1887

Abstract

Tuberculous meningitis (TBM) is the most devastating form of meningitis and prompt diagnosis holds the key to its management. Conventional microbiology has limited utility and nucleic acid-based methods have not been widely accepted for various reasons. In view of the paucibacillary nature of cerebrospinal fluid (CSF) and the recent demonstration of free DNA in clinical specimens, the present study was designed to evaluate the utility of CSF ‘filtrates’ for the diagnosis of TBM using PCR. One hundred and sixty-seven CSF samples were analysed from patients with ‘suspected’ TBM (=81) and a control group including other cases of meningitis or neurological disorders (=86). CSF ‘sediments’ and ‘filtrates’ were analysed individually for DNA by quantitative real-time PCR (qRT-PCR) and conventional PCR. Receiver-operating characteristic curves were generated from qRT-PCR data and cut-off values of 84 and 30 were selected for calling a ‘filtrate’ or ‘sediment’ sample positive, respectively. Based on these, TBM was diagnosed with 87.6 % and 53.1 % sensitivity ( <0.001) in ‘filtrates’ and ‘sediments’, respectively, and with 92 % specificity each. Conventional and IS PCR were also significantly more sensitive in ‘filtrates’ versus ‘sediments’ (sensitivity of 87.6 % and 85.2 % vs 31 % and 39.5 %, respectively; <0.001). The qRT-PCR test yielded a positive likelihood ratio of 11 and 6.6 by analysing ‘filtrate’ and ‘sediment’ fractions, respectively, which establishes the superiority of the ‘filtrate’-based assay over the ‘sediment’ assay. PCR findings were separately verified in 10 confirmed cases of TBM, where DNA was detected using PCR assays in ‘sediment’ and ‘filtrate’ fractions of all samples. From this study, we conclude that (i) CSF ‘filtrates’ contain a substantial amount of DNA and (ii) ‘filtrates’ and not ‘sediments’ are likely to reliably provide a PCR-based diagnosis in ‘suspected’ TBM patients.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.006015-0
2009-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/58/5/616.html?itemId=/content/journal/jmm/10.1099/jmm.0.006015-0&mimeType=html&fmt=ahah

References

  1. Ahuja G. K., Mohan K. K., Prasad K., Behari M. 1994; Diagnostic criteria for tuberculous meningitis and their validation. Tuber Lung Dis 75:149–152
    [Google Scholar]
  2. Aldous W. K., Pounder J. I., Cloud J. L., Woods G. L. 2005; Comparison of six methods of extracting Mycobacterium tuberculosis DNA from processed sputum for testing by quantitative real-time PCR. J Clin Microbiol 43:2471–2473 [CrossRef]
    [Google Scholar]
  3. Altman D. G. (editor) 1991; Some common problems in medical research. In Practical Statistics forMedical Research pp 396–439 London: Chapman and Hall, CRC Press;
    [Google Scholar]
  4. Bhigjee A. I., Padayachee R., Paruk H., Hallwirth-Pillay K. D., Marais S., Connoly C. 2007; Diagnosis of tuberculous meningitis: clinical and laboratory parameters. Int J Infect Dis 11:348–354 [CrossRef]
    [Google Scholar]
  5. Bonington A., Strang J. I., Klapper P. E., Hood S. V., Parish A., Swift P. J., Damba J., Stevens H., Sawyer L. other authors 2000; TB PCR in the early diagnosis of tuberculous meningitis: evaluation of the Roche semi-automated COBAS Amplicor MTB test with reference to the manual Amplicor MTB PCR test. Tuber Lung Dis 80:191–196 [CrossRef]
    [Google Scholar]
  6. Chakravorty S., Tyagi J. S. 2005; Novel multipurpose methodology for detection of mycobacteria in pulmonary and extrapulmonary specimens by smear microscopy, culture, and PCR. J Clin Microbiol 43:2697–2702 [CrossRef]
    [Google Scholar]
  7. Chakravorty S., Dudeja M., Hanif M., Tyagi J. S. 2005a; Utility of universal sample processing methodology, combining smear microscopy, culture, and PCR, for diagnosis of pulmonary tuberculosis. J Clin Microbiol 43:2703–2708 [CrossRef]
