1887

Abstract

Hydroxyapatite (HA) and biphasic calcium phosphate (BCP) ceramic materials are widely employed as bone substitutes due to their porous and osteoconductive structure. Their porosity and the lowering of surrounding pH as a result of surgical trauma may, however, predispose these materials to bacterial infections. For this reason, the influence of porosity and pH on the adherence of common Gram-positive bacteria to the surfaces of these materials requires investigation. Mercury intrusion porosimetry measurements revealed that the pore size distribution of both bioceramics had, on a logarithmic scale, a sinusoidal frequency distribution ranging from 50 to 300 nm, with a mean pore diameter of 200 nm. Moreover, total porosity was 20 % for HA and 50 % for BCP. Adherence of and was studied at a physiological pH of 7.4 and at a pH simulating bone infection of 6.8. Moreover, the effect of pH on the potential of HA, BCP and of both staphylococci was evaluated. Results showed that when pH decreased from 7.4 to 6.8, the adherence of both staphylococci to HA and BCP surfaces decreased significantly, although at the same time the negative -potential values of the ceramic surfaces and both bacteria diminished. At both pH values, the number of adhered to the HA surface appeared to be lower than that for BCP. A decrease in pH to 6.8 reduced the adherence of both bacterial species (mean 57 %). This study provides evidence that HA and BCP ceramics do not have pores sufficiently large to allow the internalization of staphylococci. Their anti-adherent properties seemed to improve when pH value decreased, suggesting that HA and BCP bioceramics are not compromised upon orthopaedic use.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.002758-0
2009-01-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/jmm/58/1/132.html?itemId=/content/journal/jmm/10.1099/jmm.0.002758-0&mimeType=html&fmt=ahah

