Skip to content
1887

Graphical Abstract

 Graphical Abstract 

Overview of the clinical and diagnostic aspects of infections. The graphical representation of the lungs was generated with ChatGPT. 4o mg, milligram; po, per os; iv, intravenously; d, day; qd, quaque die (once a day) bid, bis in die (twice a day).

 

 

Abstract

is an obligate intracellular bacterium and a significant cause of respiratory infections. It is associated with upper and lower respiratory tract diseases, including bronchitis and pneumonia. The pathogen employs specific virulence factors, such as the Type III Secretion System (T3SS) and Inc proteins, to invade and subvert host cell machinery during its peculiar developmental life cycle. Chronic infections have been linked to asthma and, more controversially, to atherosclerosis and neurodegenerative diseases. Diagnosis primarily relies on PCR-based molecular assays, while treatment includes macrolides, tetracyclines or fluoroquinolones. Despite its clinical relevance, research on has declined in recent years, highlighting the need for renewed scientific focus.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.002006
2025-04-25
2025-05-24
Loading full text...

Full text loading...

/deliver/fulltext/jmm/74/4/jmm002006.html?itemId=/content/journal/jmm/10.1099/jmm.0.002006&mimeType=html&fmt=ahah

References

  1. Kuo CC, Chen HH, Wang SP, Grayston JT. Identification of a new group of Chlamydia psittaci strains called TWAR. J Clin Microbiol 1986; 24:1034–1037
    [Google Scholar]
  2. Dwyer RS, Treharne JD, Jones BR, Herring J. Chlamydial infection. Results of micro-immunofluorescence tests for the detection of type-specific antibody in certain chlamydial infections. Br J Vener Dis 1972; 48:452–459 [View Article]
    [Google Scholar]
  3. Saikku P, Wang SP, Kleemola M, Brander E, Rusanen E et al. An epidemic of mild pneumonia due to an unusual strain of Chlamydia psittaci. J Infect Dis 1985; 151:832–839
    [Google Scholar]
  4. Grayston JT, Kuo CC, Wang SP, Altman J. A new Chlamydia psittaci strain, TWAR, isolated in acute respiratory tract infections. N Engl J Med 1986; 315:161–168
    [Google Scholar]
  5. Grayston JT, Campbell LA, Kuo CC, Mordhorst CH, Saikku P et al. A new respiratory tract pathogen: Chlamydia pneumoniae strain TWAR. J Infect Dis 1990; 161:618–625 [View Article] [PubMed]
    [Google Scholar]
  6. Grayston JT, Kuo C-C, Campbell LA, Wang S-P. Chlamydia pneumoniae sp. nov. for Chlamydia sp. strain TWAR. Int J Syst Bacteriol 1989; 39:88–90 [View Article]
    [Google Scholar]
  7. Everett KD, Bush RM, Andersen AA. Emended description of the order Chlamydiales, proposal of Parachlamydiaceae fam. nov. and Simkaniaceae fam. nov., each containing one monotypic genus, revised taxonomy of the family Chlamydiaceae, including a new genus and five new species, and standards for the identification of organisms. Int J Syst Bacteriol 1999; 49 Pt 2:415–440 [View Article] [PubMed]
    [Google Scholar]
  8. Bavoil P, Kaltenboeck B, Greub G. In Chlamydia veritas. Pathog Dis 2013; 67:89–90
    [Google Scholar]
  9. Pannekoek Y, Qi-Long Q, Zhang Y-Z, van der Ende A. Genus delineation of Chlamydiales by analysis of the percentage of conserved proteins justifies the reunifying of the genera Chlamydia and Chlamydophila into one single genus Chlamydia. Pathog Dis 2016; 74:ftw071 [View Article] [PubMed]
    [Google Scholar]
