1887

Abstract

The pathogenic yeast can grow in multiple morphological states including budded, pseudohyphal and true hyphal forms. The ability to interconvert between budded and hyphal forms, herein termed the budded-to-hyphal transition (BHT), is important for virulence, and is regulated by multiple environmental and cellular signals. To identify small-molecule inhibitors of known cellular processes that can also block the BHT, a microplate-based morphological assay was used to screen the BIOMOL–Institute of Chemistry and Cell Biology (ICCB) Known Bioactives collection from the ICCB-Longwood Screening Facility (Harvard Medical School, Boston, MA, USA). Of 480 molecules tested, 53 were cytotoxic to and 16 were able to block the BHT without inhibiting budded growth. These 16 BHT inhibitors affected protein kinases, protein phosphatases, Ras signalling pathways, G protein-coupled receptors, calcium homeostasis, nitric oxide and guanylate cyclase signalling, and apoptosis in mammalian cells. Several of these molecules were also able to inhibit filamentous growth in other species, as well as the pathogenic filamentous fungus , suggesting a broad fungal host range for these inhibitory molecules. Results from secondary assays, including hyphal-specific transcription and septin localization analysis, were consistent with the inhibitors affecting known BHT signalling pathways in . Therefore, these molecules will not only be invaluable in deciphering the signalling pathways regulating the BHT, but also may serve as starting points for potential new antifungal therapeutics.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.006841-0
2009-06-01
2024-12-03
Loading full text...

Full text loading...

/deliver/fulltext/jmm/58/6/779.html?itemId=/content/journal/jmm/10.1099/jmm.0.006841-0&mimeType=html&fmt=ahah

References

  1. Alem M. A. S., Douglas L. J. 2004; Effects of aspirin and other nonsteroidal anti-inflammatory drugs on biofilms and planktonic cells of Candida albicans . Antimicrob Agents Chemother 48:41–47 [CrossRef]
    [Google Scholar]
  2. Alem M. A. S., Douglas L. J. 2005; Prostaglandin production during growth of Candida albicans biofilms. J Med Microbiol 54:1001–1005 [CrossRef]
    [Google Scholar]
  3. Arioka M., Hirata A., Takatsuki A., Yamasaki M. 1991; Brefeldin A blocks an early stage of protein transport in Candida albicans . J Gen Microbiol 137:1253–1262 [CrossRef]
    [Google Scholar]
  4. Barrington R. E., Subler M. A., Rands E., Omer C. A., Miller P. J., Hundley J. E., Koester S. K., Troyer D. A., Bearss D. J. other authors 1998; A farnesyltransferase inhibitor induces tumor regression in transgenic mice harboring multiple oncogenic mutations by mediating alterations in both cell cycle control and apoptosis. Mol Cell Biol 18:85–92
    [Google Scholar]
  5. Bedalov A., Gatbonton T., Irvine W. P., Gottschling D. E., Simon J. A. 2001; Identification of a small molecule inhibitor of Sir2p. Proc Natl Acad Sci U S A 98:15113–15118 [CrossRef]
    [Google Scholar]
  6. Beggs W. H. 1993; Anti- Candida activity of the anti-cancer drug tamoxifen. Res Commun Chem Pathol Pharmacol 80:125–128
    [Google Scholar]
  7. Biswas S., Dijck P. V., Datta A. 2007; Environmental sensing and signal transduction pathways regulating morphopathogenic determinants of Candida albicans . Microbiol Mol Biol Rev 71:348–376 [CrossRef]
    [Google Scholar]
