1887

Abstract

In the cystic fibrosis (CF) airway, chronic infection by results from biofilm formation in a neutrophil-rich environment. We tested the capacity of human neutrophils to modify early biofilm formation of strain PAO1, and an isogenic CF strain isolated early and years later in infection. In a static reactor, biofilm density of all strains was enhanced at 24 h in the presence of neutrophils, with the greatest relative increase associated with the lowest inoculum of tested. Previously, neutrophil-induced biofilm enhancement was shown to largely result from the incorporation of F-actin and DNA polymers into the bacterial biofilm. This finding was advanced by the comparison of biofilm enhancement from intact unstimulated neutrophils and from lysed or apoptotic neutrophils. Apoptotic neutrophils, with an intact cell membrane, were unable to contribute to biofilm enhancement, while lysed neutrophils evoked a similar response to that of intact cells. Using F-actin and DNA as targets, the capacity of negatively charged poly(amino acids) to disrupt, or prevent, early biofilm formation was tested. Anionic poly(aspartic acid) effectively prevented or disrupted biofilm formation. Combination of poly(aspartic acid) with DNase resulted in a synergistic increase in biofilm disruption. These results demonstrate that the presence of dying neutrophils can facilitate the initial stages of biofilm development by low inocula of . Neutrophil F-actin represents a potential new therapeutic target for disruption of pathogenic biofilms.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.005728-0
2009-04-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/jmm/58/4/492.html?itemId=/content/journal/jmm/10.1099/jmm.0.005728-0&mimeType=html&fmt=ahah

