1887

Abstract

The high variability of influenza virus causes difficulties in the control and prevention of influenza, thus seeking a promising approach for dealing with these problems is a hot topic. Haemagglutinin (HA) and neuraminidase (NA) are major surface antigens of the influenza virus, and provide effective protection against lethal challenges with this virus. We constructed a DNA vaccine (pHA-IRES2-NA) that co-expressed both HA and NA, and compared its protective efficacy and immunogenic ability with that of singly expressed HA or NA, or a mixture of the two singly expressed proteins. Our findings showed that both HA and NA proteins expressed by pHA-IRES2-NA could be detected and . The protection of DNA vaccines was evaluated by serum antibody titres, residual lung virus titres and survival rates of the mice. In the murine model, immunization of pHA-IRES2-NA generated significant anti-HA and anti-NA antibody, increased the percentage of CD8 cells and gamma interferon-producing CD8 cells and the ratio of Th1/Th2 (T helper) cells, which was comparable to the effects of immunization with or DNA alone or with a mixture of and DNA. All the mice inoculated by pHA-IRES2-NA resisted the lethal challenge by homologous influenza virus and survived with low lung virus titre. In addition, previous studies reported that co-expression allowed higher-frequency transduction compared to co-transduction of separated vector systems encoding different genes. The novel HA and NA co-expression DNA vaccine is a successful alternative to using a mixture of purified HA and NA proteins or and DNA.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.006825-0
2009-07-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/jmm/58/7/845.html?itemId=/content/journal/jmm/10.1099/jmm.0.006825-0&mimeType=html&fmt=ahah

References

  1. Alheim, M., Lazdina, U., Milich, D. R. & Sallberg, M. ( 2001; ). Flow cytometric determination of cytokine production and proliferation in hepatitis B core antigen specific murine CD4 cells: lack of correlation between number of cytokine producing cells and cytokine levels in supernatant. J Immunol Methods 258, 157–167.[CrossRef]
    [Google Scholar]
  2. Alymova, I. V., Taylor, G. & Portner, A. ( 2005; ). Neuraminidase inhibitors as antiviral agents. Curr Drug Targets Infect Disord 5, 401–409.[CrossRef]
    [Google Scholar]
  3. Aymard-Henry, M., Coleman, M. T., Dowdle, W. R., Laver, W. G., Schild, G. C. & Webster, R. G. ( 1973; ). Influenzavirus neuraminidase and neuraminidase-inhibition test procedures. Bull World Health Organ 48, 199–202.
    [Google Scholar]
  4. Bona, C., Radu, D. & Kodera, T. ( 2004; ). Molecular studies on the diversification of haemagglutinin-specific human neonatal repertoire subsequent to immunization with naked DNA. Vaccine 22, 1624–1630.[CrossRef]
    [Google Scholar]
  5. Bot, A., Antohi, S., Bot, S., Garcia-Sastre, A. & Bona, C. ( 1997; ). Induction of humoral and cellular immunity against influenza virus by immunization of newborn mice with a plasmid bearing a hemagglutinin gene. Int Immunol 9, 1641–1650.[CrossRef]
    [Google Scholar]
  6. Carter, L. L. & Dutton, R. W. ( 1996; ). Type 1 and type 2: a fundamental dichotomy for all T-cell subsets. Curr Opin Immunol 8, 336–342.[CrossRef]
    [Google Scholar]
  7. Chen, J., Lee, K. H., Steinhauer, D. A., Stevens, D. J., Skehel, J. J. & Wiley, D. C. ( 1998; ). Structure of the hemagglutinin precursor cleavage site, a determinant of influenza pathogenicity and the origin of the labile conformation. Cell 95, 409–417.[CrossRef]
    [Google Scholar]
  8. Chen, J., Fang, F., Li, X., Chang, H. & Chen, Z. ( 2005; ). Protection against influenza virus infection in BALB/c mice immunized with a single dose of neuraminidase-expressing DNAs by electroporation. Vaccine 23, 4322–4328.[CrossRef]
    [Google Scholar]
  9. De Mare, A., Bungener, L. B., Regts, J., de Vries-Idema, J., Van der Zee, A. G., Wilschut, J. & Daemen, T. ( 2008; ). The effect of pre-existing immunity on the capacity of influenza virosomes to induce cytotoxic T lymphocyte activity. Vaccine 26, 2314–2321.[CrossRef]
    [Google Scholar]
  10. Donnelly, J. J., Ulmer, J. B., Shiver, J. W. & Liu, M. A. ( 1997; ). DNA vaccine. Annu Rev Immunol 15, 617–648.[CrossRef]
    [Google Scholar]
  11. Feltquate, D. M., Heaney, S., Webster, R. G. & Robinson, H. L. ( 1997; ). Different T helper cell types and antibody isotypes generated by saline and gene gun DNA immunization. J Immunol 158, 2278–2284.