  8. Brown A. J. P. 2002; Morphogenetic signaling pathways in Candida albicans . In Candida and Candidiasis pp 95–106 Edited by Calderone R. A. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  9. Chiou C. Y., Malagodi M. H. 1975; Studies on the mechanism of action of a new Ca2+ antagonist, 8-( N , N -diethylamino)octyl 3,4,5-trimethoxybenzoate hydrochloride in smooth and skeletal muscles. Br J Pharmacol 53:279–285 [CrossRef]
    [Google Scholar]
  10. Cho H., Ueda M., Tamaoka M., Hamaguchi M., Aisaka K., Kiso Y., Inoue T., Ogino R., Tatsuoka T. other authors 1991; Novel caffeic acid derivatives: extremely potent inhibitors of 12-lipoxygenase. J Med Chem 34:1503–1505 [CrossRef]
    [Google Scholar]
  11. Collins T. J., Lipp P., Berridge M. J., Li W., Bootman M. D. 2000; Inositol 1,4,5-trisphosphate-induced Ca2+ release is inhibited by mitochondrial depolarization. Biochem J 347:593–600 [CrossRef]
    [Google Scholar]
  12. Cotgreave I. A., Duddy S. K., Kass G. E. N., Thompson D., Moldeus P. 1989; Studies on the anti-inflammatory activity of ebselen: ebselen interferes with granulocyte oxidative burst by dual inhibition of NADPH oxidase and protein kinase C. Biochem Pharmacol 38:649–656 [CrossRef]
    [Google Scholar]
  13. Cox D. A., Conforti L., Sperelakis N., Matlib M. A. 1993; Selectivity of inhibition on Na+–Ca2+ exchange of heart mitochondria by benzothiazepine CGP-37157. J Cardiovasc Pharmacol 21:595–599 [CrossRef]
    [Google Scholar]
  14. Cruz M. C., Goldstein A. L., Blankenship J., Del Poeta M., Perfect J. R., McCusker J. H., Bennani Y. L., Cardenas M. E., Heitman J. 2001; Rapamycin and less immunosuppressive analogs are toxic to Candida albicans and Cryptococcus neoformans via FKBP12-dependent inhibition of TOR. Antimicrob Agents Chemother 45:3162–3170 [CrossRef]
    [Google Scholar]
  15. Danial N. N., Korsmeyer S. J. 2004; Cell death: critical control points. Cell 116:205–219 [CrossRef]
    [Google Scholar]
  16. Degterev A., Lugovsky A., Cardone M., Mulley B., Wagner G., Mitchison T., Yuan J. 2001; Identification of small-molecule inhibitors of interaction between the BH3 domain and Bcl-XL. Nat Cell Biol 3:173–182 [CrossRef]
    [Google Scholar]
  17. Duksin D., Mahoney W. C. 1982; Relationship of the structure and biological activity of the natural homologues of tunicamycin. J Biol Chem 257:3105–3109
    [Google Scholar]
  18. Ereshefsky L., Watanabe M. D., Tran-Johnson T. K. 1989; Clozapine: an atypical antipsychotic agent. Clin Pharm 8:691–709
    [Google Scholar]
  19. Ernst J. F. 2000; Transcription factors in Candida albicans – environmental control of morphogenesis. Microbiology 146:1763–1774
    [Google Scholar]
  20. Fan Z., Lu Y., Wu X., DeBlasio A., Koff A., Mendelsohn J. 1995; Prolonged induction of p21Cip1/WAF1/CDK2/PCNA complex by epidermal growth factor receptor activation mediates ligand-induced A431 cell growth inhibition. J Cell Biol 131:235–242 [CrossRef]
    [Google Scholar]
  21. Fedorova N. D., Badger J. H., Robson G. D., Wortman J. R., Nierman W. C. 2005; Comparative analysis of programmed cell death pathways in filamentous fungi. BMC Genomics 6:177–191 [CrossRef]
    [Google Scholar]
  22. Frey C., Narayanan K., McMillan K., Spack L., Gross S. S., Masters B. S., Griffith O. W. 1994; l-Thiocitrulline. A stereospecific, heme-binding inhibitor of nitric-oxide synthases. J Biol Chem 269:26083–26091
    [Google Scholar]
  23. Garvin J. L., Simon S. A., Cragoe E. J. J., Mandel L. J. 1985; Phenamil: an irreversible inhibitor of sodium channels in the toad urinary bladder. J Membr Biol 87:45–54 [CrossRef]
    [Google Scholar]
  24. Gietzen K., Sadorf I., Bader H. 1982; A model for the regulation of the calmodulin-dependent enzymes erythrocyte Ca2+-transport ATPase and brain phosphodiesterase by activators and inhibitors. Biochem J 207:541–548