References

  1. Balfour-Lynn, I. M. ( 1999; ). The protease-antiprotease battle in the cystic fibrosis lung. J R Soc Med 92 (Suppl. 37), 23–30.
    [Google Scholar]
  2. Baumgartner, A. & Grand, M. ( 2006; ). Bacteriological quality of drinking water from dispensers (coolers) and possible control measures. J Food Prot 69, 3043–3046.
    [Google Scholar]
  3. Burns, J. L., Gibson, R. L., McNamara, S., Yim, D., Emerson, J., Rosenfeld, M., Hiatt, P., McCoy, K., Castile, R. & other authors ( 2001; ). Longitudinal assessment of Pseudomonas aeruginosa in young children with cystic fibrosis. J Infect Dis 183, 444–452.[CrossRef]
    [Google Scholar]
  4. Costerton, J. W., Cheng, K. J., Geesey, G. G., Ladd, T. I., Nickel, J. C., Dasgupta, M. & Marrie, T. J. ( 1987; ). Bacterial biofilms in nature and disease. Annu Rev Microbiol 41, 435–464.[CrossRef]
    [Google Scholar]
  5. Costerton, J. W., Stewart, P. S. & Greenberg, E. P. ( 1999; ). Bacterial biofilms: a common cause of persistent infections. Science 284, 1318–1322.[CrossRef]
    [Google Scholar]
  6. Drenkard, E. & Ausubel, F. M. ( 2002; ). Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature 416, 740–743.[CrossRef]
    [Google Scholar]
  7. Elkington, P. T., O'Kane, C. M. & Friedland, J. S. ( 2005; ). The paradox of matrix metalloproteinases in infectious disease. Clin Exp Immunol 142, 12–20.[CrossRef]
    [Google Scholar]
  8. Emerson, J., Rosenfeld, M., McNamara, S., Ramsey, B. & Gibson, R. L. ( 2002; ). Pseudomonas aeruginosa and other predictors of mortality and morbidity in young children with cystic fibrosis. Pediatr Pulmonol 34, 91–100.[CrossRef]
    [Google Scholar]
  9. Ernst, R. K., Yi, E. C., Guo, L., Lim, K. B., Burns, J. L., Hackett, M. & Miller, S. I. ( 1999; ). Specific lipopolysaccharide found in cystic fibrosis airway Pseudomonas aeruginosa. Science 286, 1561–1565.[CrossRef]
    [Google Scholar]
  10. Frederiksen, B., Pressler, T., Hansen, A., Koch, C. & Hoiby, N. ( 2006; ). Effect of aerosolized rhDNase (Pulmozyme) on pulmonary colonization in patients with cystic fibrosis. Acta Paediatr 95, 1070–1074.[CrossRef]
    [Google Scholar]
  11. Gibson, R. L., Burns, J. L. & Ramsey, B. W. ( 2003; ). Pathophysiology and management of pulmonary infections in cystic fibrosis. Am J Respir Crit Care Med 168, 918–951.[CrossRef]
    [Google Scholar]
  12. Gillis, R. J. & Iglewski, B. H. ( 2004; ). Azithromycin retards Pseudomonas aeruginosa biofilm formation. J Clin Microbiol 42, 5842–5845.[CrossRef]
    [Google Scholar]
  13. Haslett, C., Guthrie, L. A., Kopaniak, M. M., Johnston, R. B., Jr & Henson, P. M. ( 1985; ). Modulation of multiple neutrophil functions by preparative methods or trace concentrations of bacterial lipopolysaccharide. Am J Pathol 119, 101–110.
    [Google Scholar]
  14. Hentzer, M., Teitzel, G. M., Balzer, G. J., Heydorn, A., Molin, S., Givskov, M. & Parsek, M. R. ( 2001; ). Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. J Bacteriol 183, 5395–5401.[CrossRef]
    [Google Scholar]
  15. Hoffmann, N., Lee, B., Hentzer, M., Rasmussen, T. B., Song, Z., Johansen, H. K., Givskov, M. & Hoiby, N. ( 2007; ). Azithromycin blocks quorum sensing and alginate polymer formation and increases the sensitivity to serum and stationary-growth-phase killing of Pseudomonas aeruginosa and attenuates chronic P. aeruginosa lung infection in Cftr −/− mice. Antimicrob Agents Chemother 51, 3677–3687.[CrossRef]
    [Google Scholar]
  16. Hoyle, B. D. & Costerton, J. W. ( 1991; ). Bacterial resistance to antibiotics: the role of biofilms. Prog Drug Res 37, 91–105.
    [Google Scholar]
  17. Khan, T. Z., Wagener, J. S., Bost, T., Martinez, J., Accurso, F. J. & Riches, D. W. ( 1995; ). Early pulmonary inflammation in infants with cystic fibrosis. Am J Respir Crit Care Med 151, 1075–1082.
    [Google Scholar]
  18. Khan, N. H., Ishii, Y., Kimata-Kino, N., Esaki, H., Nishino, T., Nishimura, M. & Kogure, K. ( 2007; ). Isolation of Pseudomonas aeruginosa from open ocean and comparison with freshwater, clinical, and animal isolates. Microb Ecol 53, 173–186.[CrossRef]
    [Google Scholar]
  19. Klausen, M., Heydorn, A., Ragas, P., Lambertsen, L., Aaes-Jorgensen, A., Molin, S. & Tolker-Nielsen, T. ( 2003; ). Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol 48, 1511–1524.[CrossRef]
    [Google Scholar]
  20. Lethem, M. I., James, S. L., Marriott, C. & Burke, J. F. ( 1990; ). The origin of DNA associated with mucus glycoproteins in cystic fibrosis sputum. Eur Respir J 3, 19–23.
    [Google Scholar]
  21. Moskowitz, S. M., Foster, J. M., Emerson, J. & Burns, J. L. ( 2004; ). Clinically feasible biofilm susceptibility assay for isolates of Pseudomonas aeruginosa from patients with cystic fibrosis. J Clin Microbiol 42, 1915–1922.[CrossRef]
    [Google Scholar]
  22. Ogle, J. W., Janda, J. M., Woods, D. E. & Vasil, M. L. ( 1987; ). Characterization and use of a DNA probe as an epidemiological marker for Pseudomonas aeruginosa. J Infect Dis 155, 119–126.[CrossRef]
    [Google Scholar]