    [Google Scholar]
  12. Fiers, W., Neirynck, S., Deroo, T., Saelens, X. & Jou, W. M. ( 2001; ). Soluble recombinant influenza vaccines. Philos Trans R Soc Lond B Biol Sci 356, 1961–1963.[CrossRef]
    [Google Scholar]
  13. Gruber, W. C. ( 2002; ). The role of live influenza vaccines in children. Vaccine 20, S66–S73.[CrossRef]
    [Google Scholar]
  14. He, X. S., Mahmood, K., Maecker, H. T., Holmes, T. H., Kemble, G. W., Arvin, A. M. & Greenberg, H. B. ( 2003; ). Analysis of the frequencies and of the memory T cell phenotypes of human CD8+ T cells specific for influenza A viruses. J Infect Dis 187, 1075–1084.[CrossRef]
    [Google Scholar]
  15. He, X. S., Holmes, T. H., Zhang, C., Mahmood, K., Kemble, G. W., Lewis, D. B., Dekker, C. L., Greenberg, H. B. & Arvin, A. M. ( 2006; ). Cellular immune responses in children and adults receiving inactivated or live attenuated influenza vaccines. J Virol 80, 11756–11766.[CrossRef]
    [Google Scholar]
  16. Johansson, B. E., Grajower, B. & Kilbourne, E. D. ( 1993; ). Infection-permissive immunization with influenza virus neuraminidase prevents weight loss in infected mice. Vaccine 11, 1037–1039.[CrossRef]
    [Google Scholar]
  17. Johnson, P. A., Conway, M. A., Daly, J., Nicolson, C., Robertson, J. & Mills, K. H. ( 2000; ). Plasmid DNA encoding influenza virus haemagglutinin induces Th1 cells and protection against respiratory infection despite its limited ability to generate antibody responses. J Gen Virol 81, 1737–1745.
    [Google Scholar]
  18. Lambkin, R., Novelli, P., Oxford, J. & Gelder, C. ( 2004; ). Human genetics and responses to influenza vaccination: clinical implication. Am J Pharmacogenomics 4, 293–298.[CrossRef]
    [Google Scholar]
  19. Larregina, A. T. & Falo, L. D., Jr ( 2000; ). Generating and regulating immune responses through cutaneous gene delivery. Hum Gene Ther 11, 2301–2305.[CrossRef]
    [Google Scholar]
  20. Li, X., Fang, F., Song, Y., Yan, H., Chang, H., Sun, S. & Chen, Z. ( 2006; ). Essential sequence of influenza neuraminidase DNA to provide protection against lethal viral infection. DNA Cell Biol 25, 197–205.[CrossRef]
    [Google Scholar]
  21. Licht, T. & Peschel, C. ( 2002; ). Restoration of transgene expression in hematopoietic cells with drug-selectable marker genes. Curr Gene Ther 2, 227–234.[CrossRef]
    [Google Scholar]
  22. McDonald, N. J., Smith, C. B. & Cox, N. J. ( 2007; ). Antigenic drift in the evolution of H1N1 influenza A viruses resulting from deletion of a single amino acid in the haemagglutinin gene. J Gen Virol 88, 3209–3213.[CrossRef]
    [Google Scholar]
  23. Oran, A. E. & Robinson, H. L. ( 2003; ). DNA vaccines, combining form of antigen and method of delivery to raise a spectrum of IFN-γ and IL-4-producing CD4+ and CD8+ T cells. J Immunol 171, 1999–2005.[CrossRef]
    [Google Scholar]
  24. Palese, P., Tobita, K., Ueda, M. & Compans, R. W. ( 1974; ). Characterization of temperature-sensitive influenza virus mutants defective in neuraminidase. Virology 61, 397–410.[CrossRef]
    [Google Scholar]
  25. Pertmer, T. M., Roberts, T. R. & Haynes, J. R. ( 1996; ). Influenza virus nucleoprotein-specific immunoglobulin G subclass and cytokine responses elicited by DNA vaccination are dependent on the route of vector DNA delivery. J Virol 70, 6119–6125.
    [Google Scholar]
  26. Plotkin, J. B., Dushoff, J. & Levin, S. A. ( 2002; ). Hemagglutinin sequence clusters and the antigenic evolution of influenza A virus. Proc Natl Acad Sci U S A 99, 6263–6268.[CrossRef]
    [Google Scholar]
  27. Reed, L. J. & Muench, H. ( 1938; ). A simple method of estimating fifty percent endpoints. Am J Hyg 27, 493–497.
    [Google Scholar]
  28. Robinson, H. L., Hunt, L. A. & Webster, R. G. ( 1992; ). Protection against a lethal influenza virus challenge by immunization with a haemagglutinin-expressing plasmid DNA. Vaccine 11, 957–960.
