1887

Abstract

The plaque-control potential of commercially available amylase, lipase and protease was evaluated by observing their effects on coaggregation and on bacterial viability within various plaque microcosms. A quantitative coaggregation assay indicated that protease significantly inhibited the extent of coaggregation of and ( <0.05) and of and . Amylase significantly ( <0.05) increased the coaggregation of versus and versus . Concomitant challenge of constant-depth film fermenter-grown plaques with the enzymes did not result in detectable ecological perturbations (assessed by differential culture and denaturing gradient gel electrophoresis). Similar dosing and analysis of multiple Sorbarod devices did not reveal increases in bacterial dispersion which could result from disaggregation of extant plaques. A short-term hydroxyapatite colonization model was therefore used to investigate possible enzyme effects on early-stage plaque development. Whilst culture did not indicate significant reductions in adhesion or plaque accumulation, a vital visual assay revealed significantly increased aggregation frequency following enzyme exposure. In summary, although hydrolytic enzymes negatively influenced binary coaggregation, they did not cause statistically significant changes in bacterial viability within plaque microcosms. In contrast, enzyme exposure increased aggregation within extant plaques.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.006601-0
2009-04-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/jmm/58/4/482.html?itemId=/content/journal/jmm/10.1099/jmm.0.006601-0&mimeType=html&fmt=ahah

References

  1. Bernfeld, P. ( 1955; ). Amylases α and β. Methods Enzymol 1, 149–158.
    [Google Scholar]
  2. Bolstad, A. I., Jensen, H. B. & Bakken, V. ( 1996; ). Taxonomy, biology, and periodontal aspects of Fusobacterium nucleatum. Clin Microbiol Rev 9, 55–71.
    [Google Scholar]
  3. Bradshaw, D. J., Marsh, P. D., Schilling, K. M. & Cummins, D. ( 1996; ). A modified chemostat system to study the ecology of oral biofilms. J Appl Bacteriol 80, 124–130.[CrossRef]
    [Google Scholar]
  4. Bradshaw, D. J., Marsh, P. D., Watson, G. K. & Allison, C. ( 1998; ). Role of Fusobacterium nucleatum and coaggregation in anaerobe survival in planktonic and biofilm oral microbial communities during aeration. Infect Immun 66, 4729–4732.
    [Google Scholar]
  5. Budtz-Jorgensen, E. ( 1977; ). Prevention of denture plaque formation by an enzyme denture cleanser. J Biol Buccale 5, 239–244.
    [Google Scholar]
  6. Chaignon, P., Sadovskaya, I., Ragunah, C., Ramasubbu, N., Kaplan, J. B. & Jabbouri, S. ( 2007; ). Susceptibility of staphylococcal biofilms to enzymatic treatments depends on their chemical composition. Appl Microbiol Biotechnol 75, 125–132.[CrossRef]
    [Google Scholar]
  7. Charney, J. & Tomarelli, R. ( 1947; ). A colormetric method for the determination of the proteolytic activity of duodenal juice. J Biol Chem 171, 501–505.
    [Google Scholar]
  8. Childs, W. C., III & Gibbons, R. J. ( 1990; ). Selective modulation of bacterial attachment to oral epithelial cells by enzyme activities associated with poor oral hygiene. J Periodontal Res 25, 172–178.[CrossRef]
    [Google Scholar]
  9. Cisar, J. O., Kolenbrander, P. E. & McIntire, F. C. ( 1979; ). Specificity of coaggregation reactions between human oral streptococci and strains of Actinomyces viscosus or Actinomyces naeslundii. Infect Immun 24, 742–752.
    [Google Scholar]
  10. Cisar, J. O., Vatter, A. E., Clark, W. B., Curl, S. H., Hurst-Calderone, S. & Sandberg, A. L. ( 1988; ). Mutants of Actinomyces viscosus T14V lacking type 1, type 2, or both types of fimbriae. Infect Immun 56, 2984–2989.
    [Google Scholar]
  11. DiRienzo, J. M., Porter-Kaufman, J., Haller, J. & Rosan, B. ( 1985; ). Corn-cob formation: a morphological model for molecular studies of bacterial interactions. In Molecular Basis of Oral Microbial Adhesion, pp. 172–176. Edited by S. E. Mergenhagen & B. Rosan. Washington, DC: American Society for Microbiology
  12. Foster, J. S. & Kolenbrander, P. E. ( 2004; ). Development of a multispecies oral bacterial community in a saliva-conditioned flow cell. Appl Environ Microbiol 70, 4340–4348.[CrossRef]
    [Google Scholar]
  13. Gibbons, R. J. & Nygaard, M. ( 1970; ). Interbacterial aggregation of plaque bacteria. Arch Oral Biol 15, 1397–1400.[CrossRef]
    [Google Scholar]
  14. Gorbach, S. L., Plaut, A. G., Nahas, L., Weinstein, L., Spanknebel, G. & Levitan, R. ( 1967; ). Studies of intestinal microflora. II. Microorganisms of the small intestine and their relations to oral and fecal flora. Gastroenterology 53, 856–867.