    [Google Scholar]
  25. Grosman N. 1991; Effects of the ether phospholipid AMG-PC on mast cells are similar to that of the ether lipid AMG but different from that of the analogue hexadecylphosphocholine. Immunopharmacology 22:39–47 [CrossRef]
    [Google Scholar]
  26. Guiraud P., Steiman R., Campos-Takaki G. M., Seigle-Murandi F., Simeon de Buochberg M. 1994; Comparison of antibacterial and antifungal activities of lapachol and β -lapachone. Planta Med 60:373–374 [CrossRef]
    [Google Scholar]
  27. Hagiwara M., Endo T., Hidaka H. 1984; Effects of vinpocetine on cyclic nucleotide metabolism in vascular smooth muscle. Biochem Pharmacol 33:453–457 [CrossRef]
    [Google Scholar]
  28. Hamaguchi T., Sudo T., Osada H. 1995; RK-682, a potent inhibitor of tyrosine phosphatase, arrested the mammalian cell cycle progression at G1 phase. FEBS Lett 372:54–58 [CrossRef]
    [Google Scholar]
  29. Hara M., Akasaka K., Akinaga S., Okabe M., Nakano H., Gomez R., Wood D., Uh M., Tamanoi F. 1993; Identification of Ras farnesyltransferase inhibitors by microbial screening. Proc Natl Acad Sci U S A 90:2281–2285 [CrossRef]
    [Google Scholar]
  30. Herbert J. M., Augereau J. M., Gleye J., Maffrand J. P. 1990; Chelerythrine is a potent and specific inhibitor of protein kinase C. Biochem Biophys Res Commun 172:993–999 [CrossRef]
    [Google Scholar]
  31. Higashijima T., Uzu S., Nakajima T., Ross E. M. 1988; Mastoparan, a peptide toxin from wasp venom, mimics receptors by activating GTP-binding regulatory proteins (G proteins). J Biol Chem 263:6491–6494
    [Google Scholar]
  32. Hoberg K. A., Cihlar R. L., Calderone R. A. 1983; Inhibitory effect of cerulenin and sodium butyrate on germination of Candida albicans . Antimicrob Agents Chemother 24:401–408 [CrossRef]
    [Google Scholar]
  33. Inagaki M., Kawamoto S., Itoh H., Saitoh M., Hagiwara M., Takahashi J., Hidaka H. 1986; Naphthalenesulfonamides as calmodulin antagonists and protein kinase inhibitors. Mol Pharmacol 29:577–581
    [Google Scholar]
  34. Ishihara H., Martin B. L., Brautigan D. L., Karaki H., Ozaki H., Kato Y., Fusetani N., Watabe S., Hashimoto K. other authors 1989; Calyculin A and okadaic acid: inhibitors of protein phosphatase activity. Biochem Biophys Res Commun 159:871–877 [CrossRef]
    [Google Scholar]
  35. Kase H., Iwahashi K., Nakanishi S., Matsuda Y., Yamada K., Takahashi M., Murakata C., Sato A., Kaneko M. 1987; K-252 compounds, novel and potent inhibitors of protein kinase C and cyclic nucleotide-dependent protein kinases. Biochem Biophys Res Commun 142:436–440 [CrossRef]
    [Google Scholar]
  36. Kawamoto S., Hidaka H. 1984; 1-(5-Isoquinolinesulfonyl)-2-methylpiperazine (H-7) is a selective inhibitor of protein kinase C in rabbit platelets. Biochem Biophys Res Commun 125:258–264 [CrossRef]
    [Google Scholar]
  37. Klausner R. D., Donaldson J. G., Lippincott-Schwartz J. 1992; Brefeldin A: insights into the control of membrane traffic and organelle structure. J Cell Biol 116:1071–1080 [CrossRef]
    [Google Scholar]
  38. Knaus H. G., McManus O. B., Lee S. H., Schmalhofer W. A., Garcia-Calvo M., Helms L. M., Sanchez M., Giangiacomo K., Reuben J. P. other authors 1994; Tremorgenic indole alkaloids potently inhibit smooth muscle high-conductance calcium-activated potassium channels. Biochemistry 33:5819–5828 [CrossRef]
    [Google Scholar]
  39. Kojic E. M., Darouiche R. O. 2004; Candida infections of medical devices. Clin Microbiol Rev 17:255–267 [CrossRef]
    [Google Scholar]
