1887

Abstract

Plasmid DNA vaccines have been widely explored for use in tuberculosis immunization but their immunogenicity needs improvement. In the present study, we incorporated the bovine herpesvirus 1 VP22 (BVP22)-encoding gene, which encodes a protein that demonstrates a capability for disseminating the expressed antigen to neighbouring cells, into a DNA vector in which it was fused to the Ag85B-encoding gene of (Mtb), and investigated whether this linkage could enhance immune response and protective efficacy in C57BL/6 mice compared to plasmid DNA encoding Ag85B alone. After immunization in mice, Ag85B-specific ELISA antibodies and spleen lymphocyte proliferative responses induced by DNA co-expressing BVP22 and Ag85B were significantly higher than those obtained in mice immunized with Ag85B-encoding DNA alone, except for the number of gamma interferon secreting cells. In addition, based on histopathological examination and bacterial-load determination in lung and spleen, protection against intravenous Mtb H37Rv challenge evoked by the BVP22–Ag85B DNA immunization exceeded the response elicited by Ag85B DNA alone, which was not significantly different from that provided by Bacillus Calmette–Guérin (BCG). These results suggested that DNA vaccine consisting of BVP22 and Ag85B-encoding DNA enhanced immune response and protection against intravenous Mtb H37Rv challenge in mice, indicating that BVP22-encoding DNA might be a promising tool to enhance TB DNA vaccine efficacy.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.004267-0
2009-04-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/jmm/58/4/462.html?itemId=/content/journal/jmm/10.1099/jmm.0.004267-0&mimeType=html&fmt=ahah

References

  1. Andersen, P. ( 2007; ). Tuberculosis vaccines – an update. Nat Rev Microbiol 5, 484–487.[CrossRef]
    [Google Scholar]
  2. Andersen, P. & Doherty, T. M. ( 2005; ). The success and failure of BCG – implications for a novel tuberculosis vaccine. Nat Rev Microbiol 3, 656–662.[CrossRef]
    [Google Scholar]
  3. Braun, R. P., Payne, L. G. & Dong, L. C. ( 2006; ). Characterization of the IFN-γ T-cell responses to immediate early antigens in humans with genital herpes. Virol J 3, 54–68.[CrossRef]
    [Google Scholar]
  4. Elliott, G. & O'Hare, P. ( 1997; ). Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell 88, 223–233.[CrossRef]
    [Google Scholar]
  5. Gupta, U. D., Katoch, V. M. & McMurray, D. N. ( 2007; ). Current status of TB vaccines. Vaccine 25, 3742–3751.[CrossRef]
    [Google Scholar]
  6. Harms, J. S., Ren, X. D., Oliveira, S. C. & Splitter, G. A. ( 2000; ). Distinctions between bovine herpesvirus 1 and herpes simplex virus type 1 VP22 tegument protein subcellular associations. J Virol 74, 3301–3312.[CrossRef]
    [Google Scholar]
  7. Hesseling, A. C., Schaaf, H. S., Hanekom, W. A., Beyers, N., Cotton, M. F., Gie, R. P., Marais, B. J., van Helden, P. & Warren, R. M. ( 2003; ). Danish Bacille Calmette-Guérin vaccine-induced disease in human immunodeficiency virus-infected children. Clin Infect Dis 37, 1226–1233.[CrossRef]
    [Google Scholar]
  8. Hesseling, A. C., Marais, B. J., Gie, R. P., Schaaf, H. S., Fine, P. E. M., Godfrey-Faussett, P. & Beyers, N. ( 2007; ). The risk of disseminated Bacille Calmette-Guérin (BCG) disease in HIV-infected children. Vaccine 25, 14–18.[CrossRef]
    [Google Scholar]
  9. Hung, C. F., Cheng, W. F., Chai, C. Y., Hsu, K. F., He, L. M., Ling, M. & Wu, T. C. ( 2001; ). Improving vaccine potency through intercellular spreading and enhanced MHC class I presentation of antigen. J Immunol 166, 5733–5740.[CrossRef]
    [Google Scholar]
  10. Hung, C. F., He, L. M., Juang, J., Lin, T. J., Ling, M. & Wu, T. C. ( 2002; ). Improving DNA vaccine potency by linking Marek's disease virus type 1 VP22 to an antigen. J Virol 76, 2676–2682.[CrossRef]
    [Google Scholar]
  11. Ju, W., Liu, J., Xiao, W., Liu, M. & Qu, X. ( 2005; ). Construction of a eukaryotic expression system of HSP65 gene from Mycobacterium tuberculosis, and anti-HSP65 IgG produced in mice. J Med Microbiol 54, 3–6.[CrossRef]
    [Google Scholar]
  12. Kamath, A. T., Feng, C. G., MacDonald, M., Briscoe, H. & Britton, W. J. ( 1999; ). Differential protective efficacy of DNA vaccines expressing secreted proteins of Mycobacterium tuberculosis. Infect Immun 67, 1702–1707.
