1887

Abstract

Many species of non-fermenting Gram-negative bacilli (non-fermenters) are important opportunistic and nosocomial pathogens. Identification of most species of non-fermenters by phenotypic characteristics can be difficult. In this study, an oligonucleotide array was developed to identify 38 species of clinically relevant non-fermenters. The method consisted of PCR-based amplification of 16S–23S rRNA gene intergenic spacer (ITS) regions using bacterial universal primers, followed by hybridization of the digoxigenin-labelled PCR products with oligonucleotide probes immobilized on a nylon membrane. A total of 398 strains, comprising 276 target strains (i.e. strains belonging to the 38 species to be identified) and 122 non-target strains (i.e. strains not included in the array), were analysed by the array. Four target strains (three reference strains and one clinical isolate) produced discrepant identification by array hybridization. Three of the four discordant strains were found to be correctly identified by the array, as confirmed by sequencing of the ITS and 16S rRNA genes, with the remaining one being an unidentified species. The sensitivity and specificity of the array for identification of non-fermenters were 100 and 96.7 %, respectively. In summary, the oligonucleotide array described here offers a very reliable method for identification of clinically relevant non-fermenters, with results being available within one working day.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.004606-0
2009-05-01
2024-12-04
Loading full text...

Full text loading...

/deliver/fulltext/jmm/58/5/596.html?itemId=/content/journal/jmm/10.1099/jmm.0.004606-0&mimeType=html&fmt=ahah

