1887

Abstract

The significance of serogroup B membrane proteins as vaccine candidates is continually growing. Here, we studied different aspects of antigen NMB0088, a protein that is abundant in outer-membrane vesicle preparations and is thought to be a surface protein. The gene encoding protein NMB0088 was sequenced in a panel of 34 different meningococcal strains with clinical and epidemiological relevance. After this analysis, four variants of NMB0088 were identified; the variability was confined to three specific segments, designated VR1, VR2 and VR3. Secondary structure predictions, refined with alignment analysis and homology modelling using FadL of , revealed that almost all the variable regions were located in extracellular loop domains. In addition, the NMB0088 antigen was expressed in and a procedure for obtaining purified recombinant NMB0088 is described. The humoral immune response elicited in BALB/c mice was measured by ELISA and Western blotting, while the functional activity of these antibodies was determined in a serum bactericidal assay and an animal protection model. After immunization in mice, the recombinant protein was capable of inducing a protective response when it was administered inserted into liposomes. According to our results, the recombinant NMB0088 protein may represent a novel antigen for a vaccine against meningococcal disease. However, results from the variability study should be considered for designing a cross-protective formulation in future studies.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.004820-0
2009-02-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/jmm/58/2/196.html?itemId=/content/journal/jmm/10.1099/jmm.0.004820-0&mimeType=html&fmt=ahah

References

  1. Bentley, S. D., Vernikos, G. S., Snyder, L. A., Churcher, C., Arrowsmith, C., Chillingworth, T., Cronin, A., Davis, P. H., Holroyd, N. E. & other authors ( 2007; ). Meningococcal genetic variation mechanisms viewed through comparative analysis of serogroup C strain FAM18. PLoS Genet 3, e23 [CrossRef]
    [Google Scholar]
  2. Bjune, G., Hoiby, E. A., Gronnesby, J. K., Arnesen, O., Fredriksen, J. H., Halstensen, A., Holten, E., Lindbak, A. K., Nøkleby, H. & other authors ( 1991; ). Effect of outer membrane vesicle vaccine against group B meningococcal disease in Norway. Lancet 338, 1093–1096.[CrossRef]
    [Google Scholar]
  3. Black, P. N., Said, B., Ghosn, C. R., Beach, J. V. & Nunn, W. D. ( 1987; ). Purification and characterization of an outer membrane-bound protein involved in long-chain fatty acid transport in Escherichia coli. J Biol Chem 262, 1412–1419.
    [Google Scholar]
  4. Bolduc, G. R., Bouchet, V., Jiang, R. Z., Geisselsoder, J., Truong-Bolduc, Q. C., Rice, P. A., Pelton, S. I. & Goldstein, R. ( 2000; ). Variability of outer membrane protein P1 and its evaluation as a vaccine candidate against experimental otitis media due to nontypeable Haemophilus influenzae: an unambiguous, multifaceted approach. Infect Immun 68, 4505–4517.[CrossRef]
    [Google Scholar]
  5. Buchanan, S. K. ( 1999; ). Beta-barrel proteins from bacterial outer membranes: structure, function and refolding. Curr Opin Struct Biol 9, 455–461.[CrossRef]
    [Google Scholar]
  6. Buisine, N., Tang, C. M. & Chalmers, R. ( 2002; ). Transposon-like Correia elements: structure, distribution and genetic exchange between pathogenic Neisseria sp. FEBS Lett 522, 52–58.[CrossRef]
    [Google Scholar]
  7. Christodoulides, M., Brooks, J. L., Rattue, E. & Heckels, J. E. ( 1998; ). Immunization with recombinant class 1 outer-membrane protein from Neisseria meningitidis: influence of liposomes and adjuvants on antibody avidity, recognition of native protein and the induction of a bactericidal immune response against meningococci. Microbiology 144, 3027–3037.[CrossRef]
    [Google Scholar]
  8. Comanducci, M., Bambini, S., Brunelli, B., Adu-Bobie, J., Aricò, B., Capecchi, B., Giuliani, M. M., Masignani, V., Santini, L. & other authors ( 2002; ). NadA, a novel vaccine candidate of Neisseria meningitidis. J Exp Med 195, 1445–1454.[CrossRef]
    [Google Scholar]
  9. De Gregorio, E., Abrescia, C., Carlomagno, M. S. & Di Nocera, P. P. ( 2003a; ). Asymmetrical distribution of Neisseria miniature insertion sequence DNA repeats among pathogenic and nonpathogenic Neisseria strains. Infect Immun 71, 4217–4221.[CrossRef]
    [Google Scholar]
  10. De Gregorio, E., Abrescia, C., Carlomagno, M. S. & Di Nocera, P. P. ( 2003b; ). Ribonuclease III-mediated processing of specific Neisseria meningitidis mRNAs. Biochem J 374, 799–805.[CrossRef]
    [Google Scholar]
  11. Delgado, M., Yero, D., Niebla, O., González, S., Climent, Y., Pérez, Y., Cobas, K., Caballero, E., García, D. & Pajón, R. ( 2007; ). Lipoprotein NMB0928 from Neisseria meningitidis serogroup B as a novel vaccine candidate. Vaccine 25, 8420–8431.[CrossRef]
    [Google Scholar]
  12. Derrick, J. P., Urwin, R., Suker, J., Feavers, I. M. & Maiden, M. C. ( 1999; ). Structural and evolutionary inference from molecular variation in Neisseria porins. Infect Immun 67, 2406–2413.