  10. Greub G. International committee on systematics of prokaryotes subcommittee on the taxonomy of the chlamydiae. Int J Syst Evol Microbiol 2010; 60:2691–2693 [View Article]
    [Google Scholar]
  11. Kauppinen MT, Saikku P, Kujala P, Herva E, Syrjälä H. Clinical picture of community-acquired Chlamydia pneumoniae pneumonia requiring hospital treatment: a comparison between chlamydial and pneumococcal pneumonia. Thorax 1996; 51:185–189 [View Article] [PubMed]
    [Google Scholar]
  12. Conklin L, Adjemian J, Loo J, Mandal S, Davis C et al. Investigation of a Chlamydia pneumoniae outbreak in a federal correctional facility in Texas. Clin Infect Dis 2013; 57:639–647 [View Article] [PubMed]
    [Google Scholar]
  13. Ekman MR, Grayston JT, Visakorpi R, Kleemola M, Kuo CC et al. An epidemic of infections due to Chlamydia pneumoniae in military conscripts. Clin Infect Dis 1993; 17:420–425 [View Article] [PubMed]
    [Google Scholar]
  14. Augenbraun MH, Roblin PM, Mandel LJ, Hammerschlag MR, Schachter J. Chlamydia pneumoniae pneumonia with pleural effusion: diagnosis by culture. Am J Med 1991; 91:437–438 [View Article] [PubMed]
    [Google Scholar]
  15. Hertzen LV, Vasankari T, Liippo K, Wahlström E, Puolakkainen M. Chlamydia pneumoniae and severity of asthma. Scand J Infect Dis 2002; 34:22–27 [View Article]
    [Google Scholar]
  16. von Hertzen LC. Role of persistent infection in the control and severity of asthma: focus on Chlamydia pneumoniae. Eur Respir J 2002; 19:546–556 [View Article]
    [Google Scholar]
  17. Hahn DL, Peeling RW, Dillon E, McDonald R, Saikku P. Serologic markers for Chlamydia pneumoniae in asthma. Ann Allergy Asthma Immunol 2000; 84:227–233 [View Article] [PubMed]
    [Google Scholar]
  18. Hahn DL, McDonald R. Can acute Chlamydia pneumoniae respiratory tract infection initiate chronic asthma?. Ann Allergy Asthma Immunol 1998; 81:339–344 [View Article] [PubMed]
    [Google Scholar]
  19. Webley WC, Hahn DL. Infection-mediated asthma: etiology, mechanisms and treatment options, with focus on Chlamydia pneumoniae and macrolides. Respir Res 2017; 18:98 [View Article] [PubMed]
    [Google Scholar]
  20. Cho YS, Kim T-B, Lee T-H, Moon K-A, Lee J et al. Chlamydia pneumoniae infection enhances cellular proliferation and reduces steroid responsiveness of human peripheral blood mononuclear cells via a tumor necrosis factor-alpha-dependent pathway. Clin Exp Allergy 2005; 35:1625–1631 [View Article] [PubMed]
    [Google Scholar]
  21. Hyman CL, Roblin PM, Gaydos CA, Quinn TC, Schachter J et al. Prevalence of asymptomatic nasopharyngeal carriage of Chlamydia pneumoniae in subjectively healthy adults: assessment by polymerase chain reaction-enzyme immunoassay and culture. Clin Infect Dis 1995; 20:1174–1178 [View Article] [PubMed]
    [Google Scholar]
  22. Miyashita N, Niki Y, Nakajima M, Fukano H, Matsushima T. Prevalence of asymptomatic infection with Chlamydia pneumoniae in subjectively healthy adults. Chest 2001; 119:1416–1419 [View Article] [PubMed]
    [Google Scholar]
  23. Pittet LF, Bertelli C, Scherz V, Rochat I, Mardegan C et al. Chlamydia pneumoniae and Mycoplasma pneumoniae in children with cystic fibrosis: impact on bacterial respiratory microbiota diversity. Pathog Dis 2021; 79:ftaa074 [View Article] [PubMed]
    [Google Scholar]
  24. Roulis E, Polkinghorne A, Timms P. Chlamydia pneumoniae: modern insights into an ancient pathogen. Trends Microbiol 2013; 21:120–128 [View Article] [PubMed]
    [Google Scholar]