  40. Lackey K., Cory M., Davis R., Frye S. V., Harris P. A., Hunter R. N., Jung D. K., McDonald O. B., McNutt R. W. other authors 2000; The discovery of potent cRaf1 kinase inhibitors. Bioorg Med Chem Lett 10:223–226 [CrossRef]
    [Google Scholar]
  41. Leberer E., Harcus D., Dignard D., Johnson L., Ushinsky S., Thomas D. Y., Schroppel K. 2001; Ras links cellular morphogenesis to virulence by regulation of the MAP kinase and cAMP signalling pathways in the pathogenic fungus Candida albicans . Mol Microbiol 42:673–687
    [Google Scholar]
  42. Leesnitzer L. M., Parks D. J., Bledsoe R. K., Cobb J. E., Collins J. L., Consler T. G., Davis R. G., Hull-Ryde E. A., Lenhard J. M. other authors 2002; Functional consequences of cysteine modification in the ligand binding sites of peroxisome proliferator activated receptors by GW9662. Biochemistry 41:6640–6650 [CrossRef]
    [Google Scholar]
  43. Levitzki A., Gilon C. 1991; Tyrphostins as molecular tools and potential antiproliferative drugs. Trends Pharmacol Sci 12:171–174 [CrossRef]
    [Google Scholar]
  44. Liu H., Köhler J., Fink G. R. 1994; Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog. Science 266:1723–1726 [CrossRef]
    [Google Scholar]
  45. Lokey R. S. 2003; Forward chemical genetics: progress and obstacles on the path to a new pharmacopoeia. Curr Opin Chem Biol 7:91–96 [CrossRef]
    [Google Scholar]
  46. Lynch A. S., Robertson G. T. 2008; Bacterial and fungal biofilm infections. Annu Rev Med 59:415–428 [CrossRef]
    [Google Scholar]
  47. Madeo F., Herker E., Maldener C., Wissing S., Lächelt S., Herlan M., Fehr M., Lauber K., Sigrist S. J. other authors 2002; A caspase-related protease regulates apoptosis in yeast. Mol Cell 9:911–917 [CrossRef]
    [Google Scholar]
  48. Maidan M. M., De Rop L., Serneels J., Exler S., Rupp S., Tournu H., Thevelein J. M., Van Dijck P. 2005; The G protein-coupled receptor Gpr1 and the G α protein Gpa2 act through the cAMP-protein kinase A pathway to induce morphogenesis in Candida albicans . Mol Biol Cell 16:1971–1986 [CrossRef]
    [Google Scholar]
  49. Massillon D., Stalmans W., van de Werve G., Bollen M. 1994; Identification of the glycogenic compound 5-iodotubercidin as a general protein kinase inhibitor. Biochem J 299:123–128
    [Google Scholar]
  50. McCabe M. J. J., Jiang S. A., Orrenius S. 1993; Chelation of intracellular zinc triggers apoptosis in mature thymocytes. Lab Invest 69:101–110
    [Google Scholar]
  51. McKenna J. P., Hanson P. J. 1993; Inhibition by Ro 31-8220 of acid secretory activity induced by carbachol indicates a stimulatory role for protein kinase C in the action of muscarinic agonists on isolated rat parietal cells. Biochem Pharmacol 46:583–588 [CrossRef]
    [Google Scholar]
  52. Medana C., Ermondi G., Fruttero R., Di Stilo A., Ferretti C., Gasco A. 1994; Furoxans as nitric oxide donors. 4-Phenyl-3-furoxancarbonitrile: thiol-mediated nitric oxide release and biological evaluation. J Med Chem 37:4412–4416 [CrossRef]
    [Google Scholar]
  53. Merritt J. E., Armstrong W. P., Benham C. D., Hallam T. J., Jacob R., Jaxa-Chamiec A., Leigh B. K., McCarthy S. A., Moores K. E., Rink T. J. 1990; SK&F 96365, a novel inhibitor of receptor-mediated calcium entry. Biochem J 271:515–522
    [Google Scholar]
  54. Miwa T., Takagi Y., Shinozaki M., Yun C.-W., Schell W. A., Perfect J. R., Kumagai H., Tamaki H. 2004; Gpr1, a putative G-protein-coupled receptor, regulates morphogenesis and hypha formation in the pathogenic fungus Candida albicans . Eukaryot Cell 3:919–931 [CrossRef]
    [Google Scholar]