    [Google Scholar]
  13. Finne, J., Leinonen, M. & Makela, P. H. ( 1983; ). Antigenic similarities between brain components and bacteria causing meningitis. Implications for vaccine development and pathogenesis. Lancet 2, 355–357.
    [Google Scholar]
  14. Francis, F., Ramirez-Arcos, S., Salimnia, H., Victor, C. & Dillon, J. R. ( 2000; ). Organization and transcription of the division cell wall (dcw) cluster in Neisseria gonorrhoeae. Gene 251, 141–151.[CrossRef]
    [Google Scholar]
  15. Fredriksen, J. H., Rosenqvist, E., Wedege, E., Bryn, K., Bjune, G., Frøholm, L. O., Lindbak, A. K., Møgster, B., Namork, E. & other authors ( 1991; ). Production, characterization and control of MenB-vaccine “Folkehelsa”: an outer membrane vesicle vaccine against group B meningococcal disease. NIPH Ann 14, 67–79.
    [Google Scholar]
  16. Fu, D., Libson, A., Miercke, L. J., Weitzman, C., Nollert, P., Krucinski, J. & Stroud, R. M. ( 2000; ). Structure of a glycerol-conducting channel and the basis for its selectivity. Science 290, 481–486.[CrossRef]
    [Google Scholar]
  17. Giuliani, M. M., Adu-Bobie, J., Comanducci, M., Aricò, B., Savino, S., Santini, L., Brunelli, B., Bambini, S., Biolchi, A. & other authors ( 2006; ). A universal vaccine for serogroup B meningococcus. Proc Natl Acad Sci U S A 103, 10834–10839.[CrossRef]
    [Google Scholar]
  18. Gorringe, A., Halliwell, D., Matheson, M., Reddin, K., Finney, M. & Hudson, M. ( 2005; ). The development of a meningococcal disease vaccine based on Neisseria lactamica outer membrane vesicles. Vaccine 23, 2210–2213.[CrossRef]
    [Google Scholar]
  19. Hearn, E. M., Patel, D. R. & van den Berg, B. ( 2008; ). Outer-membrane transport of aromatic hydrocarbons as a first step in biodegradation. Proc Natl Acad Sci U S A 105, 8601–8606.[CrossRef]
    [Google Scholar]
  20. Hsu, C. A., Lin, W. R., Li, J. C., Liu, Y. L., Tseng, Y. T., Chang, C. M., Lee, Y. S. & Yang, C. Y. ( 2008; ). Immunoproteomic identification of the hypothetical protein NMB1468 as a novel lipoprotein ubiquitous in Neisseria meningitidis with vaccine potential. Proteomics 8, 2115–2125.[CrossRef]
    [Google Scholar]
  21. Jodar, L., Feavers, I. M., Salisbury, D. & Granoff, D. M. ( 2002; ). Development of vaccines against meningococcal disease. Lancet 359, 1499–1508.[CrossRef]
    [Google Scholar]
  22. Kirby, C. & Gregoriadis, G. ( 1984; ). Dehydration rehydration vesicles: a simple method for high yield drug entrapment in liposomes. Biotechnology 2, 979–984.[CrossRef]
    [Google Scholar]
  23. Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A. & other authors ( 2007; ). clustal w and clustal_x version 2.0. Bioinformatics 23, 2947–2948.[CrossRef]
    [Google Scholar]
  24. Liu, S. V., Saunders, N. J., Jeffries, A. & Rest, R. F. ( 2002; ). Genome analysis and strain comparison of Correia repeats and Correia repeat-enclosed elements in pathogenic Neisseria. J Bacteriol 184, 6163–6173.[CrossRef]
    [Google Scholar]
  25. Martin, D., Cadieux, N., Hamel, J. & Brodeur, B. R. ( 1997; ). Highly conserved Neisseria meningitidis surface protein confers protection against experimental infection. J Exp Med 185, 1173–1183.[CrossRef]
    [Google Scholar]
  26. Martin, S. L., Borrow, R., van der Ley, P., Dawson, M., Fox, A. J. & Cartwright, K. A. ( 2000; ). Effect of sequence variation in meningococcal PorA outer membrane protein on the effectiveness of a hexavalent PorA outer membrane vesicle vaccine. Vaccine 18, 2476–2481.[CrossRef]
    [Google Scholar]
  27. Maslanka, S. E., Gheesling, L. L., Libutti, D. E., Donaldson, K. B., Harakeh, H. S., Dykes, J. K., Arhin, F. F., Devi, S. J., Frasch, C. E. & other authors ( 1997; ). Standardization and a multilaboratory comparison of Neisseria meningitidis serogroup A and C serum bactericidal assays. The Multilaboratory Study Group. Clin Diagn Lab Immunol 4, 156–167.