  25. Carter JD, Hudson AP. The evolving story of Chlamydia-induced reactive arthritis. Curr Opin Rheumatol 2010; 22:424–430 [View Article] [PubMed]
    [Google Scholar]
  26. Melby KK, Kvien TK, Glennås A, Anestad G. Chlamydia pneumoniae as a trigger of reactive arthritis. Scand J Infect Dis 1999; 31:327–328 [View Article] [PubMed]
    [Google Scholar]
  27. Durel C-A, Saison J, Chidiac C, Ferry T. A case of interstitial pneumonia, myocarditis and severe sepsis caused by Chlamydia pneumoniae. BMJ Case Rep 2015; 2015:bcr2015211788 [View Article] [PubMed]
    [Google Scholar]
  28. Hoefer D, Poelzl G, Kilo J, Hoermann C, Mueller JL et al. Early detection and successful therapy of fulminant Chlamydia pneumoniae myocarditis. ASAIO J 2005; 51:480–481 [View Article] [PubMed]
    [Google Scholar]
  29. Suesaowalak M, Cheung MM, Tucker D, Chang AC, Chu J et al. Chlamydophila pneumoniae myopericarditis in a child. Pediatr Cardiol 2009; 30:336–339 [View Article] [PubMed]
    [Google Scholar]
  30. Glaser CA, Honarmand S, Anderson LJ, Schnurr DP, Forghani B et al. Beyond viruses: clinical profiles and etiologies associated with encephalitis. Clin Infect Dis 2006; 43:1565–1577 [View Article] [PubMed]
    [Google Scholar]
  31. Elargoubi A, Verhoeven PO, Grattard F, Stephan J-L, Richard O et al. Acute encephalitis associated to a respiratory infection due to Chlamydophila pneumoniae. Med Mal Infect 2013; 43:345–349 [View Article] [PubMed]
    [Google Scholar]
  32. Haidl S, Ivarsson S, Bjerre I, Persson K. Guillain-barré syndrome after Chlamydia pneumoniae infection. N Engl J Med 1992; 326:576–577
    [Google Scholar]
  33. Saikku P, Leinonen M, Mattila K, Ekman MR, Nieminen MS et al. Serological evidence of an association of a novel Chlamydia, TWAR, with chronic coronary heart disease and acute myocardial infarction. Lancet 1988; 2:983–986 [View Article] [PubMed]
    [Google Scholar]
  34. Campbell LA, Kuo CC, Grayston JT. Chlamydia pneumoniae and cardiovascular disease. Emerg Infect Dis 1998; 4:571–579
    [Google Scholar]
  35. Hilden J, Lind I, Kolmos HJ, Als-Nielsen B, Damgaard M et al. Chlamydia pneumoniae IgG and IgA antibody titers and prognosis in patients with coronary heart disease: results from the CLARICOR trial. Diagn Microbiol Infect Dis 2010; 66:385–392 [View Article] [PubMed]
    [Google Scholar]
  36. Andraws R, Berger JS, Brown DL. Effects of antibiotic therapy on outcomes of patients with coronary artery disease: a meta-analysis of randomized controlled trials. JAMA 2005; 293:2641–2647 [View Article] [PubMed]
    [Google Scholar]
  37. Piekut T, Hurła M, Banaszek N, Szejn P, Dorszewska J et al. Infectious agents and Alzheimer’s disease. J Integr Neurosci 2022; 21:73 [View Article]
    [Google Scholar]
  38. Panzetta ME, Valdivia RH, Saka HA. Chlamydia persistence: a survival strategy to evade antimicrobial effects in-vitro and in-vivo. Front Microbiol 2018; 9:3101
    [Google Scholar]
  39. Nguyen HP, Seto NOL, MacKenzie CR, Brade L, Kosma P et al. Germline antibody recognition of distinct carbohydrate epitopes. Nat Struct Mol Biol 2003; 10:1019–1025 [View Article] [PubMed]
    [Google Scholar]
  40. Wang X, Rockey DD, Dolan BP. Chlamydia lipooligosaccharide has varied direct and indirect roles in evading both innate and adaptive host immune responses. Infect Immun 2020; 88:e00198-20 [View Article] [PubMed]
    [Google Scholar]
  41. Jacquier N, Viollier PH, Greub G. The role of peptidoglycan in chlamydial cell division: towards resolving the chlamydial anomaly. FEMS Microbiol Rev 2015; 39:262–275 [View Article] [PubMed]
