2, which contained exclusively -positive, IS-positive and biofilm-forming isolates, represented the majority of clinical strains tested. Of the strains circulating in the hospital environment in China, as many as 96.25 % are resistant to meticillin. Four staphylococcal chromosomal cassette (SCC) types were identified among the total 80 isolates, none of the strains carried an SCC I cassette. All of the ST2 isolates carried the SCC type III cassette. Taken together, the combination of biofilm-forming ability and antibiotic resistance helps ST2 become successfully established within nosocomial environments, and promotes the device-related infection and bacteraemia.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.007567-0
2009-04-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/jmm/58/4/456.html?itemId=/content/journal/jmm/10.1099/jmm.0.007567-0&mimeType=html&fmt=ahah

References

  1. Diep, B. A. & Otto, M. ( 2008; ). The role of virulence determinants in community-associated MRSA pathogenesis. Trends Microbiol 16, 361–369.[CrossRef]
    [Google Scholar]
  2. Diep, B. A., Palazzolo-Balance, A. M., Tattevin, P., Basuino, L., Braughton, K. R., Whitney, A. R., Chen, L., Kreiswirth, B. N., Otto, M. & other authors ( 2008; ). Contribution of Panton-Valentine leukocidin in community-associated methicillin-resistant Staphylococcus aureus pathogenesis. PLoS One 3, e3198 [CrossRef]
    [Google Scholar]
  3. Enright, M. C. & Spratt, B. G. ( 1999; ). Multilocus sequence typing. Trends Microbiol 7, 482–487.[CrossRef]
    [Google Scholar]
  4. Francois, P., Hochmann, A., Huyghe, A., Bonetti, E. J., Renzi, G., Harbarth, S., Klingenberg, C., Pittet, D. & Schrenzel, J. ( 2008; ). Rapid and high-throughput genotyping of Staphylococcus epidermidis isolates by automated multilocus variable-number of tandem repeats: a tool for real-time epidemiology. J Microbiol Methods 72, 296–305.[CrossRef]
    [Google Scholar]
  5. Goering, R. V., Shawar, R. M., Scangarella, N. E., O'Hara, F. P., Amrine-Madsen, H., West, J. M., Dalessandro, M., Becker, J. A., Walsh, S. L. & other authors ( 2008; ). Molecular epidemiology of methicillin-resistant and methicillin-susceptible Staphylococcus aureus isolates from global clinical trials. J Clin Microbiol 46, 2842–2847.[CrossRef]
    [Google Scholar]
  6. Hakim, A., Rossi, C., Kabanda, A., Deplano, A., De Gheldre, Y. & Struelens, M. J. ( 2000; ). Ommaya-catheter-related Staphylococcus epidermidis cerebritis and recurrent bacteremia documented by molecular typing. Eur J Clin Microbiol Infect Dis 19, 875–877.[CrossRef]
    [Google Scholar]
  7. Hansen, S. K., Rainey, P. B., Haagensen, J. A. & Molin, S. ( 2007; ). Evolution of species interactions in a biofilm community. Nature 445, 533–536.[CrossRef]
    [Google Scholar]
  8. Herwaldt, L. A., Geiss, M., Kao, C. & Pfaller, M. A. ( 1996; ). The positive predictive value of isolating coagulase-negative staphylococci from blood cultures. Clin Infect Dis 22, 14–20.[CrossRef]
    [Google Scholar]
  9. Johansson, A., Koskiniemi, S., Gottfridsson, P., Wiström, J. & Monsen, T. ( 2006; ). Multiple-locus variable-number tandem repeat analysis for typing of Staphylococcus epidermidis. J Clin Microbiol 44, 260–265.[CrossRef]
    [Google Scholar]
  10. Kozitskaya, S., Olson, M. E., Fey, P. D., Witte, W., Ohlsen, K. & Ziebuhr, W. ( 2005; ). Clonal analysis of Staphylococcus epidermidis isolates carrying or lacking biofilm-mediating genes by multilocus sequence typing. J Clin Microbiol 43, 4751–4757.[CrossRef]