    [Google Scholar]
  28. Mes, T. H. & van Putten, J. P. ( 2007; ). Positively selected codons in immune-exposed loops of the vaccine candidate OMP-P1 of Haemophilus influenzae. J Mol Evol 64, 411–422.[CrossRef]
    [Google Scholar]
  29. Mitka, M. ( 2005; ). New vaccine should ease meningitis fears. JAMA 293, 1433–1434.[CrossRef]
    [Google Scholar]
  30. Mora, M., Veggi, D., Santini, L., Pizza, M. & Rappuoli, R. ( 2003; ). Reverse vaccinology. Drug Discov Today 8, 459–464.[CrossRef]
    [Google Scholar]
  31. Munson, R., Jr & Hunt, A. ( 1989; ). Isolation and characterization of a mutant of Haemophilus influenzae type b deficient in outer membrane protein P1. Infect Immun 57, 1002–1004.
    [Google Scholar]
  32. Murphy, T. F., Brauer, A. L., Yuskiw, N., McNamara, E. R. & Kirkham, C. ( 2001; ). Conservation of outer membrane protein E among strains of Moraxella catarrhalis. Infect Immun 69, 3576–3580.[CrossRef]
    [Google Scholar]
  33. Nally, J. E., Whitelegge, J. P., Aguilera, R., Pereira, M. M., Blanco, D. R. & Lovett, M. A. ( 2005; ). Purification and proteomic analysis of outer membrane vesicles from a clinical isolate of Leptospira interrogans serovar Copenhageni. Proteomics 5, 144–152.[CrossRef]
    [Google Scholar]
  34. Niebla, O., Alvarez, A., Martin, A., Rodriguez, A., Delgado, M., Falcon, V. & Guillen, G. ( 2001; ). Immunogenicity of recombinant class 1 protein from Neisseria meningitidis refolded into phospholipid vesicles and detergent. Vaccine 19, 3568–3574.[CrossRef]
    [Google Scholar]
  35. Peng, J., Yang, L., Yang, F., Yang, J., Yan, Y., Nie, H., Zhang, X., Xiong, Z., Jiang, Y. & other authors ( 2008; ). Characterization of ST-4821 complex, a unique Neisseria meningitidis clone. Genomics 91, 78–87.[CrossRef]
    [Google Scholar]
  36. Pizza, M., Scarlato, V., Masignani, V., Giuliani, M. M., Aricò, B., Comanducci, M., Jennings, G. T., Baldi, L., Bartolini, E. & other authors ( 2000; ). Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science 287, 1816–1820.[CrossRef]
    [Google Scholar]
  37. Rosenqvist, E., Wedege, E., Hoiby, E. A. & Froholm, L. O. ( 1990; ). Serogroup determination of Neisseria meningitidis by whole-cell ELISA, dot-blotting and agglutination. APMIS 98, 501–506.[CrossRef]
    [Google Scholar]
  38. Rosenstein, N. E., Perkins, B. A., Stephens, D. S., Popovic, T. & Hughes, J. M. ( 2001; ). Meningococcal disease. N Engl J Med 344, 1378–1388.[CrossRef]
    [Google Scholar]
  39. Sardinas, G., Reddin, K., Pajon, R. & Gorringe, A. ( 2006; ). Outer membrane vesicles of Neisseria lactamica as a potential mucosal adjuvant. Vaccine 24, 206–214.[CrossRef]
    [Google Scholar]
  40. Schulz, G. E. ( 2000; ). beta-Barrel membrane proteins. Curr Opin Struct Biol 10, 443–447.[CrossRef]
    [Google Scholar]
  41. Sierra, G. V., Campa, H. C., Varcacel, N. M., Garcia, I. L., Izquierdo, P. L., Sotolongo, P. F., Casanueva, G. V., Rico, C. O., Rodriguez, C. R. & Terry, M. H. ( 1991; ). Vaccine against group B Neisseria meningitidis: protection trial and mass vaccination results in Cuba. NIPH Ann 14, 195–207.