    [Google Scholar]
  13. Kaufmann, S. H. E. ( 2007; ). The contribution of immunology to the rational design of novel antibacterial vaccines. Nat Rev Microbiol 5, 491–504.[CrossRef]
    [Google Scholar]
  14. Kim, T. W., Hung, C.-F., Kim, J. W., Juang, J., Chen, P.-J., He, L. M., Boyd, D. A. K. & Wu, T.-C. ( 2004; ). Vaccination with a DNA vaccine encoding herpes simplex virus type 1 VP22 linked to antigen generates long-term antigen-specific CD8-positive memory T cells and protective immunity. Hum Gene Ther 15, 167–177.[CrossRef]
    [Google Scholar]
  15. Ko, H. J., Ko, S. Y., Kim, Y. J., Lee, E. G., Cho, S. N. & Kang, C. Y. ( 2005; ). Optimization of codon usage enhances the immunogenicity of a DNA vaccine encoding mycobacterial antigen Ag85B. Infect Immun 73, 5666–5674.[CrossRef]
    [Google Scholar]
  16. Lemken, M. L., Wolf, C., Wybranietz, W. A., Schmidt, U., Smirnow, I., Buhring, H. J., Mack, A. F., Lauer, U. M. & Bitzer, M. ( 2007a; ). Evidence for intercellular trafficking of VP22 in living cells. Mol Ther 15, 310–319.[CrossRef]
    [Google Scholar]
  17. Lemken, M.-L., Graepler, F., Wolf, C., Wybranietz, W. A., Smirnow, I., Schmidt, U., Gregor, M., Bitzer, M. & Lauer, U. M. ( 2007b; ). Fusion of HSV-1VP22 to a bifunctional chimeric SuperCD suicide gene compensates for low suicide gene transduction efficiencies. Int J Oncol 30, 1153–1161.
    [Google Scholar]
  18. Liu, B., Liu, S., Qu, X. & Liu, J. ( 2006; ). Construction of a eukaryotic expression system for granulysin and its protective effect in mice infected with Mycobacterium tuberculosis. J Med Microbiol 55, 1389–1393.[CrossRef]
    [Google Scholar]
  19. Lozes, E., Huygen, K., Content, J., Denis, O., Montgomery, D. L., Yawman, A. M., Vandenbussche, P., Van Vooren, J. P., Drowart, A. & other authors ( 1997; ). Immunogenicity and efficacy of a tuberculosis DNA vaccine encoding the components of the secreted antigen 85 complex. Vaccine 15, 830–833.[CrossRef]
    [Google Scholar]
  20. Michel, N., Osen, W., Gissmann, L., Schumacher, T. N. M., Zentgraf, H. & Muller, M. ( 2002; ). Enhanced immunogenicity of HPV 16 E7 fusion proteins in DNA vaccination. Virology 294, 47–59.[CrossRef]
    [Google Scholar]
  21. Mitsuyama, M. & McMurray, D. N. ( 2007; ). Tuberculosis: vaccine and drug development. Tuberculosis (Edinb) 87, S10–S13.[CrossRef]
    [Google Scholar]
  22. Mwangi, W., Brown, W. C., Splitter, G. A., Zhuang, Y., Kegerreis, K. & Palmer, G. H. ( 2005; ). Enhancement of antigen acquisition by dendritic cells and MHC class II-restricted epitope presentation to CD4+ T cells using VP22 DNA vaccine vectors that promote intercellular spreading following initial transfection. J Leukoc Biol 78, 401–411.[CrossRef]
    [Google Scholar]
  23. Mwangi, W., Brown, W. C., Splitter, G. A., Davies, C. J., Howard, C. J., Hope, J. C., Aida, Y., Zhuang, Y., Hunter, B. J. & Palmer, G. H. ( 2007; ). DNA vaccine construct incorporating intercellular trafficking and intracellular targeting motifs effectively primes and induces memory B- and T-cell responses in outbred animals. Clin Vaccine Immunol 14, 304–311.[CrossRef]
    [Google Scholar]
  24. Oliveira, S. C., Harms, J. S., Afonso, R. R. & Splitter, G. A. ( 2001; ). A genetic immunization adjuvant system based on BVP22-antigen fusion. Hum Gene Ther 12, 1353–1359.[CrossRef]
    [Google Scholar]