    [Google Scholar]
  8. Chakravorty S., Sen M. K., Tyagi J. S. 2005b; Diagnosis of extrapulmonary tuberculosis by smear, culture, and PCR using universal sample processing technology. J Clin Microbiol 43:4357–4362 [CrossRef]
    [Google Scholar]
  9. Chakravorty S., Pathak D., Dudeja M., Haldar S., Hanif M., Tyagi J. S. 2006; PCR amplification of shorter fragments from the devR ( Rv3133c ) gene significantly increases the sensitivity of tuberculosis diagnosis. FEMS Microbiol Lett 257:306–311 [CrossRef]
    [Google Scholar]
  10. Dasgupta N., Kapur V., Singh K. K., Das T. K., Sachdeva S., Jyothisri K., Tyagi J. S. 2000; Characterization of a two-component system, devR - devS , of Mycobacterium tuberculosis . Tuber Lung Dis 80:141–159 [CrossRef]
    [Google Scholar]
  11. Davis L. E., Rastogi K. R., Lambert L. C., Skipper B. J. 1993; Tuberculous meningitis in the southwest United States: a community-based study. Neurology 43:1775–1778 [CrossRef]
    [Google Scholar]
  12. Deeks J. J., Altman D. G. 2004; Diagnostic tests 4: likelihood ratios. BMJ 329:168–169 [CrossRef]
    [Google Scholar]
  13. Gascoyne-Binzi D. M., Hawkey P. M. 1999; False negative polymerase chain reaction on cerebrospinal fluid samples in tuberculous meningitis. J Neurol Neurosurg Psychiatry 67:250 [CrossRef]
    [Google Scholar]
  14. Haldar S., De Majumdar S., Chakravorty S., Tyagi J. S., Bhalla M., Sen M. K. 2005; Detection of acid-fast bacilli in postlysis debris of clinical specimens improves the reliability of PCR. J Clin Microbiol 43:3580–3581 [CrossRef]
    [Google Scholar]
  15. Haldar S., Chakravorty S., Bhalla M., De Majumdar S., Tyagi J. S. 2007; Simplified detection of Mycobacterium tuberculosis in sputum using smear microscopy and PCR with molecular beacons. J Med Microbiol 56:1356–1362 [CrossRef]
    [Google Scholar]
  16. Hooker J. A., Muhindi D. W., Amayo E. O., Mc'ligeyo S. O., Bhatt K. M., Odhiambo J. A. 2003; Diagnostic utility of cerebrospinal fluid studies in patients with clinically suspected tuberculous meningitis. Int J Tuberc Lung Dis 7:787–796
    [Google Scholar]
  17. Jatana S. K., Nair M. N., Lahiri K. K., Sarin N. P. 2000; Polymerase chain reaction in the diagnosis of tuberculosis. Indian Pediatr 37:375–382
    [Google Scholar]
  18. Jonsson B., Ridell M. 2003; The Cobas Amplicor MTB test for detection of Mycobacterium tuberculosis complex from respiratory and non-respiratory clinical specimens. Scand J Infect Dis 35:372–377 [CrossRef]
    [Google Scholar]
  19. Katrak S. M., Shembalkar P. K., Bijwe S. R., Bhandarkar L. D. 2000; The clinical, radiological and pathological profile of tuberculous meningitis in patients with and without human immunodeficiency virus infection. J Neurol Sci 181:118–126 [CrossRef]
    [Google Scholar]
  20. Kox L. F., Kuijper S., Kolk A. H. 1995; Early diagnosis of tuberculous meningitis by polymerase chain reaction. Neurology 45:2228–2232 [CrossRef]
    [Google Scholar]
  21. Kulkarni S. P., Jaleel M. A., Kadival G. V. 2005; Evaluation of an in-house-developed PCR for the diagnosis of tuberculous meningitis in Indian children. J Med Microbiol 54:369–373 [CrossRef]
    [Google Scholar]
  22. Kumar R., Singh S. N., Kohli N. 1999; A diagnostic rule for tuberculous meningitis. Arch Dis Child 81:221–224 [CrossRef]
    [Google Scholar]
  23. Kumar P., Srivatsava M. V., Singh S., Prasad H. K. 2008; Filtration of cerebrospinal fluid improves isolation of mycobacteria. J Clin Microbiol 46:2824–2825 [CrossRef]
    [Google Scholar]
  24. Miörner H., Sjobring U., Nayak P., Chandramuki A. 1995; Diagnosis of tuberculous meningitis: a comparative analysis of 3 immunoassays, an immune complex assay and the polymerase chain reaction. Tuber Lung Dis 76:381–386 [CrossRef]
    [Google Scholar]