    [Google Scholar]
  42. Tappero, J. W., Lagos, R., Ballesteros, A. M., Plikaytis, B., Williams, D., Dykes, J., Gheesling, L. L., Carlone, G. M., Høiby, E. A. & other authors ( 1999; ). Immunogenicity of 2 serogroup B outer-membrane protein meningococcal vaccines: a randomized controlled trial in Chile. JAMA 281, 1520–1527.
    [Google Scholar]
  43. Tettelin, H., Saunders, N. J., Heidelberg, J., Jeffries, A. C., Nelson, K. E., Eisen, J. A., Ketchum, K. A., Hood, D. W., Peden, J. F. & other authors ( 2000; ). Complete genome sequence of Neisseria meningitidis serogroup B strain MC58. Science 287, 1809–1815.[CrossRef]
    [Google Scholar]
  44. Uli, L., Castellanos-Serra, L., Betancourt, L., Dominguez, F., Barbera, R., Sotolongo, F., Guillen, G. & Pajon, F. R. ( 2006; ). Outer membrane vesicles of the VA-MENGOC-BC(R) vaccine against serogroup B of Neisseria meningitidis: analysis of protein components by two-dimensional gel electrophoresis and mass spectrometry. Proteomics 6, 3389–3399.[CrossRef]
    [Google Scholar]
  45. van den Berg, B., Black, P. N., Clemons, W. M., Jr & Rapoport, T. A. ( 2004; ). Crystal structure of the long-chain fatty acid transporter FadL. Science 304, 1506–1509.[CrossRef]
    [Google Scholar]
  46. van der Ley, P., Heckels, J. E., Virji, M., Hoogerhout, P. & Poolman, J. T. ( 1991; ). Topology of outer membrane porins in pathogenic Neisseria spp. Infect Immun 59, 2963–2971.
    [Google Scholar]
  47. Vaughan, T. E., Skipp, P. J., O'Connor, C. D., Hudson, M. J., Vipond, R., Elmore, M. J. & Gorringe, A. R. ( 2006; ). Proteomic analysis of Neisseria lactamica and Neisseria meningitidis outer membrane vesicle vaccine antigens. Vaccine 24, 5277–5293.[CrossRef]
    [Google Scholar]
  48. Vipond, C., Suker, J., Jones, C., Tang, C., Feavers, I. M. & Wheeler, J. X. ( 2006; ). Proteomic analysis of a meningococcal outer membrane vesicle vaccine prepared from the group B strain NZ98/254. Proteomics 6, 3400–3413.[CrossRef]
    [Google Scholar]
  49. Wedege, E. & Froholm, L. O. ( 1986; ). Human antibody response to a group B serotype 2a meningococcal vaccine determined by immunoblotting. Infect Immun 51, 571–578.
    [Google Scholar]
  50. Wheeler, J. X., Vipond, C. & Feavers, I. M. ( 2007; ). Exploring the proteome of meningococcal outer membrane vesicle vaccines. Proteomics Clin Appl 1, 1198–1210.[CrossRef]
    [Google Scholar]
  51. Williams, J. N., Skipp, P. J., Humphries, H. E., Christodoulides, M., O'Connor, C. D. & Heckels, J. E. ( 2007; ). Proteomic analysis of outer membranes and vesicles from wild-type serogroup B Neisseria meningitidis and a lipopolysaccharide-deficient mutant. Infect Immun 75, 1364–1372.[CrossRef]
    [Google Scholar]
  52. Wright, J. C., Williams, J. N., Christodoulides, M. & Heckels, J. E. ( 2002; ). Immunization with the recombinant PorB outer membrane protein induces a bactericidal immune response against Neisseria meningitidis. Infect Immun 70, 4028–4034.[CrossRef]
    [Google Scholar]
  53. Yau, W. M., Wimley, W. C., Gawrisch, K. & White, S. H. ( 1998; ). The preference of tryptophan for membrane interfaces. Biochemistry 37, 14713–14718.[CrossRef]
    [Google Scholar]
  54. Yero, C. D., Pajon, F. R., Caballero, M. E., Cobas, A. K., Lopez, H. Y., Farinas, M. M., Gonzales, B. S. & Acosta, D. A. ( 2005; ). Immunization of mice with Neisseria meningitidis serogroup B genomic expression libraries elicits functional antibodies and reduces the level of bacteremia in an infant rat infection model. Vaccine 23, 932–939.[CrossRef]
    [Google Scholar]
  55. Yero, D., Pajon, R., Niebla, O., Sardinas, G., Vivar, I., Perera, Y., Garcia, D., Delgado, M. & Cobas, K. ( 2006; ). Bicistronic expression plasmid for the rapid production of recombinant fused proteins in Escherichia coli. Biotechnol Appl Biochem 44, 27–34.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.004820-0
Loading
/content/journal/jmm/10.1099/jmm.0.004820-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error