1887

Abstract

Acriflavine resistance in the clinical meticillin-resistant isolate KT24 was found not to be mediated by multidrug efflux pumps encoded by /, , , , , or . Early uptake and accumulation of ethidium bromide in MRSA KT24 was significantly lower than that in a susceptible strain, although the efflux rates were similar. Therefore, a permeability barrier in MRSA KT24 may be the conceivable mechanism of acriflavine resistance. Interestingly, it was found that MRSA KT24 had a significantly thickened cell wall, and that cell-wall thickness increased gradually during bacterial growth. In contrast, cell size and surface area in MRSA KT24 were not different from those in the susceptible strain. Moreover, MRSA KT24 exposure to sub-MIC concentrations of acriflavine resulted in a thicker cell wall. These results indicate that cell-wall thickness may be responsible for acriflavine resistance in .

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.004184-0
2009-03-01
2019-11-20
Loading full text...

Full text loading...

/deliver/fulltext/jmm/58/3/331.html?itemId=/content/journal/jmm/10.1099/jmm.0.004184-0&mimeType=html&fmt=ahah

References

  1. Aeschlimann, J. R., Dresser, L. D., Kaatz, G. W. & Rybak, M. J. ( 1999; ). Effects of NorA inhibitors on in vitro antibacterial activities and postantibiotic effects of levofloxacin, ciprofloxacin, and norfloxacin in genetically related strains of Staphylococcus aureus. Antimicrob Agents Chemother 43, 335–340.
    [Google Scholar]
  2. Alam, M. M., Ishino, M. & Kobayashi, N. ( 2003a; ). Analysis of genomic diversity and evolution of the low-level antiseptic resistance gene smr in Staphylococcus aureus. Microb Drug Resist 9, S1–S7.
    [Google Scholar]
  3. Alam, M. M., Kobayashi, N., Uehara, N. & Watanabe, N. ( 2003b; ). Analysis on distribution of high-level antiseptic resistance genes qacA and qacB in human clinical isolates of Staphylococcus aureus. Microb Drug Resist 9, 109–121.[CrossRef]
    [Google Scholar]
  4. Beenken, K. E., Dunman, P. M., McAleese, F., Macapagal, D., Murphy, E., Projan, S. J., Blevins, J. S. & Smeltzer, M. S. ( 2004; ). Global gene expression in Staphylococcus aureus biofilm. J Bacteriol 186, 4665–4684.[CrossRef]
    [Google Scholar]
  5. Bjorland, J., Steinum, T., Sunde, M., Waage, S. & Heir, E. ( 2003; ). Novel plasmid-borne gene qacJ mediates resistance to quaternary ammonium compounds in equine Staphylococcus aureus, Staphylococcus simulans and Staphylococcus intermedius. Antimicrob Agents Chemother 47, 3046–3052.[CrossRef]
    [Google Scholar]
  6. CLSI ( 2003; ). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, 6th edn. Approved Standard M7-A6. Wayne, PA: Clinical and Laboratory Standards Institute.
  7. Cui, L., Murakami, H., Kuwahara-Arai, K., Hanaki, H. & Hiramatsu, K. ( 2000; ). Contribution of a thickened cell wall and its glutamine nonamidated component to the vancomycin resistance expressed by Staphylococcus aureus Mu50. Antimicrob Agents Chemother 44, 2276–2285.[CrossRef]
    [Google Scholar]
  8. Cui, L., Xiaoxue, M., Sato, K., Okuma, K., Tenover, F. C., Mamizaka, E. M., Gemmell, C. G., Kim, M.-N., Poly, M.-C. & other authors ( 2003; ). Cell wall thickening is a common feature of vancomycin resistance in Staphylococcus aureus. J Clin Microbiol 41, 5–14.[CrossRef]
    [Google Scholar]
  9. Gibbons, S., Oluwatuyi, M. & Kaatz, G. W. ( 2003; ). A novel inhibitor of multidrug efflux pumps in Staphylococcus aureus. J Antimicrob Chemother 51, 13–17.
    [Google Scholar]
  10. Gilbert, P. & McBain, J. A. ( 2003; ). Potential impact of increased use of biocides in consumer products on prevalence of antibiotic resistance. Clin Microbiol Rev 16, 189–208.[CrossRef]
    [Google Scholar]
  11. Hiramatsu, K., Hanaki, H., Ino, T., Yabuta, K., Oguri, T. & Tenover, F. C. ( 1997; ). Methicillin-resistant Staphylococcus aureus clinical strain with reduced vancomycin susceptibility. J Antimicrob Chemother 40, 135–136.[CrossRef]
    [Google Scholar]
  12. Huang, J., O'Toole, P. W., Shen, W., Amrine-Madsen, H., Jiang, X., Lobo, N., Palmer, L. M., Voelker, L., Fan, F., Gwynn, M. N. & McDevitt, D. ( 2004; ). Novel chromosomally encoded multidrug efflux transporter MedA in Staphylococcus aureus. Antimicrob Agents Chemother 48, 909–917.[CrossRef]