  55. Mülsch A., Lückhoff A., Pohl U., Busse R., Bassenge E. 1989; LY 83583 (6-anilino-5,8-quinolinedione) blocks nitrovasodilator-induced cyclic GMP increases and inhibition of platelet activation. Naunyn Schmiedebergs Arch Pharmacol 340:119–125
    [Google Scholar]
  56. Mülsch A., Bauersachs J., Schäfer A., Stasch J. P., Kast R., Busse R. 1997; Effect of YC-1, an NO-independent, superoxide-sensitive stimulator of soluble guanylyl cyclase, on smooth muscle responsiveness to nitrovasodilators. Br J Pharmacol 120:681–689 [CrossRef]
    [Google Scholar]
  57. Natarajan K., Singh S., Burke T. R., Grunberger D., Aggarwal B. B. 1996; Caffeic acid phenethyl ester is a potent and specific inhibitor of activation of nuclear transcription factor NF- κ B. Proc Natl Acad Sci U S A 93:9090–9095 [CrossRef]
    [Google Scholar]
  58. Nehil M. T., Tamble C. M., Combs D. J., Kellogg D. R., Lokey R. S. 2007; Uncovering genetic relationships using small molecules that selectively target yeast cell cycle mutants. Chem Biol Drug Des 69:258–264 [CrossRef]
    [Google Scholar]
  59. Nierman W. C., Pain A., Anderson M. J., Wortman J. R., Kim H. S., Arroyo J., Berriman M., Abe K., Archer D. B. other authors 2005; Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus . Nature 438:1151–1156 [CrossRef]
    [Google Scholar]
  60. Noverr M. C., Erb-Downward J. R., Huffnagle G. B. 2003; Production of eicosanoids and other oxylipins by pathogenic eukaryotic microbes. Clin Microbiol Rev 16:517–533 [CrossRef]
    [Google Scholar]
  61. Peterson J. R., Mitchison T. J. 2002; Small molecules, big impact: a history of chemical inhibitors and the cytoskeleton. Chem Biol 9:1275–1285 [CrossRef]
    [Google Scholar]
  62. Phan Q. T., Belanger P. H., Filler S. G. 2000; Role of hyphal formation in interactions of Candida albicans with endothelial cells. Infect Immun 68:3485–3490 [CrossRef]
    [Google Scholar]
  63. Pierce J. W., Schoenleber R., Jesmok G., Best J., Moore S. A., Collins T., Gerritsen M. E. 1997; Novel inhibitors of cytokine-induced IkBa phosphorylation and endothelial cell adhesion molecule expression show anti-inflammatory effects in vivo . J Biol Chem 272:21096–21103 [CrossRef]
    [Google Scholar]
  64. Powers J. C., Kam C. M., Narasimhan L., Oleksyszyn J., Hernandez M. A., Ueda T. 1989; Mechanism-based isocoumarin inhibitors for serine proteases: use of active site structure and substrate specificity in inhibitor design. J Cell Biochem 39:33–46 [CrossRef]
    [Google Scholar]
  65. Pressman B. C. 1976; Biological applications of ionophores. Annu Rev Biochem 45:501–530 [CrossRef]
    [Google Scholar]
  66. Rao G. H. 1987; Influence of calmodulin antagonist (stelazine) on agonist-induced calcium mobilization and platelet activation. Biochem Biophys Res Commun 148:768–775 [CrossRef]
    [Google Scholar]
  67. Sah D. W., Bean B. P. 1994; Inhibition of P-type and N-type calcium channels by dopamine receptor antagonists. Mol Pharmacol 45:84–92
    [Google Scholar]
  68. Saitoh M., Ishikawa T., Matsushima S., Naka M., Hidaka H. 1987; Selective inhibition of catalytic activity of smooth muscle myosin light chain kinase. J Biol Chem 262:7796–7801
    [Google Scholar]
  69. Salari H., Braquet P., Borgeat P. 1984; Comparative effects of indomethacin, acetylenic acids, 15-HETE, nordihydroguaiaretic acid and BW755C on the metabolism of arachidonic acid in human leukocytes and platelets. Prostaglandins Leukot Med 13:53–60 [CrossRef]
    [Google Scholar]
  70. Saville S. P., Lazzell A. L., Monteagudo C., Lopez-Ribot J. L. 2003; Engineered control of cell morphology in vivo reveals distinct roles for yeast and filamentous forms of Candida albicans during infection. Eukaryot Cell 2:1053–1060 [CrossRef]
