1887

Abstract

The spread of Gram-negative bacteria with plasmid-borne extended-spectrum -lactamases (ESBLs) has become a worldwide problem. This study analysed a total of 366 ESBL-producing strains isolated from non-selected patient specimens at the university hospital of Tübingen in the period January 2003 to December 2007. Although the overall ESBL rate was comparatively low (1.6 %), the percentages of ESBL-producing spp. and increased from 0.8 and 0.5 %, respectively, in 2003 to 4.6 and 3.8 % in 2007. In particular, the emergence was observed of one carbapenem-resistant ESBL-producing isolate and five carbapenem-non-susceptible ESBL-positive isolates, in two of which carbapenem resistance development was documented under a meropenem-containing antibiotic regime. The possible underlying mechanism for this carbapenem resistance in three of the isolates was loss of the porin channel protein OmpK36 as shown by PCR analysis. The remaining two isolates exhibited increased expression of a tripartite AcrAB–TolC efflux pump as demonstrated by SDS-PAGE and mass spectrometry analysis of bacterial outer-membrane extracts, which, in addition to other unknown mechanisms, may contribute towards increasing the carbapenem MIC values further. Carbapenem-non-susceptible ESBL isolates may pose a new problem in the future due to possible outbreak situations and limited antibiotic treatment options. Therefore, a systematic exploration of intestinal colonization with ESBL isolates should be reconsidered, at least for haemato-oncological departments from where four of the five carbapenem-non-susceptible ESBL isolates originated.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.005850-0
2009-07-01
2024-12-08
Loading full text...

Full text loading...

/deliver/fulltext/jmm/58/7/912.html?itemId=/content/journal/jmm/10.1099/jmm.0.005850-0&mimeType=html&fmt=ahah

References

  1. Anderson K. F., Lonsway D. R., Rasheed J. K., Biddle J., Jensen B., McDougal L. K., Carey R. B., Thompson A., Stocker S. other authors 2007; Evaluation of methods to identify the Klebsiella pneumoniae carbapenemase in Enterobacteriaceae . J Clin Microbiol 45:2723–2725 [CrossRef]
    [Google Scholar]
  2. Barjaktarovic Z., Nordheim A., Lamkemeyer T., Fladerer C., Madlung J., Hampp R. 2007; Time-course of changes in amounts of specific proteins upon exposure to hyper-g, 2-D clinorotation, and 3-D random positioning of Arabidopsis cell cultures. J Exp Bot 58:4357–4363 [CrossRef]
    [Google Scholar]
  3. Ben-Ami R., Schwaber M. J., Navon-Venezia S., Schwartz D., Giladi M., Chmelnitsky I., Leavitt A., Carmeli Y. 2006; Influx of extended-spectrum β -lactamase-producing Enterobacteriaceae into the hospital. Clin Infect Dis 42:925–934 [CrossRef]
    [Google Scholar]
  4. Bornet C., Chollet R., Mallea M., Chevalier J., Davin-Regli A., Pages J. M., Bollet C. 2003; Imipenem and expression of multidrug efflux pump in Enterobacter aerogenes . Biochem Biophys Res Commun 301:985–990 [CrossRef]
    [Google Scholar]
  5. Bradford P. A., Urban C., Mariano N., Projan S. J., Rahal J. J., Bush K. 1997; Imipenem resistance in Klebsiella pneumoniae is associated with the combination of ACT-1, a plasmid-mediated AmpC β -lactamase, and the loss of an outer membrane protein. Antimicrob Agents Chemother 41:563–569
    [Google Scholar]
