Immune effects against influenza A virus and a novel DNA vaccine with co-expression of haemagglutinin- and neuraminidase-encoding genes Free

Abstract

The high variability of influenza virus causes difficulties in the control and prevention of influenza, thus seeking a promising approach for dealing with these problems is a hot topic. Haemagglutinin (HA) and neuraminidase (NA) are major surface antigens of the influenza virus, and provide effective protection against lethal challenges with this virus. We constructed a DNA vaccine (pHA-IRES2-NA) that co-expressed both HA and NA, and compared its protective efficacy and immunogenic ability with that of singly expressed HA or NA, or a mixture of the two singly expressed proteins. Our findings showed that both HA and NA proteins expressed by pHA-IRES2-NA could be detected and . The protection of DNA vaccines was evaluated by serum antibody titres, residual lung virus titres and survival rates of the mice. In the murine model, immunization of pHA-IRES2-NA generated significant anti-HA and anti-NA antibody, increased the percentage of CD8 cells and gamma interferon-producing CD8 cells and the ratio of Th1/Th2 (T helper) cells, which was comparable to the effects of immunization with or DNA alone or with a mixture of and DNA. All the mice inoculated by pHA-IRES2-NA resisted the lethal challenge by homologous influenza virus and survived with low lung virus titre. In addition, previous studies reported that co-expression allowed higher-frequency transduction compared to co-transduction of separated vector systems encoding different genes. The novel HA and NA co-expression DNA vaccine is a successful alternative to using a mixture of purified HA and NA proteins or and DNA.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.006825-0
2009-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/58/7/845.html?itemId=/content/journal/jmm/10.1099/jmm.0.006825-0&mimeType=html&fmt=ahah

References

  1. Alheim M., Lazdina U., Milich D. R., Sallberg M. 2001; Flow cytometric determination of cytokine production and proliferation in hepatitis B core antigen specific murine CD4 cells: lack of correlation between number of cytokine producing cells and cytokine levels in supernatant. J Immunol Methods 258:157–167 [CrossRef]
    [Google Scholar]
  2. Alymova I. V., Taylor G., Portner A. 2005; Neuraminidase inhibitors as antiviral agents. Curr Drug Targets Infect Disord 5:401–409 [CrossRef]
    [Google Scholar]
  3. Aymard-Henry M., Coleman M. T., Dowdle W. R., Laver W. G., Schild G. C., Webster R. G. 1973; Influenzavirus neuraminidase and neuraminidase-inhibition test procedures. Bull World Health Organ 48:199–202
    [Google Scholar]
  4. Bona C., Radu D., Kodera T. 2004; Molecular studies on the diversification of haemagglutinin-specific human neonatal repertoire subsequent to immunization with naked DNA. Vaccine 22:1624–1630 [CrossRef]
    [Google Scholar]
  5. Bot A., Antohi S., Bot S., Garcia-Sastre A., Bona C. 1997; Induction of humoral and cellular immunity against influenza virus by immunization of newborn mice with a plasmid bearing a hemagglutinin gene. Int Immunol 9:1641–1650 [CrossRef]
    [Google Scholar]
  6. Carter L. L., Dutton R. W. 1996; Type 1 and type 2: a fundamental dichotomy for all T-cell subsets. Curr Opin Immunol 8:336–342 [CrossRef]
    [Google Scholar]
  7. Chen J., Lee K. H., Steinhauer D. A., Stevens D. J., Skehel J. J., Wiley D. C. 1998; Structure of the hemagglutinin precursor cleavage site, a determinant of influenza pathogenicity and the origin of the labile conformation. Cell 95:409–417 [CrossRef]
    [Google Scholar]
  8. Chen J., Fang F., Li X., Chang H., Chen Z. 2005; Protection against influenza virus infection in BALB/c mice immunized with a single dose of neuraminidase-expressing DNAs by electroporation. Vaccine 23:4322–4328 [CrossRef]