    [Google Scholar]
  42. Jacquier N, Frandi A, Pillonel T, Viollier PH, Greub G. Cell wall precursors are required to organize the chlamydial division septum. Nat Commun 2014; 5:3578 [View Article] [PubMed]
    [Google Scholar]
  43. Christensen S, McMahon RM, Martin JL, Huston WM. Life inside and out: making and breaking protein disulfide bonds in Chlamydia. Crit Rev Microbiol 2019; 45:33–50 [View Article] [PubMed]
    [Google Scholar]
  44. Greub G, Raoult D. History of the ADP/ATP-translocase-encoding gene, a parasitism gene transferred from a Chlamydiales ancestor to plants 1 billion years ago. Appl Environ Microbiol 2003; 69:5530–5535 [View Article] [PubMed]
    [Google Scholar]
  45. Chacko A, Barker CJ, Beagley KW, Hodson MP, Plan MR et al. Increased sensitivity to tryptophan bioavailability is a positive adaptation by the human strains of Chlamydia pneumoniae. Mol Microbiol 2014; 93:797–813 [View Article] [PubMed]
    [Google Scholar]
  46. Luu LDW, Kasimov V, Phillips S, Myers GSA, Jelocnik M. Genome organization and genomics in Chlamydia: whole genome sequencing increases understanding of chlamydial virulence, evolution, and phylogeny. Front Cell Infect Microbiol 2023; 13:1178736 [View Article] [PubMed]
    [Google Scholar]
  47. Betts-Hampikian HJ, Fields KA. The chlamydial type III secretion mechanism: revealing cracks in a tough nut. Front Microbiol 2010; 1:114 [View Article] [PubMed]
    [Google Scholar]
  48. Myers GSA, Mathews SA, Eppinger M, Mitchell C, O’Brien KK et al. Evidence that human Chlamydia pneumoniae was zoonotically acquired. J Bacteriol 2009; 191:7225–7233 [View Article] [PubMed]
    [Google Scholar]
  49. Lutter EI, Martens C, Hackstadt T. Evolution and conservation of predicted inclusion membrane proteins in Chlamydiae. Comp Funct Genomics 2012; 2012:362104 [View Article] [PubMed]
    [Google Scholar]
  50. Elwell C, Mirrashidi K, Engel J. Chlamydia cell biology and pathogenesis. Nat Rev Microbiol 2016; 14:385–400 [View Article] [PubMed]
    [Google Scholar]
  51. Kalman S, Mitchell W, Marathe R, Lammel C, Fan J et al. Comparative genomes of Chlamydia pneumoniae and C. trachomatis. Nat Genet 1999; 21:385–389 [View Article] [PubMed]
    [Google Scholar]
  52. Domman D, Collingro A, Lagkouvardos I, Gehre L, Weinmaier T et al. Massive expansion of Ubiquitination-related gene families within the Chlamydiae. Mol Biol Evol 2014; 31:2890–2904 [View Article] [PubMed]
    [Google Scholar]
  53. Pillonel T, Bertelli C, Salamin N, Greub G. Taxogenomics of the order Chlamydiales. Int J Syst Evol Microbiol 2015; 65:1381–1393 [View Article] [PubMed]
    [Google Scholar]
  54. Tagini F, Opota O, Greub G. Chlamydia pneumoniae upsurge at a tertiary hospital, Lausanne, Switzerland. Emerg Infect Dis 2024; 30:810–812 Epub ahead of print 27 February 2024 [View Article] [PubMed]
    [Google Scholar]
  55. Reischl U, Lehn N, Simnacher U, Marre R, Essig A. Rapid and standardized detection of Chlamydia pneumoniae using LightCycler real-time fluorescence PCR. Eur J Clin Microbiol Infect Dis 2003; 22:54–57 [View Article] [PubMed]
    [Google Scholar]
  56. Tondella MLC, Talkington DF, Holloway BP, Dowell SF, Cowley K et al. Development and evaluation of real-time PCR-based fluorescence assays for detection of Chlamydia pneumoniae. J Clin Microbiol 2002; 40:575–583 [View Article] [PubMed]
    [Google Scholar]