  25. Phelan, A., Elliott, G. & O'Hare, P. ( 1998; ). Intercellular delivery of functional p53 by the herpesvirus protein VP22. Nat Biotechnol 16, 440–443.[CrossRef]
    [Google Scholar]
  26. Qiu, Z. H., Harms, J. S., Zhu, J. & Splitter, G. A. ( 2004; ). Bovine herpesvirus tegument protein VP22 enhances thymidine kinase/ganciclovir suicide gene therapy for neuroblastomas compared to herpes simplex virus VP22. J Virol 78, 4224–4233.[CrossRef]
    [Google Scholar]
  27. Reece, S. T. & Kaufmann, S. H. E. ( 2008; ). Rational design of vaccines against tuberculosis directed by basic immunology. Int J Med Microbiol 298, 143–150.[CrossRef]
    [Google Scholar]
  28. Saha, S., Yoshida, S., Ohba, K., Matsui, K., Matsuda, T., Takeshita, F., Umeda, K., Tamura, Y., Okuda, K. & other authors ( 2006; ). A fused gene of nucleoprotein (NP) and herpes simplex virus genes (VP22) induces highly protective immunity against different subtypes of influenza virus. Virology 354, 48–57.[CrossRef]
    [Google Scholar]
  29. Sander, C. & McShane, H. ( 2007; ). Translational mini-review series on vaccines: development and evaluation of improved vaccines against tuberculosis. Clin Exp Immunol 147, 401–411.[CrossRef]
    [Google Scholar]
  30. Teixeira, F. M., Teixeira, H. C., Ferreira, A. P., Rodrigues, M. F., Azevedo, V., Macedo, G. C. & Oliveira, S. C. ( 2006; ). DNA vaccine using Mycobacterium bovis Ag85B antigen induces partial protection against experimental infection in BALB/c Mice. Clin Vaccine Immunol 13, 930–935.[CrossRef]
    [Google Scholar]
  31. Ulmer, J. B., Liu, M. A., Montgomery, D. L., Yawman, A. M., Deck, R. R., DeWitt, C. M., Content, J. & Huygen, K. ( 1997; ). Expression and immunogenicity of Mycobacteriun tuberculosis antigen 85B by DNA vaccination. Vaccine 15, 792–794.[CrossRef]
    [Google Scholar]
  32. Ulmer, J. B., Wahren, B. & Liu, M. A. ( 2006; ). Gene-based vaccines: recent technical and clinical advances. Trends Mol Med 12, 216–221.[CrossRef]
    [Google Scholar]
  33. WHO ( 2007; ). Global advisory committee on vaccine safety, 29–30 November 2006. Wkly Epidemiol Rec 82, 18–24.
    [Google Scholar]
  34. Young, D. & Dye, C. ( 2006; ). The development and impact of tuberculosis vaccines. Cell 124, 683–687.[CrossRef]
    [Google Scholar]
  35. Zakhartchouk, A. N., Viswanathan, S., Moshynskyy, I., Petric, M. & Babiuk, L. A. ( 2007; ). Optimization of a DNA vaccine against SARS. DNA Cell Biol 26, 721–726.[CrossRef]
    [Google Scholar]
  36. Zavaglia, D., Favrot, M.-C., Eymin, B., Tenaud, C. & Coll, J.-L. ( 2003; ). Intercellular trafficking and enhanced in vivo antitumour activity of a nonvirally delivered P27–VP22 fusion protein. Gene Ther 10, 314–325.[CrossRef]
    [Google Scholar]
  37. Zheng, C. F., Babiuk, L. A. & Littel-Van Den Hurk, S. V. ( 2005; ). Bovine herpesvirus 1 VP22 enhances the efficacy of a DNA vaccine in cattle. J Virol 79, 1948–1953.[CrossRef]
    [Google Scholar]
  38. Zheng, C. F., Brownlie, R., Huang, D. Y., Babiuk, L. A. & van Drunen Littel-van den Hurk, S. ( 2006; ). Intercellular trafficking of the major tegument protein VP22 of bovine herpesvirus-1 and its application to improve a DNA vaccine. Arch Virol 151, 985–993.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.004267-0
Loading
/content/journal/jmm/10.1099/jmm.0.004267-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error