References

  1. Baele M., Baele P., Vaneechoutte M., Storms V., Butaye P., Devriese L. A., Verschraegen G., Gillis M., Haesebrouck F. 2000; Application of tDNA-PCR for the identification of Enterococcus species. J Clin Microbiol 38:4201–4207
    [Google Scholar]
  2. Blondel-Hill E., Henry E. A., Speert D. P. 2007; Pseudomonas . In Manual of Clinical Microbiology , 9th edn. pp 734–748 Edited by Murray P. R., Baron E. J., Jorgensen J. H., Landry M. L., Pfaller M. A. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  3. Bosshard P. P., Zbinden R., Abels S., Böddinghaus B., Altwegg M., Böttger E. C. 2006; 16S rRNA gene sequencing versus the API 20 NE system and the VITEK 2 ID-GNB card for identification of nonfermenting Gram-negative bacteria in the clinical laboratory. J Clin Microbiol 44:1359–1366 [CrossRef]
    [Google Scholar]
  4. Brown T. J., Anthony R. M. 2000; The addition of low numbers of 3′ thymine bases can be used to improve the hybridization signal of oligonucleotides for use within arrays on nylon supports. J Microbiol Methods 42:203–207 [CrossRef]
    [Google Scholar]
  5. Chang H. C., Wei Y. F., Dijkshoorn L., Vaneechoutte M., Tang C. T., Chang T. C. 2005; Species-level identification of isolates of the Acinetobacter calcoaceticus Acinetobacter baumannii complex by sequence analysis of the 16S–23S rRNA gene spacer region. J Clin Microbiol 43:1632–1639 [CrossRef]
    [Google Scholar]
  6. Chen C. C., Teng L. J., Chang T. C. 2004; Identification of clinically relevant viridans streptococci by sequence analysis of the 16S–23S rDNA spacer region. J Clin Microbiol 42:2651–2657 [CrossRef]
    [Google Scholar]
  7. Chen Y. S., Hsiao Y. S., Lin H. H., Liu Y., Chen Y. L. 2006; CpG-modified plasmid DNA encoding flagellin improves immunogenicity and provides protection against Burkholderia pseudomallei infection in BALB/c mice. Infect Immun 74:1699–1705 [CrossRef]
    [Google Scholar]
  8. Coenye T., Spilker T., Reik R., Vandamme P., LiPuma J. J. 2005; Use of PCR analyses to define the distribution of Ralstonia species recovered from patients with cystic fibrosis. J Clin Microbiol 43:3463–3466 [CrossRef]
    [Google Scholar]
  9. Dijkshoorn L., van Harsselaar B., Tjernberg I., Bouvet P. J. M., Vaneechoutte M. 1998; Evaluation of amplified ribosomal DNA restriction analysis for identification of Acinetobacter gen. sp. Syst Appl Microbiol 21:33–39 [CrossRef]
    [Google Scholar]
  10. Dijkshoorn L., Nemec A., Seifert H. 2007; An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii . Nat Rev Microbiol 5:939–951 [CrossRef]
    [Google Scholar]
  11. Ferroni A., Sermet-Gaudelus I., Abachin E., Quesne G., Lenoir G., Berche P., Gaillard J. L. 2002; Use of 16S rRNA gene sequencing for identification of nonfermenting Gram-negative bacilli recovered from patients attending a single cystic fibrosis center. J Clin Microbiol 40:3793–3797 [CrossRef]
    [Google Scholar]
  12. Fukushima M., Kakinuma K., Hayashi H., Nagai H., Ito K., Kawaguchi R. 2003; Detection and identification of Mycobacterium species isolates by DNA microarray. J Clin Microbiol 41:2605–2615 [CrossRef]
    [Google Scholar]
  13. Funke G., Funke-Kissling P. 2004; Evaluation of the new VITEK 2 card for identification of clinically relevant Gram-negative rods. J Clin Microbiol 42:4067–4071 [CrossRef]
    [Google Scholar]
  14. Guasp C., Moore E. R., Lalucat J., Bennasar A. 2000; Utility of internally transcribed 16S–23S rDNA spacer regions for the definition of Pseudomonas stutzeri genomovars and other Pseudomonas species. Int J Syst Evol Microbiol 50:1629–1639 [CrossRef]
    [Google Scholar]
  15. Gürtler V., Stanisich V. A. 1996; New approaches to typing and identification of bacteria using the 16S–23S rDNA spacer region. Microbiology 142:3–16 [CrossRef]
    [Google Scholar]
  16. Kiska D. L., Kerr A., Jones M. C., Caracciolo J. A., Eskridge B., Jordan M., Miller S., Hughes D., King N., Gilligan P. H. 1996; Accuracy of four commercial systems for identification of Burkholderia cepacia and other Gram-negative nonfermenting bacilli recovered from patients with cystic fibrosis. J Clin Microbiol 34:886–891
    [Google Scholar]
  17. Ko W.-C., Lee N.-Y., Su S. C., Dijkshoorn L., Vaneechoutte M., Wang L.-R., Yan J.-J., Chang T. C. 2008; Oligonucleotide-array based identification of species in the Acinetobacter calcoaceticus A. baumannii complex isolated from blood cultures and antimicrobial susceptibility testing of the isolates. J Clin Microbiol 46:2052–2059 [CrossRef]