    [Google Scholar]
  11. Li, H., Xu, L., Wang, J., Wen, Y., Vuong, C., Otto, M. & Gao, Q. ( 2005; ). Conversion of Staphylococcus epidermidis strains from commensal to invasive by expression of the ica locus encoding production of biofilm exopolysaccharide. Infect Immun 73, 3188–3191.[CrossRef]
    [Google Scholar]
  12. Miragaia, M., Thomas, J. C., Couto, I., Enright, M. C. & De Lencastre, H. ( 2007; ). Inferring a population structure for Staphylococcus epidermidis from multilocus sequence typing data. J Bacteriol 189, 2540–2552.[CrossRef]
    [Google Scholar]
  13. Miragaia, M., Carriço, J. A., Thomas, J. C., Couto, I., Enright, M. C. & De Lencastre, H. ( 2008; ). Comparison of molecular typing methods for characterization of Staphylococcus epidermidis: proposal for clone definition. J Clin Microbiol 46, 118–129.[CrossRef]
    [Google Scholar]
  14. Monk, A. B., Boundy, S., Chu, V. H., Bettinger, J. C., Robles, J. R., Fowler, V. G., Jr & Archer, G. L. ( 2008; ). Analysis of the genotype and virulence of Staphylococcus epidermidis isolates from patients with infective endocarditis. Infect Immun 76, 5127–5132.[CrossRef]
    [Google Scholar]
  15. Otto, M. ( 2008; ). Targeted immunotherapy for staphylococcal infections: focus on anti-MSCRAMM antibodies. BioDrugs 22, 27–36.[CrossRef]
    [Google Scholar]
  16. Spare, M. K., Tebbs, S. E., Lang, S., Lambert, P. A., Worthington, T., Lipkin, G. W. & Elliott, T. S. ( 2003; ). Genotypic and phenotypic properties of coagulase-negative staphylococci causing dialysis catheter-related sepsis. J Hosp Infect 54, 272–278.[CrossRef]
    [Google Scholar]
  17. Thomas, J. C., Vargas, M. R., Miragaia, M., Peacock, S. J., Archer, G. L. & Enright, M. C. ( 2007; ). Improved multilocus sequence typing scheme for Staphylococcus epidermidis. J Clin Microbiol 45, 616–619.[CrossRef]
    [Google Scholar]
  18. Valle, J., Vergara-Irigaray, M., Merino, N., Penadés, J. R. & Lasa, I. ( 2007; ). σ B regulates IS256-mediated Staphylococcus aureus biofilm phenotypic variation. J Bacteriol 189, 2886–2896.[CrossRef]
    [Google Scholar]
  19. Wang, X. M., Noble, L., Kreiswirth, B. N., Eisner, W., McClements, W., Jansen, K. U. & Anderson, A. S. ( 2003; ). Evaluation of a multilocus sequence typing system for Staphylococcus epidermidis. J Med Microbiol 52, 989–998.[CrossRef]
    [Google Scholar]
  20. Wang, L., Li, M., Dong, D., Bach, T. H., Sturdevant, D. E., Vuong, C., Otto, M. & Gao, Q. ( 2008; ). SarZ is a key regulator of biofilm formation and virulence in Staphylococcus epidermidis. J Infect Dis 197, 1254–1262.[CrossRef]
    [Google Scholar]
  21. Wisplinghoff, H., Rosato, A. E., Enright, M. C., Noto, M., Craig, W. & Archer, G. L. ( 2003; ). Related clones containing SCCmec type IV predominate among clinically significant Staphylococcus epidermidis isolates. Antimicrob Agents Chemother 47, 3574–3579.[CrossRef]
    [Google Scholar]
  22. Ziebuhr, W., Hennig, S., Eckart, M., Kränzler, H., Batzilla, C. & Kozitskaya, S. ( 2006; ). Nosocomial infections by Staphylococcus epidermidis: how a commensal bacterium turns into a pathogen. Int J Antimicrob Agents 28 (Suppl.1), S14–S20.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.007567-0
Loading
/content/journal/jmm/10.1099/jmm.0.007567-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error