    [Google Scholar]
  29. Sad, S., Marcotte, R. & Mosmann, T. R. ( 1995; ). Cytokine-induced differentiation of precursor mouse CD8+ T cells into cytotoxic CD8+ T cells secreting Th1 or Th2 cytokines. Immunity 2, 271–279.[CrossRef]
    [Google Scholar]
  30. Sasaki, S., Jaimes, M. C., Holmes, T. H., Dekker, C. L., Mahmood, K., Kemble, G. W., Arvin, A. M. & Greenberg, H. B. ( 2007; ). Comparison of the influenza virus-specific effector and memory B-cell responses to immunization of children and adults with live attenuated or inactivated influenza virus vaccines. J Virol 81, 215–228.[CrossRef]
    [Google Scholar]
  31. Shen, Y., Muramatsu, S. I., Ikeguchi, K., Fujimoto, K. I., Fan, D. S., Ogawa, M., Mizukami, H., Urabe, M., Kume, A. & other authors ( 2000; ). Triple transduction with adeno-associated virus vectors expressing tyrosine hydroxylase, aromatic-l-amino-acid decarboxylase, and GTP cyclohydrolase I for gene therapy of Parkinson's disease. Hum Gene Ther 11, 1509–1519.[CrossRef]
    [Google Scholar]
  32. Snapper, C. M. & Paul, W. E. ( 1987; ). Interferon-γ and B cell stimulatory factor-1 reciprocally regulate Ig isotype production. Science 236, 944–947.[CrossRef]
    [Google Scholar]
  33. Tamura, S., Ito, Y., Asanuma, H., Hirabayashi, Y., Suzuki, Y., Nagamine, T., Aizawa, C. & Kurata, T. ( 1992a; ). Cross-protection against influenza virus infection afforded by trivalent inactivated vaccines inoculated intranasally with cholera toxin B subunit. J Immunol 149, 981–988.
    [Google Scholar]
  34. Tamura, S. I., Asanuma, H., Ito, Y., Hirabayashi, Y., Suzuki, Y., Nagamine, T., Aizawa, C., Kurata, T. & Oya, A. ( 1992b; ). Superior cross-protective effect of nasal vaccination to subcutaneous inoculation with influenza hemagglutinin vaccine. Eur J Immunol 22, 477–481.[CrossRef]
    [Google Scholar]
  35. Tighe, H., Corr, M., Roman, M. & Raz, E. ( 1998; ). Gene vaccination: plasmid DNA is more than just a blueprint. Immunol Today 19, 89–97.[CrossRef]
    [Google Scholar]
  36. Ulmer, J. B. ( 2002; ). Influenza DNA vaccines. Vaccine 20, S74–S76.[CrossRef]
    [Google Scholar]
  37. Ulmer, J. B., Donnelly, J. J., Paker, S. E., Rhodes, G. H., Felgner, P. L., Dwarki, V. J., Gromkowski, S. H., Deck, R. R., DeWitt, C. M. & other authors ( 1993; ). Heterologous protection against influenza by infection of DNA encoding a viral protein. Science 259, 1745–1749.[CrossRef]
    [Google Scholar]
  38. Wilson, J. C. & Itzstein, M. ( 2003; ). Recent strategies in the search for new anti-influenza therapies. Curr Drug Targets 4, 389–408.[CrossRef]
    [Google Scholar]
  39. Wilson, I. A., Skehel, J. J. & Wiley, D. C. ( 1981; ). Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution. Nature 289, 366–373.[CrossRef]
    [Google Scholar]
  40. Zhang, F., Chen, J., Fang, F., Zhou, Y., Wu, J., Chang, H., Zhang, R., Wang, F., Li, X. & other authors ( 2005; ). Maternal immunization with both hemagglutinin and neuraminidase expressing DNAs provides an enhanced protection against a lethal influenza virus challenge in infant and adult mice. DNA Cell Biol 24, 758–765.[CrossRef]
    [Google Scholar]
  41. Zhang, W., Li, M., Cao, K., Yang, J., Shi, Q., Wang, B., Jiang, Z. & Li, H. ( 2006; ). Construction of eukaryotic expressing plasmids encoding HA and HA 1 of influenza A virus and their transient expression in HEK293 cells. J Huazhong Univ Sci Technolog Med Sci 26, 225–230.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.006825-0
Loading
/content/journal/jmm/10.1099/jmm.0.006825-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error