    [Google Scholar]
  9. De Mare A., Bungener L. B., Regts J., de Vries-Idema J., Van der Zee A. G., Wilschut J., Daemen T. 2008; The effect of pre-existing immunity on the capacity of influenza virosomes to induce cytotoxic T lymphocyte activity. Vaccine 26:2314–2321 [CrossRef]
    [Google Scholar]
  10. Donnelly J. J., Ulmer J. B., Shiver J. W., Liu M. A. 1997; DNA vaccine. Annu Rev Immunol 15:617–648 [CrossRef]
    [Google Scholar]
  11. Feltquate D. M., Heaney S., Webster R. G., Robinson H. L. 1997; Different T helper cell types and antibody isotypes generated by saline and gene gun DNA immunization. J Immunol 158:2278–2284
    [Google Scholar]
  12. Fiers W., Neirynck S., Deroo T., Saelens X., Jou W. M. 2001; Soluble recombinant influenza vaccines. Philos Trans R Soc Lond B Biol Sci 356:1961–1963 [CrossRef]
    [Google Scholar]
  13. Gruber W. C. 2002; The role of live influenza vaccines in children. Vaccine 20:S66–S73 [CrossRef]
    [Google Scholar]
  14. He X. S., Mahmood K., Maecker H. T., Holmes T. H., Kemble G. W., Arvin A. M., Greenberg H. B. 2003; Analysis of the frequencies and of the memory T cell phenotypes of human CD8+ T cells specific for influenza A viruses. J Infect Dis 187:1075–1084 [CrossRef]
    [Google Scholar]
  15. He X. S., Holmes T. H., Zhang C., Mahmood K., Kemble G. W., Lewis D. B., Dekker C. L., Greenberg H. B., Arvin A. M. 2006; Cellular immune responses in children and adults receiving inactivated or live attenuated influenza vaccines. J Virol 80:11756–11766 [CrossRef]
    [Google Scholar]
  16. Johansson B. E., Grajower B., Kilbourne E. D. 1993; Infection-permissive immunization with influenza virus neuraminidase prevents weight loss in infected mice. Vaccine 11:1037–1039 [CrossRef]
    [Google Scholar]
  17. Johnson P. A., Conway M. A., Daly J., Nicolson C., Robertson J., Mills K. H. 2000; Plasmid DNA encoding influenza virus haemagglutinin induces Th1 cells and protection against respiratory infection despite its limited ability to generate antibody responses. J Gen Virol 81:1737–1745
    [Google Scholar]
  18. Lambkin R., Novelli P., Oxford J., Gelder C. 2004; Human genetics and responses to influenza vaccination: clinical implication. Am J Pharmacogenomics 4:293–298 [CrossRef]
    [Google Scholar]
  19. Larregina A. T., Falo L. D. Jr 2000; Generating and regulating immune responses through cutaneous gene delivery. Hum Gene Ther 11:2301–2305 [CrossRef]
    [Google Scholar]
  20. Li X., Fang F., Song Y., Yan H., Chang H., Sun S., Chen Z. 2006; Essential sequence of influenza neuraminidase DNA to provide protection against lethal viral infection. DNA Cell Biol 25:197–205 [CrossRef]
    [Google Scholar]
  21. Licht T., Peschel C. 2002; Restoration of transgene expression in hematopoietic cells with drug-selectable marker genes. Curr Gene Ther 2:227–234 [CrossRef]
    [Google Scholar]
  22. McDonald N. J., Smith C. B., Cox N. J. 2007; Antigenic drift in the evolution of H1N1 influenza A viruses resulting from deletion of a single amino acid in the haemagglutinin gene. J Gen Virol 88:3209–3213 [CrossRef]
    [Google Scholar]
  23. Oran A. E., Robinson H. L. 2003; DNA vaccines, combining form of antigen and method of delivery to raise a spectrum of IFN- γ and IL-4-producing CD4+ and CD8+ T cells. J Immunol 171:1999–2005 [CrossRef]
    [Google Scholar]
  24. Palese P., Tobita K., Ueda M., Compans R. W. 1974; Characterization of temperature-sensitive influenza virus mutants defective in neuraminidase. Virology 61:397–410 [CrossRef]
    [Google Scholar]
  25. Pertmer T. M., Roberts T. R., Haynes J. R. 1996; Influenza virus nucleoprotein-specific immunoglobulin G subclass and cytokine responses elicited by DNA vaccination are dependent on the route of vector DNA delivery. J Virol 70:6119–6125
    [Google Scholar]