  57. Opota O, Brouillet R, Greub G, Jaton K. Methods for real-time PCR-based diagnosis of Chlamydia pneumoniae, Chlamydia psittaci, and Chlamydia abortus infections in an opened molecular diagnostic platform. Methods Mol Biol 2017; 1616:171–181 [View Article] [PubMed]
    [Google Scholar]
  58. Murphy CN, Fowler R, Balada-Llasat JM, Carroll A, Stone H et al. Multicenter evaluation of the biofire filmarray pneumonia/pneumonia plus panel for detection and quantification of agents of lower respiratory tract infection. J Clin Microbiol 2020; 58:e00128-20 [View Article] [PubMed]
    [Google Scholar]
  59. Leber AL, Lisby JG, Hansen G, Relich RF, Schneider UV et al. Multicenter evaluation of the QIAstat-Dx respiratory panel for detection of viruses and bacteria in nasopharyngeal swab specimens. J Clin Microbiol 2020; 58:e00155-20 [View Article] [PubMed]
    [Google Scholar]
  60. Verkooyen RP, Willemse D, Hiep-van Casteren SC, Joulandan SA, Snijder RJ et al. Evaluation of PCR, culture, and serology for diagnosis of Chlamydia pneumoniae respiratory infections. J Clin Microbiol 1998; 36:2301–2307 [View Article] [PubMed]
    [Google Scholar]
  61. Dowell SF, Peeling RW, Boman J, Carlone GM, Fields BS et al. Standardizing Chlamydia pneumoniae assays: recommendations from the Centers for Disease Control and Prevention (USA) and the Laboratory Centre for Disease Control (Canada). Clin Infect Dis 2001; 33:492–503 [View Article] [PubMed]
    [Google Scholar]
  62. Tuuminen T, Palomäki P, Paavonen J. The use of serologic tests for the diagnosis of chlamydial infections. J Microbiol Methods 2000; 42:265–279 [View Article] [PubMed]
    [Google Scholar]
  63. Hammerschlag MR. Chlamydia pneumoniae and the lung. Eur Respir J 2000; 16:1001–1007 [View Article] [PubMed]
    [Google Scholar]
  64. Wellinghausen N, Straube E, Freidank H, von Baum H, Marre R et al. Low prevalence of Chlamydia pneumoniae in adults with community-acquired pneumonia. Int J Med Microbiol 2006; 296:485–491 [View Article] [PubMed]
    [Google Scholar]
  65. Campbell LA, Kuo C-C. Cultivation and laboratory maintenance of Chlamydia pneumoniae. Curr Protoc Microbiol 2009; Chapter 11:Unit11B.1 [View Article] [PubMed]
    [Google Scholar]
  66. Hyman CL, Augenbraun MH, Roblin PM, Schachter J, Hammerschlag MR. Asymptomatic respiratory tract infection with Chlamydia pneumoniae TWAR. J Clin Microbiol 1991; 29:2082–2083 [View Article] [PubMed]
    [Google Scholar]
  67. Biosafety in Microbiological and Biomedical Laboratories (BMBL) 6th Edition CDC Laboratory Portal. CDC; 2023 https://www.cdc.gov/labs/BMBL.html accessed 2 February 2024
  68. Sharma L, Losier A, Tolbert T, Dela Cruz CS, Marion CR. Atypical pneumonia: updates on Legionella, Chlamydophila, and Mycoplasma pneumonia. Clin Chest Med 2017; 38:45–58 [View Article] [PubMed]
    [Google Scholar]
  69. Kohlhoff SA, Hammerschlag MR. Treatment of chlamydial infections: 2014 update. Expert Opin Pharmacother 2015; 16:205–212 [View Article] [PubMed]
    [Google Scholar]
  70. Roblin PM, Hammerschlag MR. Microbiologic efficacy of azithromycin and susceptibilities to azithromycin of isolates of Chlamydia pneumoniae from adults and children with community acquired pneumonia. Antimicrob Agents Chemother 1998; 42:194–196 [View Article]
    [Google Scholar]
  71. Hammerschlag MR, Roblin PM. Microbiological efficacy of levofloxacin for treatment of community-acquired pneumonia due to Chlamydia pneumoniae. Antimicrob Agents Chemother 2000; 44:1409 [View Article] [PubMed]