    [Google Scholar]
  15. Hughes, C. V., Kolenbrander, P. E., Andersen, R. N. & Moore, L. V. ( 1988; ). Coaggregation properties of human oral Veillonella spp.: relationship to colonization site and oral ecology. Appl Environ Microbiol 54, 1957–1963.
    [Google Scholar]
  16. Hull, P. S. ( 1980; ). Chemical inhibition of plaque. J Clin Periodontol 7, 431–442.[CrossRef]
    [Google Scholar]
  17. Kelstrup, J., Funder-Nielsen, T. D. & Moller, E. N. ( 1973; ). Enzymatic reduction of the colonization of Streptococcus mutans in human dental plaque. Acta Odontol Scand 31, 249–253.[CrossRef]
    [Google Scholar]
  18. Kelstrup, J., Holm-Pedersen, P. & Poulsen, S. ( 1978; ). Reduction of the formation of dental plaque and gingivitis in humans by crude mutanase. Scand J Dent Res 86, 93–102.
    [Google Scholar]
  19. Keyes, P. H., Hicks, M. A., Goldman, M., McCabe, R. M. & Fitzgerald, R. J. ( 1971; ). Dispersion of dextranous bacterial plaques on human teeth with dextranase. J Am Dent Assoc 82, 136–141.[CrossRef]
    [Google Scholar]
  20. Kigure, T., Saito, A., Seida, K., Yamada, S., Ishihara, K. & Okuda, K. ( 1995; ). Distribution of Porphyromonas gingivalis and Treponema denticola in human subgingival plaque at different periodontal pocket depths examined by immunohistochemical methods. J Periodontal Res 30, 332–341.[CrossRef]
    [Google Scholar]
  21. Kitamura, T., Moriguchi, S., Terada, E., Saito, K. & Futakami, K. ( 1980; ). The clinical effect on plaque control of dentifrice containing dextranase. Koku Eisei Gakkai Zasshi 30, 52–63.
    [Google Scholar]
  22. Kolenbrander, P. E. ( 2000; ). Oral microbial communities: biofilms, interactions, and genetic systems. Annu Rev Microbiol 54, 413–437.[CrossRef]
    [Google Scholar]
  23. Ledder, R. G., Gilbert, P., Pluen, A., Sreenivasan, P. K., De Vizio, W. & McBain, A. J. ( 2006; ). Individual microflora beget unique oral microcosms. J Appl Microbiol 100, 1123–1131.[CrossRef]
    [Google Scholar]
  24. Ledder, R. G., Timperley, A. S., Friswell, M. K., Macfarlane, S. & McBain, A. J. ( 2008; ). Coaggregation between and among human intestinal and oral bacteria. FEMS Microbiol Ecol 66, 630–636.[CrossRef]
    [Google Scholar]
  25. Leroy, C., Delbarre, C., Ghillebaert, F., Compere, C. & Combes, D. ( 2008; ). Effects of commercial enzymes on the adhesion of a marine biofilm-forming bacterium. Biofouling 24, 11–22.[CrossRef]
    [Google Scholar]
  26. Lobene, R. R. ( 1971; ). A clinical study of the effect of dextranase on human dental plaque. J Am Dent Assoc 82, 132–135.[CrossRef]
    [Google Scholar]
  27. Lu, T. K. & Collins, J. J. ( 2007; ). Dispersing biofilms with engineered enzymatic bacteriophage. Proc Natl Acad Sci U S A 104, 11197–11202.[CrossRef]
    [Google Scholar]
  28. Marsh, P. D. ( 1992; ). Microbiological aspects of the chemical control of plaque and gingivitis. J Dent Res 71, 1431–1438.[CrossRef]
    [Google Scholar]
  29. McBain, A. J., Bartolo, R. G., Catrenich, C. E., Charbonneau, D., Ledder, R. G. & Gilbert, P. ( 2003a; ). Effects of triclosan-containing rinse on the dynamics and antimicrobial susceptibility of in vitro plaque ecosystems. Antimicrob Agents Chemother 47, 3531–3538.[CrossRef]
    [Google Scholar]
  30. McBain, A. J., Bartolo, R. G., Catrenich, C. E., Charbonneau, D., Ledder, R. G. & Gilbert, P. ( 2003b; ). Growth and molecular characterization of dental plaque microcosms. J Appl Microbiol 94, 655–664.[CrossRef]
    [Google Scholar]
  31. McBain, A. J., Bartolo, R. G., Catrenich, C. E., Charbonneau, D., Ledder, R. G., Rickard, A. H., Symmons, S. A. & Gilbert, P. ( 2003c; ). Microbial characterization of biofilms in domestic drains and the establishment of stable biofilm microcosms. Appl Environ Microbiol 69, 177–185.[CrossRef]
    [Google Scholar]
  32. McBain, A. J., Sissons, C., Ledder, R. G., Sreenivasan, P. K., De Vizio, W. & Gilbert, P. ( 2005; ). Development and characterization of a simple perfused oral microcosm. J Appl Microbiol 98, 624–634.[CrossRef]
    [Google Scholar]
  33. McKee, A. S., McDermid, A. S., Ellwood, D. C. & Marsh, P. D. ( 1985; ). The establishment of reproducible, complex communities of oral bacteria in the chemostat using defined inocula. J Appl Bacteriol 59, 263–275.[CrossRef]
    [Google Scholar]
  34. Miller, G. ( 1959; ). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31, 426–428.[CrossRef]
    [Google Scholar]