References

  1. An Y. H., Friedman R. J. 1998; Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. J Biomed Mater Res 43:338–348 [CrossRef]
    [Google Scholar]
  2. Bannerman T. L., Peacock S. J. 2007; Staphylococcus , Micrococcus , and other catalase-positive cocci. In Manual of Clinical Microbiology , 9th edn. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  3. Becker M. W., Metge D. W., Collins S. A., Shapiro A. M., Harvey R. W. 2003; Bacterial transport experiments in fractured crystalline bedrock. Ground Water 41:682–689 [CrossRef]
    [Google Scholar]
  4. Bessman A. N., Page J., Thomas L. J. 1989; In vivo pH of induced soft-tissue abscesses in diabetic and nondiabetic mice. Diabetes 38:659–662 [CrossRef]
    [Google Scholar]
  5. Bohner M. 2001; Physical and chemical aspects of calcium phosphates used in spinal surgery. Eur Spine J 10:S114–S121 [CrossRef]
    [Google Scholar]
  6. Borum L., Wilson O. C. Jr 2003; Surface modification of hydroxyapatite. Part II. Silica. Biomaterials 24:3681–3688 [CrossRef]
    [Google Scholar]
  7. Bouler J. M., Gauthier O. 1998; Macroporous biphasic calcium phosphates ceramics: Influence of five synthesis parameters on compressive strength. Biomaterials 19:133–139 [CrossRef]
    [Google Scholar]
  8. Brokke P., Dankert J., Carballo J., Feijen J. 1991; Adherence of coagulase-negative staphylococci onto polyethylene catheters in vitro and in vivo : a study on the influence of various plasma proteins. J Biomater Appl 5:204–226 [CrossRef]
    [Google Scholar]
  9. Ducheyne P., Kim C. S., Pollack S. R. 1992; The effect of phase differences on the time-dependent variation of the zeta potential of hydroxyapatite. J Biomed Mater Res 26:147–168 [CrossRef]
    [Google Scholar]
  10. Gristina A. G. 1987; Biomaterial-centered infection: microbial adhesion versus tissue integration. Science 237:1588–1595 [CrossRef]
    [Google Scholar]
  11. Hench L. L. 1991; Bioceramics: from concept to clinic. J Am Ceram Soc 74:1487–1510 [CrossRef]
    [Google Scholar]
  12. Hogt A. H., Dankert J., Feijen J. 1985; Adhesion of Staphylococcus epidermidis and Staphylococcus saprophyticus to a hydrophobic biomaterial. J Gen Microbiol 131:2485–2491
    [Google Scholar]
  13. Jones D. S., McGovern J. G., Woolfson A. D. 1997; Role of physiological conditions in the oropharynx on the adherence of respiratory bacterial isolates to endotracheal tube poly(chloride). Biomaterials 18:503–510 [CrossRef]
    [Google Scholar]
  14. Katsikogianni M., Missirilis Y. F. 2004; Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions. Eur Cell Mater 8:37–57
    [Google Scholar]
  15. Kim H.-J., Gias E. L. M., Jones M. N. 1999; The adsorption of cationic liposomes to Staphylococcus aureus biofilms. Colloids Surf A Physicochem Eng Asp 149:561–570 [CrossRef]
    [Google Scholar]
  16. Konttinen Y. T., Takagi M., Mandelin J., Lassus J., Salo J., Ainola M., Li T. F., Virtanen I., Liljestrom M. other authors 2001; Acid attack and cathepsin K in bone resorption around total hip replacement prosthesis. J Bone Miner Res 16:1780–1786 [CrossRef]
    [Google Scholar]
  17. LeGeros R. Z., LeGeros J. P. 1996; Calcium phosphate biomaterials in medical application. Bioceramics 9:7–10
    [Google Scholar]
  18. Locci R., Peters G., Pulverer G. 1981; Microbial colonization of prosthetic devices. III. Adhesion of staphylococci to lumina of intravenous catheters perfused with bacterial suspensions. Zentralbl Bakteriol Mikrobiol Hyg [B] 173:300–307
    [Google Scholar]
  19. Pereira M. A., Alves M. M., Azeredo J., Mota M., Oliveira R. 2000; Influence of physico-chemical properties of porous microcarriers on the adhesion of an anaerobic consortium. J Ind Microbiol Biotechnol 24:181–186 [CrossRef]
    [Google Scholar]
  20. Pringle J. H., Fletcher M. 1986; Influence of substratum hydration and adsorbed macromolecules on bacterial attachment to surfaces. Appl Environ Microbiol 51:1321–1325
    [Google Scholar]
  21. Reynolds E. C., Wong A. 1983; Effect of adsorbed protein on hydroxyapatite zeta potential and Streptococcus mutans adherence. Infect Immun 39:1285–1290
    [Google Scholar]
  22. Sánchez-Muñoz O. L., Pérez-Hernández E., Lämmerhofer M., Linder W., Kenndler E. 2003; Estimation and comparation of ζ -potentials of silica-based anion-exchange type porous particles for capillary electrochromatography from electrophoretic and electroosmotic mobility. Electrophoresis 24:390–398 [CrossRef]
    [Google Scholar]
  23. Sánchez-Salcedo S., Izquierdo-Barba I., Arcos D., Vallet-Regí M. 2006; In vitro evaluation of potential calcium phosphate scaffolds for tissue engineering. Tissue Eng 12:279–290 [CrossRef]
    [Google Scholar]
  24. Sari A., Yavuzer R., Ayhan S., Tuncer S., Latifoglu O., Atabay K., Celebi M. C. 2003; Hard tissue augmentation of the mandibular region with hydroxyapatite granules. J Craniofac Surg 14:919–923 [CrossRef]
    [Google Scholar]
  25. Smith I. O., Baumann M. J., Obadia L., Bouler J. M. 2004; Surface potential and osteoblast attraction to calcium phosphate compounds is affected by selected alkaline hydrolysis processing. J Mater Sci Mater Med 15:841–846 [CrossRef]
    [Google Scholar]
  26. Truesdail S. E., Lukasik J., Farrah S. R., Shah D. O., Dickinson R. B. 1998; Analysis of bacterial deposition on metal hydro(oxide)-coated sand filter media. J Colloid Interface Sci 203:369–378 [CrossRef]
    [Google Scholar]
  27. Valle J., Toledo-Arana A., Berasain C., Ghigo J. M., Amorena B., Penades J. R., Lasa I. 2003; SarA and not σ B is essential for biofilm development by Staphylococcus aureus . Mol Microbiol 48:1075–1087 [CrossRef]
    [Google Scholar]
  28. Vallet-Regí M. 2001; Ceramics for medical applications. Dalton Trans 2:97–108
    [Google Scholar]
  29. Vallet-Regí M. 2006; Revisiting ceramics for medical applications. Dalton Trans 44:5211–5220
    [Google Scholar]
  30. Vallet-Regí M., González-Calbet J. 2004; Calcium phosphates as substitution of bone tissues. Prog Solid State Chem 32:1–31 [CrossRef]
    [Google Scholar]
  31. Wadström T. 1989; Molecular aspects of bacterial adhesion, colonization, and development of infections associated with biomaterials. J Invest Surg 2:353–360 [CrossRef]
    [Google Scholar]
  32. Wang J., Huang N., Yang P., Leng Y. X., Sun H., Liu Z. Y., Chu P. K. 2004; The effect of amorphous carbon films deposited on polyethylene terephthalate on bacterial adhesion. Biomaterials 25:3163–3170 [CrossRef]
    [Google Scholar]
  33. Washburn E. W. 1921; Note on a method of determining the distribution of pore sizes in a porous material. Proc Natl Acad Sci U S A 7:115–116 [CrossRef]
    [Google Scholar]
  34. Yelloji Rao M. K., Somasundaran P., Schilling K. M., Carson B., Ananthapadmanabhan K. P. 1993; Bacterial adhesion onto apatite minerals – electrokinetic aspects. Colloids Surf A Physicochem Eng Asp 79:293–300 [CrossRef]
    [Google Scholar]
  35. Zamora N., Esteban J., Kinnari T. J., Celdrán A., Granizo J. J., Zafra C. 2007; In vitro evaluation of the adhesion to polypropylene sutures of non-pigmented rapidly growing mycobacteria. Clin Microbiol Infect 13:902–907 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.002758-0
Loading
/content/journal/jmm/10.1099/jmm.0.002758-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error