  23. Onteniente, L., Brisse, S., Tassios, P. T. & Vergnaud, G. ( 2003; ). Evaluation of the polymorphisms associated with tandem repeats for Pseudomonas aeruginosa strain typing. J Clin Microbiol 41, 4991–4997.[CrossRef]
    [Google Scholar]
  24. Parad, R. B., Gerard, C. J., Zurakowski, D., Nichols, D. P. & Pier, G. B. ( 1999; ). Pulmonary outcome in cystic fibrosis is influenced primarily by mucoid Pseudomonas aeruginosa infection and immune status and only modestly by genotype. Infect Immun 67, 4744–4750.
    [Google Scholar]
  25. Perks, B. & Shute, J. K. ( 2000; ). DNA and actin bind and inhibit interleukin-8 function in cystic fibrosis sputa: in vitro effects of mucolytics. Am J Respir Crit Care Med 162, 1767–1772.[CrossRef]
    [Google Scholar]
  26. Prosser, B. L., Taylor, D., Dix, B. A. & Cleeland, R. ( 1987; ). Method of evaluating effects of antibiotics on bacterial biofilm. Antimicrob Agents Chemother 31, 1502–1506.[CrossRef]
    [Google Scholar]
  27. Robinson, P. J. ( 2002; ). Dornase alfa in early cystic fibrosis lung disease. Pediatr Pulmonol 34, 237–241.[CrossRef]
    [Google Scholar]
  28. Roghanian, A., Drost, E. M., MacNee, W., Howie, S. E. & Sallenave, J. M. ( 2006; ). Inflammatory lung secretions inhibit dendritic cell maturation and function via neutrophil elastase. Am J Respir Crit Care Med 174, 1189–1198.[CrossRef]
    [Google Scholar]
  29. Roum, J. H., Buhl, R., McElvaney, N. G., Borok, Z. & Crystal, R. G. ( 1993; ). Systemic deficiency of glutathione in cystic fibrosis. J Appl Physiol 75, 2419–2424.
    [Google Scholar]
  30. Rubin, B. K. ( 2007; ). Mucus structure and properties in cystic fibrosis. Paediatr Respir Rev 8, 4–7.[CrossRef]
    [Google Scholar]
  31. Schaedel, C., de Monestrol, I., Hjelte, L., Johannesson, M., Kornfalt, R., Lindblad, A., Strandvik, B., Wahlgren, L. & Holmberg, L. ( 2002; ). Predictors of deterioration of lung function in cystic fibrosis. Pediatr Pulmonol 33, 483–491.[CrossRef]
    [Google Scholar]
  32. Sheils, C. A., Kas, J., Travassos, W., Allen, P. G., Janmey, P. A., Wohl, M. E. & Stossel, T. P. ( 1996; ). Actin filaments mediate DNA fiber formation in chronic inflammatory airway disease. Am J Pathol 148, 919–927.
    [Google Scholar]
  33. Singh, P. K., Schaefer, A. L., Parsek, M. R., Moninger, T. O., Welsh, M. J. & Greenberg, E. P. ( 2000; ). Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407, 762–764.[CrossRef]
    [Google Scholar]
  34. Spencer, D. H., Kas, A., Smith, E. E., Raymond, C. K., Sims, E. H., Hastings, M., Burns, J. L., Kaul, R. & Olson, M. V. ( 2003; ). Whole-genome sequence variation among multiple isolates of Pseudomonas aeruginosa. J Bacteriol 185, 1316–1325.[CrossRef]
    [Google Scholar]
  35. Sriramulu, D. D., Lünsdorf, H., Lam, J. S. & Römling, U. ( 2005; ). Microcolony formation: a novel biofilm model of Pseudomonas aeruginosa for the cystic fibrosis lung. J Med Microbiol 54, 667–676.[CrossRef]
    [Google Scholar]
  36. Tang, J. X. & Janmey, P. A. ( 1996; ). The polyelectrolyte nature of F-actin and the mechanism of actin bundle formation. J Biol Chem 271, 8556–8563.[CrossRef]
    [Google Scholar]
  37. Tang, J. X., Wen, Q., Bennett, A., Kim, B., Sheils, C. A., Bucki, R. & Janmey, P. A. ( 2005; ). Anionic poly(amino acid)s dissolve F-actin and DNA bundles, enhance DNase activity, and reduce the viscosity of cystic fibrosis sputum. Am J Physiol Lung Cell Mol Physiol 289, L599–L605.[CrossRef]
    [Google Scholar]
  38. van Schaik, E. J., Giltner, C. L., Audette, G. F., Keizer, D. W., Bautista, D. L., Slupsky, C. M., Sykes, B. D. & Irvin, R. T. ( 2005; ). DNA binding: a novel function of Pseudomonas aeruginosa type IV pili. J Bacteriol 187, 1455–1464.[CrossRef]
    [Google Scholar]
  39. Walker, T. S., Tomlin, K. L., Worthen, G. S., Poch, K. R., Lieber, J. G., Saavedra, M. T., Fessler, M. B., Malcolm, K. C., Vasil, M. L. & Nick, J. A. ( 2005; ). Enhanced Pseudomonas aeruginosa biofilm development mediated by human neutrophils. Infect Immun 73, 3693–3701.[CrossRef]
    [Google Scholar]
  40. Whitchurch, C. B., Tolker-Nielsen, T., Ragas, P. C. & Mattick, J. S. ( 2002; ). Extracellular DNA required for bacterial biofilm formation. Science 295, 1487 [CrossRef]
    [Google Scholar]
  41. Whitlock, B. B., Gardai, S., Fadok, V., Bratton, D. & Henson, P. M. ( 2000; ). Differential roles for α M β 2 integrin clustering or activation in the control of apoptosis via regulation of Akt and ERK survival mechanisms. J Cell Biol 151, 1305–1320.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.005728-0
Loading
/content/journal/jmm/10.1099/jmm.0.005728-0
Loading

Data & Media loading...

Supplements

vol. , part 4, pp. 492-502

Multiple variable tandem repeat genotyping, relationship of bacterial counts in biofilms to biofilm density, scanning electron microscopy of neutrophil-induced enhancement of biofilm density and architecture, and disruption of neutrophil-induced biofilms by poly(aspartic acid) and DNase. [PDF](2.7 MB)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error