  35. Odman, P. A. ( 1992; ). The effectiveness of an enzyme-containing denture cleanser. Quintessence Int 23, 187–190.
    [Google Scholar]
  36. Paster, B. J., Boches, S. K., Galvin, J. L., Ericson, R. E., Lau, C. N., Levanos, V. A., Sahasrabudhe, A. & Dewhirst, F. E. ( 2001; ). Bacterial diversity in human subgingival plaque. J Bacteriol 183, 3770–3783.[CrossRef]
    [Google Scholar]
  37. Pencreac'h, G. & Baratti, J. C. ( 1996; ). Hydrolysis of p-nitrophenyl palmitate in n-heptane by the Pseudomonas cepacia lipase: a simple test for the determination of lipase activity in organic media. Enzyme Microb Technol 18, 417–422.[CrossRef]
    [Google Scholar]
  38. Rickard, A. H., Gilbert, P., High, N. J., Kolenbrander, P. E. & Handley, P. S. ( 2003; ). Bacterial coaggregation: an integral process in the development of multi-species biofilms. Trends Microbiol 11, 94–100.[CrossRef]
    [Google Scholar]
  39. Robinson, R. J., Stoller, N. H., Vilardi, M. & Cohen, D. W. ( 1975; ). Clinical evaluation of the effect of a proteolytic enzyme mouthwash on plaque and gingivitis in young adults. Community Dent Oral Epidemiol 3, 271–275.[CrossRef]
    [Google Scholar]
  40. Rogers, J. D., Palmer, R. J., Jr, Kolenbrander, P. E. & Scannapieco, F. A. ( 2001; ). Role of Streptococcus gordonii amylase-binding protein A in adhesion to hydroxyapatite, starch metabolism, and biofilm formation. Infect Immun 69, 7046–7056.[CrossRef]
    [Google Scholar]
  41. Scannapieco, F. A., Solomon, L. & Wadenya, R. O. ( 1994; ). Emergence in human dental plaque and host distribution of amylase-binding streptococci. J Dent Res 73, 1627–1635.
    [Google Scholar]
  42. Shen, S., Samaranayake, L. P. & Yip, H. K. ( 2005; ). Coaggregation profiles of the microflora from root surface caries lesions. Arch Oral Biol 50, 23–32.[CrossRef]
    [Google Scholar]
  43. Sneath, P. H. & Sokal, R. R. ( 1973; ). Numerical Taxonomy. London: Freeman.
  44. Socransky, S. S. ( 1970; ). Relationship of bacteria to the etiology of periodontal disease. J Dent Res 49, 203–222.[CrossRef]
    [Google Scholar]
  45. Sutherland, I. W. ( 2001; ). The biofilm matrix – an immobilized but dynamic microbial environment. Trends Microbiol 9, 222–227.[CrossRef]
    [Google Scholar]
  46. Tamamoto, M., Hamada, T., Miyake, Y. & Suginaka, H. ( 1985; ). Ability of enzymes to remove Candida. J Prosthet Dent 53, 214–216.[CrossRef]
    [Google Scholar]
  47. Tseng, C. C., Scannapieco, F. A. & Levine, M. J. ( 1992; ). Use of a replica-plate assay for the rapid assessment of salivary protein–bacteria interactions. Oral Microbiol Immunol 7, 53–56.[CrossRef]
    [Google Scholar]
  48. van Palenstein Helderman, W. H., Ijsseldijk, M. & Huis in 't Veld, J. H. ( 1983; ). A selective medium for the two major subgroups of the bacterium Streptococcus mutans isolated from human dental plaque and saliva. Arch Oral Biol 28, 599–603.[CrossRef]
    [Google Scholar]
  49. Wilson, M. ( 1999; ). Use of constant depth film fermentor in studies of biofilms of oral bacteria. Methods Enzymol 310, 264–279.
    [Google Scholar]
  50. Yeung, M. K. & Cisar, J. O. ( 1990; ). Sequence homology between the subunits of two immunologically and functionally distinct types of fimbriae of Actinomyces spp. J Bacteriol 172, 2462–2468.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.006601-0
Loading
/content/journal/jmm/10.1099/jmm.0.006601-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error