    [Google Scholar]
  72. Hammerschlag MR, Roblin PM. Microbiologic efficacy of moxifloxacin for the treatment of community-acquired pneumonia due to Chlamydia pneumoniae. Int J Antimicrob Agents 2000; 15:149–152 [View Article]
    [Google Scholar]
  73. Roblin PM, Montalban G, Hammerschlag MR. Susceptibilities to clarithromycin and erythromycin of isolates of Chlamydia pneumoniae from children with pneumonia. Antimicrob Agents Chemother 1994; 38:1588–1589 [View Article]
    [Google Scholar]
  74. Hammerschlag MR. Antimicrobial susceptibility and therapy of infections caused by Chlamydia pneumoniae. Antimicrob Agents Chemother 1994; 38:1873–1878 [View Article] [PubMed]
    [Google Scholar]
  75. Stamm WE. Potential for antimicrobial resistance in Chlamydia pneumoniae. J Infect Dis 2000; 181 Suppl 3:S456–9 [View Article] [PubMed]
    [Google Scholar]
  76. Kohlhoff S, Hammerschlag MR. In vitro activity of Nafithromycin (WCK 4873) against Chlamydia pneumoniae. Antimicrob Agents Chemother 2021; 65:00585–21 [View Article]
    [Google Scholar]
  77. Bodetti TJ, Jacobson E, Wan C, Hafner L, Pospischil A et al. Molecular evidence to support the expansion of the hostrange of Chlamydophila pneumoniae to include reptiles as well as humans, horses, koalas and amphibians. Syst Appl Microbiol 2002; 25:146–152 [View Article] [PubMed]
    [Google Scholar]
  78. Kocher F, Applegate V, Reiners J, Port A, Spona D et al. The Chlamydia pneumoniae effector SemD exploits its host’s endocytic machinery by structural and functional mimicry. Nat Commun 2024; 15:7294 [View Article] [PubMed]
    [Google Scholar]
  79. Bulir DC, Waltho DA, Stone CB, Liang S, Chiang CKW et al. Chlamydia Outer Protein (Cop) B from Chlamydia pneumoniae possesses characteristic features of a type III secretion (T3S) translocator protein. BMC Microbiol 2015; 15:163 [View Article]
    [Google Scholar]
  80. Engel AC, Herbst F, Kerres A, Galle JN, Hegemann JH. The type III secretion system-related CPn0809 from Chlamydia pneumoniae. PLoS One 2016; 11:e0148509 [View Article]
    [Google Scholar]
  81. Mölleken K, Schmidt E, Hegemann JH. Members of the Pmp protein family of Chlamydia pneumoniae mediate adhesion to human cells via short repetitive peptide motifs. Mol Microbiol 2010; 78:1004–1017 [View Article] [PubMed]
    [Google Scholar]
  82. Debrine AM, Karplus PA, Rockey DD. A structural foundation for studying chlamydial polymorphic membrane proteins. Microbiol Spectr 2023; 11:e03242–23 [View Article]
    [Google Scholar]
  83. Porritt RA, Crother TR. Chlamydia pneumoniae infection and inflammatory diseases. For Immunopathol Dis Therap 2016; 7:237–254 [View Article] [PubMed]
    [Google Scholar]
  84. Theunissen HJ, Lemmens-den Toom NA, Burggraaf A, Stolz E, Michel MF. Influence of temperature and relative humidity on the survival of Chlamydia pneumoniae in aerosols. Appl Environ Microbiol 1993; 59:2589–2593 [View Article] [PubMed]
    [Google Scholar]
  85. Falsey AR, Walsh EE. Transmission of Chlamydia pneumoniae. J Infect Dis 1993; 168:493–496 [View Article] [PubMed]
    [Google Scholar]
  86. de Kruif MD, van Gorp ECM, Keller TT, Ossewaarde JM, ten Cate H. Chlamydia pneumoniae infections in mouse models: relevance for atherosclerosis research. Cardiovasc Res 2005; 65:317–327 [View Article] [PubMed]
    [Google Scholar]
/content/journal/jmm/10.1099/jmm.0.002006
Loading
/content/journal/jmm/10.1099/jmm.0.002006
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error