  6. Caroff N., Espaze E., Gautreau D., Richet H., Reynaud A. 2000; Analysis of the effects of −42 and −32 ampC promoter mutations in clinical isolates of Escherichia coli hyperproducing AmpC. J Antimicrob Chemother 45:783–788 [CrossRef]
    [Google Scholar]
  7. Castillo García F. J., Seral García C., Pardos De la Gandara M., Millán Lou M. I., Pitart Ferré C. 2007; Prevalence of fecal carriage of ESBL-producing Enterobacteriaceae in hospitalized and ambulatory patients during two non-outbreak periods. Eur J Clin Microbiol Infect Dis 26:77–78 [CrossRef]
    [Google Scholar]
  8. CLSI 2008 Performance Standards for Antimicrobial Susceptibility Testing ; 18th Informational Supplement, M100-S18 Wayne, PA: Clinical and Laboratory Standards Institute;
    [Google Scholar]
  9. Crowley B., Benedi V. J., Domenech-Sanchez A. 2002; Expression of SHV-2 β -lactamase and of reduced amounts of OmpK36 porin in Klebsiella pneumoniae results in increased resistance to cephalosporins and carbapenems. Antimicrob Agents Chemother 46:3679–3682 [CrossRef]
    [Google Scholar]
  10. Fernandez-Recio J., Walas F., Federici L., Venkatesh P. J., Bavro V. N., Miguel R. N., Mizuguchi K., Luisi B. 2004; A model of a transmembrane drug-efflux pump from Gram-negative bacteria. FEBS Lett 578:5–9 [CrossRef]
    [Google Scholar]
  11. Grimm V., Ezaki S., Susa M., Knabbe C., Schmid R. D., Bachmann T. T. 2004; Use of DNA microarrays for rapid genotyping of TEM beta-lactamases that confer resistance. J Clin Microbiol 42:3766–3774 [CrossRef]
    [Google Scholar]
  12. Hasdemir U. O., Chevalier J., Nordmann P., Pages J. M. 2004; Detection and prevalence of active drug efflux mechanism in various multidrug-resistant Klebsiella pneumoniae strains from Turkey. J Clin Microbiol 42:2701–2706 [CrossRef]
    [Google Scholar]
  13. Hernández-Allés S., Benedí V. J., Martínez-Martínez L., Pascual A., Aguilar A., Tomás J. M., Albertí S. 1999; Development of resistance during antimicrobial therapy caused by insertion sequence interruption of porin genes. Antimicrob Agents Chemother 43:937–939
    [Google Scholar]
  14. Hu W. S., Yao S. M., Fung C. P., Hsieh Y. P., Liu C. P., Lin J. F. 2007; An OXA-66/OXA-51-like carbapenemase and possibly an efflux pump are associated with resistance to imipenem in Acinetobacter baumannii . Antimicrob Agents Chemother 51:3844–3852 [CrossRef]
    [Google Scholar]
  15. Jacoby G. A., Mills D. M., Chow N. 2004; Role of β -lactamases and porins in resistance to ertapenem and other β -lactams in Klebsiella pneumoniae . Antimicrob Agents Chemother 48:3203–3206 [CrossRef]
    [Google Scholar]
  16. Kaczmarek F. M., Dib-Hajj F., Shang W., Gootz T. D. 2006; High-level carbapenem resistance in a Klebsiella pneumoniae clinical isolate is due to the combination of bla ACT-1 β -lactamase production, porin OmpK35/36 insertional inactivation, and down-regulation of the phosphate transport porin PhoE. Antimicrob Agents Chemother 50:3396–3406 [CrossRef]
    [Google Scholar]
  17. Lee C. H., Chu C., Liu J. W., Chen Y. S., Chiu C. J., Su L. H. 2007; Collateral damage of flomoxef therapy: in vivo development of porin deficiency and acquisition of bla DHA-1 leading to ertapenem resistance in a clinical isolate of Klebsiella pneumoniae producing CTX-M-3 and SHV-5 β -lactamases. J Antimicrob Chemother 60:410–413 [CrossRef]
    [Google Scholar]
  18. Liu Y., Lamkemeyer T., Jakob A., Mi G., Zhang F., Nordheim A., Hochholdinger F. 2006; Comparative proteome analyses of maize ( Zea mays L.) primary roots prior to lateral root initiation reveal differential protein expression in the lateral root initiation mutant rum 1. Proteomics 6:4300–4308 [CrossRef]