    [Google Scholar]
  71. Schmidt-Westhausen A., Schiller R. A., Pohle H. D., Reichart P. A. 1991; Oral Candida and Enterobacteriaceae in HIV-1 infection: correlation with clinical candidiasis and antimycotic therapy. J Oral Pathol Med 20:467–472
    [Google Scholar]
  72. Schreiber S. L., Crabtree G. R. 1992; The mechanism of action of cyclosporin A and FK506. Immunol Today 13:136–142 [CrossRef]
    [Google Scholar]
  73. Smith R. J., Sam L. M., Justen J. M., Bundy G. L., Bala G. A., Bleasdale J. E. 1990; Receptor-coupled signal transduction in human polymorphonuclear neutrophils: effects of a novel inhibitor of phospholipase C-dependent processes on cell responsiveness. J Pharmacol Exp Ther 253:688–697
    [Google Scholar]
  74. Sonneborn A., Bockmuhl D. P., Gerads M., Kurpanek K., Sanglard D., Ernst J. F. 2000; Protein kinase A encoded by TPK2 regulates dimorphism of Candida albicans . Mol Microbiol 35:386–396 [CrossRef]
    [Google Scholar]
  75. Steinbach W. J., Reedy J. L., Cramer R. A. Jr, Perfect J. R., Heitman J. 2007; Harnessing calcineurin as a novel anti-infective agent against invasive fungal infections. Nat Rev Microbiol 5:418–430 [CrossRef]
    [Google Scholar]
  76. Stuehr D. J., Fasehun O. A., Kwon N. S., Gross S. S., Gonzalez J. A., Levi R., Nathan C. F. 1991; Inhibition of macrophage and endothelial cell nitric oxide synthase by diphenyleneiodonium and its analogs. FASEB J 5:98–103
    [Google Scholar]
  77. Sudbery P., Gow N., Berman J. 2004; The distinct morphogenetic states of Candida albicans . Trends Microbiol 12:317–324 [CrossRef]
    [Google Scholar]
  78. Tamaoki T., Nomoto H., Takahashi I., Kato Y., Morimoto M., Tomita F. 1986; Staurosporine, a potent inhibitor of phospholipid/Ca++ dependent protein kinase. Biochem Biophys Res Commun 135:397–402 [CrossRef]
    [Google Scholar]
  79. Tanaka T., Ohmura T., Hidaka H. 1983; Calmodulin antagonists' binding sites on calmodulin. Pharmacology 26:249–257 [CrossRef]
    [Google Scholar]
  80. Tanaka T., Satoh T., Onozawa Y., Kohroki J., Itoh N., Ishidate M. J., Muto N., Tanaka K. 1999; Apoptosis during iron chelator-induced differentiation in F9 embryonal carcinoma cells. Cell Biol Int 23:541–550 [CrossRef]
    [Google Scholar]
  81. Toenjes K. A., Munsee S. M., Ibrahim A. S., Jeffrey R., Edwards J. E. Jr, Johnson D. I. 2005; Small-molecule inhibitors of the budded-to-hyphal-form transition in the pathogenic yeast Candida albicans . Antimicrob Agents Chemother 49:963–972 [CrossRef]
    [Google Scholar]
  82. Ullmann B. D., Myers H., Chiranand W., Lazzell A. L., Zhao Q., Vega L. A., Lopez-Ribot J. L., Gardner P. R., Gustin M. C. 2004; Inducible defense mechanism against nitric oxide in Candida albicans . Eukaryot Cell 3:715–723 [CrossRef]
    [Google Scholar]
  83. Uppuluri P., Nett J., Heitman J., Andes D. 2008; Synergistic effect of calcineurin inhibitors and fluconazole against Candida albicans biofilms. Antimicrob Agents Chemother 52:1127–1132 [CrossRef]
    [Google Scholar]
  84. Vercesi A. E., Moreno S. N. J., Bernardes C. F., Meinicke A. R., Fernandes E. C., Docampo R. 1993; Thapsigargin causes Ca2+ release and collapse of the membrane potential of Trypanosoma brucei mitochondria in situ and of isolated rat liver mitochondria. J Biol Chem 268:8564–8568
    [Google Scholar]
  85. Vigushin D. M., Mirsaidi N., Brooke G., Sun C., Pace P., Inman L., Moody C. J., Coombes R. C. 2004; Gliotoxin is a dual inhibitor of farnesyltransferase and geranylgeranyltransferase I with antitumor activity against breast cancer in vivo. Med Oncol 21:21–30 [CrossRef]