  25. Narayanan S., Parandaman V., Narayanan P. R., Venkatesan P., Girish C., Mahadevan S., Rajajee S. 2001; Evaluation of PCR using TRC4 and IS 6110 primers in detection of tuberculous meningitis. J Clin Microbiol 39:2006–2008 [CrossRef]
    [Google Scholar]
  26. Nguyen L. N., Kox L. F., Pham L. D., Kuijper S., Kolk A. H. 1996; The potential contribution of the polymerase chain reaction to the diagnosis of tuberculous meningitis. Arch Neurol 53:771–776 [CrossRef]
    [Google Scholar]
  27. Pai M., Flores L. L., Pai N., Hubbard A., Riley L. W., Colford J. M. Jr 2003; Diagnostic accuracy of nucleic acid amplification tests for tuberculous meningitis: a systematic review and meta-analysis. Lancet Infect Dis 3:633–643 [CrossRef]
    [Google Scholar]
  28. Pathak D., Chakravorty S., Hanif M., Tyagi J. S. 2007; Lysis of tubercle bacilli in fresh and stored sputum specimens: implications for diagnosing tuberculosis in stored and paucibacillary specimens by PCR. BMC Microbiol 7:83 [CrossRef]
    [Google Scholar]
  29. Radhakrishnan I., K M. Y., Kumar R. A., Mundayoor S. 2001; Implications of low frequency of IS 6110 in fingerprinting field isolates of Mycobacterium tuberculosis from Kerala, India. J Clin Microbiol 39:1683 [CrossRef]
    [Google Scholar]
  30. Rafi W., Venkataswamy M. M., Nagarathna S., Satishchandra P., Chandramuki A. 2007a; Role of IS 6110 uniplex PCR in the diagnosis of tuberculous meningitis: experience at a tertiary neurocentre. Int J Tuberc Lung Dis 11:209–214
    [Google Scholar]
  31. Rafi W., Venkataswamy M. M., Ravi V., Chandramuki A. 2007b; Rapid diagnosis of tuberculous meningitis: a comparative evaluation of in-house PCR assays involving three mycobacterial DNA sequences, IS 6110 , MPB-64 and 65 kDa antigen. J Neurol Sci 252:163–168 [CrossRef]
    [Google Scholar]
  32. Takahashi T., Nakayama T. 2006; Novel technique of quantitative nested real-time PCR assay for Mycobacterium tuberculosis DNA. J Clin Microbiol 44:1029–1039 [CrossRef]
    [Google Scholar]
  33. Takahashi T., Tamura M., Takahashi S. N., Matsumoto K., Sawada S., Yokoyama E., Nakayama T., Mizutani T., Takasu T., Nagase H. 2007; Quantitative nested real-time PCR assay for assessing the clinical course of tuberculous meningitis. J Neurol Sci 255:69–76 [CrossRef]
    [Google Scholar]
  34. Tandon P. N. 1978; Tuberculous meningitis. In Handbook of Clinical Neurology vol 33 pp 195–262 Edited by Vinken P. J., Bruyn G. W. Amsterdam: North Holland Publishing;
    [Google Scholar]
  35. Thwaites G., Chau T. T., Mai N. T., Drobniewski F., McAdam K., Farrar J. 2000; Tuberculous meningitis. J Neurol Neurosurg Psychiatry 68:289–299 [CrossRef]
    [Google Scholar]
  36. Thwaites G. E., Chau T. T., Farrar J. J. 2004; Improving the bacteriological diagnosis of tuberculous meningitis. J Clin Microbiol 42:378–379 [CrossRef]
    [Google Scholar]
  37. Udani P. M., Parekh U. C., Dastur D. K. 1971; Neurological and related syndromes in CNS tuberculosis. Clinical features and pathogenesis. J Neurol Sci 14:341–357 [CrossRef]
    [Google Scholar]
  38. Vithalani N., Udani P. M. 1982; A study of 292 autopsy proved cases of tuberculosis. Indian J Tuberc 29:93–97
    [Google Scholar]
  39. Wada T., Maeda S., Tamaru A., Imai S., Hase A., Kobayashi K. 2004; Dual-probe assay for rapid detection of drug-resistant Mycobacterium tuberculosis by real-time PCR. J Clin Microbiol 42:5277–5285 [CrossRef]
    [Google Scholar]
  40. WHO 2006 Global Tuberculosis Control Surveillance, Planning, Financing Geneva, Switzerland: World Health Organization;
    [Google Scholar]
  41. Zweig M. H., Campbell G. 1993; Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin Chem 39:561–577
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.006015-0
Loading
/content/journal/jmm/10.1099/jmm.0.006015-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error