    [Google Scholar]
  19. Liu Y. F., Yan J. J., Ko W. C., Tsai S. H., Wu J. J. 2008; Characterization of carbapenem-non-susceptible Escherichia coli isolates from a university hospital in Taiwan. J Antimicrob Chemother 61:1020–1023 [CrossRef]
    [Google Scholar]
  20. Livermore D. M., Woodford N. 2006; The β -lactamase threat in Enterobacteriaceae , Pseudomonas and Acinetobacter . Trends Microbiol 14:413–420 [CrossRef]
    [Google Scholar]
  21. Macrina F. L., Kopecko D. J., Jones K. R., Ayers D. J., McCowen S. M. 1978; A multiple plasmid-containing Escherichia coli strain: convenient source of size reference plasmid molecules. Plasmid 1:417–420 [CrossRef]
    [Google Scholar]
  22. Martínez-Martínez L., Hernández-Allés S., Albertí S., Tomás J. M., Benedi V. J., Jacoby G. A. 1996; In vivo selection of porin-deficient mutants of Klebsiella pneumoniae with increased resistance to cefoxitin and expanded-spectrum-cephalosporins. Antimicrob Agents Chemother 40:342–348
    [Google Scholar]
  23. Martínez-Martínez L., Pascual A., Hernández-Allés S., Alvarez-Díaz D., Suárez A. I., Tran J., Benedí V. J., Jacoby G. A. 1999; Roles of β -lactamases and porins in activities of carbapenems and cephalosporins against Klebsiella pneumoniae . Antimicrob Agents Chemother 43:1669–1673
    [Google Scholar]
  24. Mena A., Plasencia V., Garcia L., Hidalgo O., Ayestarán J. I., Alberti S., Borrell N., Pérez J. L., Oliver A. 2006; Characterization of a large outbreak by CTX-M-1-producing Klebsiella pneumoniae and mechanisms leading to in vivo carbapenem resistance development. J Clin Microbiol 44:2831–2837 [CrossRef]
    [Google Scholar]
  25. Mendes R. E., Kiyota K. A., Monteiro J., Castanheira M., Andrade S. S., Gales A. C., Pignatari A. C., Tufik S. 2007; Rapid detection and identification of metallo- β -lactamase-encoding genes by multiplex real-time PCR assay and melt curve analysis. J Clin Microbiol 45:544–547 [CrossRef]
    [Google Scholar]
  26. Mulvey M. R., Bryce E., Boyd D. A., Ofner-Agostini M., Land A. M., Simor A. E., Paton S. 2005; Molecular characterization of cefoxitin-resistant Escherichia coli from Canadian hospitals. Antimicrob Agents Chemother 49:358–365 [CrossRef]
    [Google Scholar]
  27. Osborn M. J., Gander J. E., Parisi E., Carson J. 1972; Mechanism of assembly of the outer membrane of Salmonella typhimurium . Isolation and characterization of cytoplasmic and outer membrane. J Biol Chem 247:3962–3972
    [Google Scholar]
  28. Oteo J., Navarro C., Cercenado E., Delgado-Iribarren A., Wilhelmi I., Orden B., García C., Miguelañez S., Pérez-Vázquez M. other authors 2006; Spread of Escherichia coli strains with high-level cefotaxime and ceftazidime resistance between the community, long-term care facilities, and hospital institutions. J Clin Microbiol 44:2359–2366 [CrossRef]
    [Google Scholar]
  29. Paterson D. L., Hujer K. M., Hujer A. M., Yeiser B., Bonomo M. D., Rice L. B., Bonomo R. A. 2003; Extended-spectrum β -lactamases in Klebsiella pneumoniae bloodstream isolates from seven countries: dominance and widespread prevalence of SHV- and CTX-M-type β -lactamases. Antimicrob Agents Chemother 47:3554–3560 [CrossRef]
    [Google Scholar]
  30. Pérez-Pérez F. J., Hanson N. D. 2002; Detection of plasmid-mediated AmpC β -lactamase genes in clinical isolates by using multiplex PCR. J Clin Microbiol 40:2153–2162 [CrossRef]