    [Google Scholar]
  86. Vrijsen R., Berghe D. A. V., Vlietinck A. J., Boeye A. 1986; Lycorine: a eukaryotic termination inhibitor?. J Biol Chem 261:505–507
    [Google Scholar]
  87. Wallace K. K., Reynolds K. A., Koch K., McArthur H. A. I., Brown M. S., Wax R. G., Moore B. S. 1994; Biosynthetic studies of ascomycin (FK520): formation of the (1R,3R,4R)-3,4-dihydroxycyclohexanecarboxylic acid-derived moiety. J Am Chem Soc 116:11600–11601 [CrossRef]
    [Google Scholar]
  88. Wang G., Lemos J. R. 1992; Tetrandrine blocks a slow, large-conductance, Ca2+-activated potassium channel besides inhibiting a non-inactivating Ca2+ current in isolated nerve terminals of the rat neurohypophysis. Pflugers Arch 421:558–565 [CrossRef]
    [Google Scholar]
  89. Ward G. E., Carey K. L., Westwood N. J. 2002; Using small molecules to study big questions in cellular microbiology. Cell Microbiol 4:471–482 [CrossRef]
    [Google Scholar]
  90. Warenda A. J., Konopka J. B. 2002; Septin function in Candida albicans morphogenesis. Mol Biol Cell 13:2732–2746 [CrossRef]
    [Google Scholar]
  91. Warenda A. J., Kauffman S., Sherrill T. P., Becker J. A., Konopka J. B. 2003; Candida albicans septin mutants are defective for invasive growth and virulence. Infect Immun 71:4045–4051 [CrossRef]
    [Google Scholar]
  92. Warnock D. W. 2007; Trends in the epidemiology of invasive fungal infections. Nippon Ishinkin Gakkai Zasshi 48:1–12 [CrossRef]
    [Google Scholar]
  93. Whitesell L., Mimnaugh E. G., De Costa B., Myers C. E., Neckers L. M. 1994; Inhibition of heat shock protein HSP90–pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc Natl Acad Sci U S A 91:8324–8328 [CrossRef]
    [Google Scholar]
  94. Wykle R. L., Miller C. H., Lewis J. C., Schmitt J. D., Smith J. A., Surles J. R., Piantadosi C., O'Flaherty J. T. 1981; Stereospecific activity of 1- O -alkyl-2- O -acetyl-sn-glycero-3-phosphocholine and comparison of analogs in the degranulation of platelets and neutrophils. Biochem Biophys Res Commun 100:1651–1658 [CrossRef]
    [Google Scholar]
  95. Xu W., Leung S., Wright J., Guggino S. E. 1999; Expression of cyclic nucleotide-gated cation channels in airway epithelial cells. J Membr Biol 171:117–126 [CrossRef]
    [Google Scholar]
  96. Yaish P., Gazit A., Gilon C., Levitzki A. 1988; Blocking of EGF-dependent cell proliferation by EGF receptor kinase inhibitors. Science 242:933–935 [CrossRef]
    [Google Scholar]
  97. Yatomi Y., Ruan F., Megidish T., Toyokuni T., Hakomori S., Igarashi Y. 1996; N , N -dimethylsphingosine inhibition of sphingosine kinase and sphingosine 1-phosphate activity in human platelets. Biochemistry 35:626–633 [CrossRef]
    [Google Scholar]
  98. Zeller F. P., Spinler S. A. 1987; Bepridil: a new long-acting calcium channel blocking agent. Drug Intell Clin Pharm 21:487–492
    [Google Scholar]
  99. Zheng B., Oishi K., Shoji M., Eibl H., Berdel W. E., Hajdu J., Vogler W. R., Kuo J. F. 1990; Inhibition of protein kinase C, (sodium plus potassium)-activated adenosine triphosphate, and sodium pump by synthetic phospholipid analogues. Cancer Res 50:3025–3031
    [Google Scholar]
  100. Zinck R., Cahill M. A., Kracht M., Sachsenmaier C., Hipskind R. A., Nordheim A. 1995; Protein synthesis inhibitors reveal differential regulation of mitogen-activated protein kinase and stress-activated protein kinase pathways that converge on Elk-1. Mol Cell Biol 15:4930–4938
    [Google Scholar]
/content/journal/jmm/10.1099/jmm.0.006841-0
Loading
/content/journal/jmm/10.1099/jmm.0.006841-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error