    [Google Scholar]
  18. Kolbert C. P., Persing D. H. 1999; Ribosomal DNA sequencing as a tool for identification of bacterial pathogens. Curr Opin Microbiol 2:299–305 [CrossRef]
    [Google Scholar]
  19. LiPuma J. J., Currie B. J., Lum G. D., Vandamme P. A. R. 2007; Burkholderia , Stenotrophomonas , Ralstonia , Cupriavidus , Pandoraea , Brevundimonas , Comamonas , Delftia , and Acidovorax . In Manual of Clinical Microbiology , 9th edn. pp 749–769 Edited by Murray P. R., Baron E. J., Jorgensen J. H., Landry M. L., Pfaller M. A. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  20. Millar B. C., Jiru X., Moore J. E., Earle J. A. 2000; A simple and sensitive method to extract bacterial, yeast and fungal DNA from blood culture material. J Microbiol Methods 42:139–147 [CrossRef]
    [Google Scholar]
  21. Nemec A., De Baere T., Tjernberg I., Vaneechoutte M., van der Reijden T. J. K., Dijkshoorn L. 2001; Acinetobacter ursingii sp. nov. and Acinetobacter schindleri sp. nov., isolated from human clinical specimens. Int J Syst Evol Microbiol 51:1891–1899 [CrossRef]
    [Google Scholar]
  22. Noble R. C., Overman S. B. 1994; Pseudomonas stutzeri infection: a review of hospital isolates and a review of the literature. Diagn Microbiol Infect Dis 19:51–56 [CrossRef]
    [Google Scholar]
  23. Palleroni N. J. 1984; Pseudomonas . In Bergey's Manual of Systematic Bacteriology vol 1 pp 141–199 Edited by Drieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  24. Park H., Jang H., Song E., Chang C. L., Lee M., Jeong S., Park J., Kang B., Kim C. 2005; Detection and genotyping of Mycobacterium species from clinical isolates and specimens by oligonucleotide array. J Clin Microbiol 43:1782–1788 [CrossRef]
    [Google Scholar]
  25. Patel J. B. 2001; 16S rRNA gene sequencing for bacterial pathogen identification in the clinical laboratory. Mol Diagn 6:313–321 [CrossRef]
    [Google Scholar]
  26. Relman D. A. 1993; Universal bacterial 16S rDNA amplification and sequencing. In Diagnostic Molecular Microbiology pp 489–495 Edited by Persing D. H., Tenover F. C., Smith T. F., White T. J. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  27. Schreckenberger P. C., Daneshvar M. I., Weyant R. S., Hollis D. G. 2007; Acinetobacter , Achromobacter , Chryseobacterium , Moraxella , and other nonfermentative Gram-negative rods. In Manual of Clinical Microbiology , 9th edn. pp 770–802 Edited by Murray P. R., Baron E. J., Jorgensen J. H., Landry M. L., Pfaller M. A. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  28. Su H. P., Yang H. W., Chen Y. L., Ferng T. L., Chou Y. L., Chung T. C., Chen C. H., Chiang C. S., Kuan M. M. other authors 2007; Prevalence of melioidosis in the Er-Ren River Basin, Taiwan: implications for transmission. J Clin Microbiol 45:2599–2603 [CrossRef]
    [Google Scholar]
  29. Tjernberg I., Ursing J. 1989; Clinical strains of Acinetobacter classified by DNA–DNA hybridization. APMIS 97:595–605 [CrossRef]
    [Google Scholar]
  30. Tung S. K., Teng L. J., Vaneechoutte M., Chen H. M., Chang T. C. 2006; Array-based identification of species of the genera Abiotrophia , Enterococcus , Granulicatella , and Streptococcus . J Clin Microbiol 44:4414–4424 [CrossRef]
    [Google Scholar]
  31. Tung S. K., Teng L. J., Vaneechoutte M., Chen H. M., Chang T. C. 2007; Identification of species of Abiotrophia , Enterococcus , Granulicatella and Streptococcus by sequence analysis of the ribosomal 16S–23S intergenic spacer region. J Med Microbiol 56:504–513 [CrossRef]
    [Google Scholar]
  32. Vaneechoutte M., De Baere T. 2007; Taxonomy of the genus Acinetobacter based on 16S ribosomal RNA gene sequences. In Acinetobacter Molecular Biology pp 35–60 Edited by Gerischer U. Norfolk, UK: Caister Academic Press;
    [Google Scholar]
  33. Vaneechoutte M., Boerlin P., Tichy H.-V., Bannerman E., Jäger B., Bille J. 1998; Comparison of PCR-based DNA fingerprinting techniques for the identification of Listeria species and their use for atypical Listeria isolates. Int J Syst Bacteriol 48:127–139 [CrossRef]
    [Google Scholar]
/content/journal/jmm/10.1099/jmm.0.004606-0
Loading
/content/journal/jmm/10.1099/jmm.0.004606-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error