    [Google Scholar]
  13. Hudson, M. C. & Curtiss, R., III ( 1990; ). Regulation of expression of Streptococcus mutans genes important to virulence. Infect Immun 58, 464–470.
    [Google Scholar]
  14. Kaatz, G. W., Seo, S. M., O'Brien, L., Wahiduzzaman, M. & Foster, T. J. ( 2000; ). Evidence for the existence of multidrug efflux transporter distinct from NorA in Staphylococcus aureus. Antimicrob Agents Chemother 44, 1404–1406.[CrossRef]
    [Google Scholar]
  15. Mayer, S., Boos, M., Beyer, A., Fluit, A. C. & Schmitz, F. J. ( 2001; ). Distribution of antiseptic resistance genes qacA, qacB and qacC in 497 methicillin-resistant and -susceptible European isolates of Staphylococcus aureus. J Antimicrob Chemother 47, 896–897.[CrossRef]
    [Google Scholar]
  16. McDonnell, G. & Russell, A. D. ( 1999; ). Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev 12, 147–179.
    [Google Scholar]
  17. Nishino, T. ( 1975; ). An electron microscopic study of antagonism between cephalexin and erythromycin in Staphylococcus aureus. Jpn J Microbiol 19, 53–63.[CrossRef]
    [Google Scholar]
  18. Noguchi, N., Hase, M., Kitta, M., Sasatsu, M., Deguchi, K. & Kono, M. ( 1999; ). Antiseptic susceptibility and distribution of antiseptic-resistance genes in methicillin-resistant Staphylococcus aureus. FEMS Microbiol Lett 172, 247–253.[CrossRef]
    [Google Scholar]
  19. Paulsen, I. T., Brown, M. H. & Skurray, R. A. ( 1996; ). Proton-dependent multidrug efflux systems. Microbiol Rev 60, 575–608.
    [Google Scholar]
  20. Piddock, L. J. ( 2006; ). Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin Microbiol Rev 19, 382–402.[CrossRef]
    [Google Scholar]
  21. Poole, K. ( 2002; ). Mechanisms of bacterial biocide and antiseptic resistance. J Appl Microbiol 92, 55S–64S.[CrossRef]
    [Google Scholar]
  22. Reifsteck, F., Wee, S. & Wilkinson, B. J. ( 1987; ). Hydrophobicity–hydrophilicity of staphylococci. J Med Microbiol 24, 65–73.[CrossRef]
    [Google Scholar]
  23. Rosenberg, M. & Rosenberg, E. ( 1981; ). Role of adherence in growth of Acinetobacter calcoaceticus RAG-1 on hexadecane. J Bacteriol 148, 51–57.
    [Google Scholar]
  24. Rouch, D. A., Cram, D. S., DiBerardino, D., Littlejohn, T. G. & Skurray, R. A. ( 1990; ). Efflux-mediated antiseptic gene qacA from Staphylococcus aureus: common ancestry with tetracycline- and sugar-transport proteins. Mol Microbiol 4, 2051–2062.[CrossRef]
    [Google Scholar]
  25. Russell, A. D. ( 2003; ). Biocide use and antibiotic resistance: the relevance of laboratory findings to clinical and environmental situations. Lancet Infect Dis 3, 794–803.[CrossRef]
    [Google Scholar]
  26. Sasatsu, M., Shima, K., Shibata, Y. & Kono, M. ( 1989; ). Nucleotide sequence of a gene that encodes resistance to ethidium bromide from a transferable plasmid in Staphylococcus aureus. Nucleic Acids Res 17, 10103 [CrossRef]
    [Google Scholar]
  27. Sieradzki, K. & Tomasz, A. ( 2003; ). Alterations of cell wall structure and metabolism accompany reduced susceptibility to vancomycin in an isogenic series of clinical isolates of Staphylococcus aureus. J Bacteriol 185, 7103–7110.[CrossRef]
    [Google Scholar]
  28. Suller, M. T. & Russell, A. D. ( 1999; ). Antibiotic and biocide resistance in methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococcus. J Hosp Infect 43, 281–291.[CrossRef]
    [Google Scholar]
  29. Wadström, T. ( 1990; ). Hydrophobic characteristics of staphylococci: role of surface structures and role in adhesion and host colonization. In Microbial Cell Surface Hydrophobicity, pp. 315–333. Edited by R. J. Doyle & M. Rosenberg. Washington, DC: American Society for Microbiology.
  30. Yamada, S. & Matsumoto, A. ( 1990; ). Surface properties of Staphylococcus aureus affecting chemiluminescence response of human phagocytes. Microbiol Immunol 34, 809–817.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.004184-0
Loading
/content/journal/jmm/10.1099/jmm.0.004184-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error