    [Google Scholar]
  31. Perkins D. N., Pappin D. J., Creasy D. M., Cottrell J. S. 1999; Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567 [CrossRef]
    [Google Scholar]
  32. Pitout J. D., Nordmann P., Laupland K. B., Poirel L. 2005; Emergence of Enterobacteriaceae producing extended-spectrum β -lactamases (ESBLs) in the community. J Antimicrob Chemother 56:52–59 [CrossRef]
    [Google Scholar]
  33. Prilipov A., Phale P. S., Van Gelder P., Rosenbusch J. P., Koebnik R. 1998; Coupling site-directed mutagenesis with high-level expression: large scale production of mutant porins from E. coli . FEMS Microbiol Lett 163:65–72 [CrossRef]
    [Google Scholar]
  34. Pumbwe L., Glass D., Wexler H. M. 2006; Efflux pump overexpression in multiple-antibiotic-resistant mutants of Bacteroides fragilis . Antimicrob Agents Chemother 50:3150–3153 [CrossRef]
    [Google Scholar]
  35. Queenan A. M., Bush K. 2007; Carbapenemases: the versatile β -lactamases. Clin Microbiol Rev 20:440–458 [CrossRef]
    [Google Scholar]
  36. Ramphal R., Ambrose P. G. 2006; Extended-spectrum β -lactamases and clinical outcomes: current data. Clin Infect Dis 42 (Suppl. 4):S164–S172 [CrossRef]
    [Google Scholar]
  37. Schägger H., von Jagow G. 1987; Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368–379 [CrossRef]
    [Google Scholar]
  38. Struyve M., Moons M., Tommassen J. 1991; Carboxy-terminal phenylalanine is essential for the correct assembly of a bacterial outer membrane protein. J Mol Biol 218:141–148 [CrossRef]
    [Google Scholar]
  39. Sturenburg E., Mack D. 2003; Extended-spectrum β -lactamases: implications for the clinical microbiology laboratory, therapy, and infection control. J Infect 47:273–295 [CrossRef]
    [Google Scholar]
  40. Tonkic M., Goic-Barisic I., Punda-Polic V. 2005; Prevalence and antimicrobial resistance of extended-spectrum β -lactamases-producing Escherichia coli and Klebsiella pneumoniae strains isolated in a university hospital in Split, Croatia. Int Microbiol 8:119–124
    [Google Scholar]
  41. Valverde A., Grill F., Coque T. M., Pintado V., Baquero F., Canton R., Cobo J. 2008; High rate of intestinal colonization with extended spectrum β -lactamase-producing organisms in household contacts of infected community patients. J Clin Microbiol 46:2796–2799 [CrossRef]
    [Google Scholar]
  42. Walsh T. R., Bolmstrom A., Qwarnstrom A., Gales A. 2002; Evaluation of a new Etest for detecting metallo- β -lactamases in routine clinical testing. J Clin Microbiol 40:2755–2759 [CrossRef]
    [Google Scholar]
  43. Woodford N., Tierno P. M. Jr, Young K., Tysall L., Palepou M. F., Ward E., Painter R. E., Suber D. F., Shungu D. other authors 2004; Outbreak of Klebsiella pneumoniae producing a new carbapenem-hydrolyzing class A β -lactamase, KPC-3, in a New York Medical Center. Antimicrob Agents Chemother 48:4793–4799 [CrossRef]
    [Google Scholar]
  44. Yigit H., Queenan A. M., Anderson G. J., Domenech-Sanchez A., Biddle J. W., Steward C. D., Alberti S., Bush K., Tenover F. C. 2001; Novel carbapenem-hydrolyzing β -lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae . Antimicrob Agents Chemother 45:1151–1161 [CrossRef]
    [Google Scholar]
/content/journal/jmm/10.1099/jmm.0.005850-0
Loading
/content/journal/jmm/10.1099/jmm.0.005850-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error