  26. Plotkin J. B., Dushoff J., Levin S. A. 2002; Hemagglutinin sequence clusters and the antigenic evolution of influenza A virus. Proc Natl Acad Sci U S A 99:6263–6268 [CrossRef]
    [Google Scholar]
  27. Reed L. J., Muench H. 1938; A simple method of estimating fifty percent endpoints. Am J Hyg 27:493–497
    [Google Scholar]
  28. Robinson H. L., Hunt L. A., Webster R. G. 1992; Protection against a lethal influenza virus challenge by immunization with a haemagglutinin-expressing plasmid DNA. Vaccine 11:957–960
    [Google Scholar]
  29. Sad S., Marcotte R., Mosmann T. R. 1995; Cytokine-induced differentiation of precursor mouse CD8+ T cells into cytotoxic CD8+ T cells secreting Th1 or Th2 cytokines. Immunity 2:271–279 [CrossRef]
    [Google Scholar]
  30. Sasaki S., Jaimes M. C., Holmes T. H., Dekker C. L., Mahmood K., Kemble G. W., Arvin A. M., Greenberg H. B. 2007; Comparison of the influenza virus-specific effector and memory B-cell responses to immunization of children and adults with live attenuated or inactivated influenza virus vaccines. J Virol 81:215–228 [CrossRef]
    [Google Scholar]
  31. Shen Y., Muramatsu S. I., Ikeguchi K., Fujimoto K. I., Fan D. S., Ogawa M., Mizukami H., Urabe M., Kume A. other authors 2000; Triple transduction with adeno-associated virus vectors expressing tyrosine hydroxylase, aromatic-l-amino-acid decarboxylase, and GTP cyclohydrolase I for gene therapy of Parkinson's disease. Hum Gene Ther 11:1509–1519 [CrossRef]
    [Google Scholar]
  32. Snapper C. M., Paul W. E. 1987; Interferon- γ and B cell stimulatory factor-1 reciprocally regulate Ig isotype production. Science 236:944–947 [CrossRef]
    [Google Scholar]
  33. Tamura S., Ito Y., Asanuma H., Hirabayashi Y., Suzuki Y., Nagamine T., Aizawa C., Kurata T. 1992a; Cross-protection against influenza virus infection afforded by trivalent inactivated vaccines inoculated intranasally with cholera toxin B subunit. J Immunol 149:981–988
    [Google Scholar]
  34. Tamura S. I., Asanuma H., Ito Y., Hirabayashi Y., Suzuki Y., Nagamine T., Aizawa C., Kurata T., Oya A. 1992b; Superior cross-protective effect of nasal vaccination to subcutaneous inoculation with influenza hemagglutinin vaccine. Eur J Immunol 22:477–481 [CrossRef]
    [Google Scholar]
  35. Tighe H., Corr M., Roman M., Raz E. 1998; Gene vaccination: plasmid DNA is more than just a blueprint. Immunol Today 19:89–97 [CrossRef]
    [Google Scholar]
  36. Ulmer J. B. 2002; Influenza DNA vaccines. Vaccine 20:S74–S76 [CrossRef]
    [Google Scholar]
  37. Ulmer J. B., Donnelly J. J., Paker S. E., Rhodes G. H., Felgner P. L., Dwarki V. J., Gromkowski S. H., Deck R. R., DeWitt C. M. other authors 1993; Heterologous protection against influenza by infection of DNA encoding a viral protein. Science 259:1745–1749 [CrossRef]
    [Google Scholar]
  38. Wilson J. C., Itzstein M. 2003; Recent strategies in the search for new anti-influenza therapies. Curr Drug Targets 4:389–408 [CrossRef]
    [Google Scholar]
  39. Wilson I. A., Skehel J. J., Wiley D. C. 1981; Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution. Nature 289:366–373 [CrossRef]
    [Google Scholar]
  40. Zhang F., Chen J., Fang F., Zhou Y., Wu J., Chang H., Zhang R., Wang F., Li X. other authors 2005; Maternal immunization with both hemagglutinin and neuraminidase expressing DNAs provides an enhanced protection against a lethal influenza virus challenge in infant and adult mice. DNA Cell Biol 24:758–765 [CrossRef]
    [Google Scholar]
  41. Zhang W., Li M., Cao K., Yang J., Shi Q., Wang B., Jiang Z., Li H. 2006; Construction of eukaryotic expressing plasmids encoding HA and HA 1 of influenza A virus and their transient expression in HEK293 cells. J Huazhong Univ Sci Technolog Med Sci 26:225–230 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.006825-0
Loading
/content/journal/jmm/10.1099/jmm.0.006825-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed