
Full text loading...
Introduction. Previous studies have shown vast differences in the skin and oral microbiomes of newborns based on delivery method [Caesarean section (C-section) vs vaginal]. Exposure to or absence of certain bacteria during delivery can impact the neonate’s future susceptibility to infections, allergies or autoimmunity by altering immune functions. Few studies have focused on the impact of maternal obesity on the variations of newborn skin and oral microbiomes. Obese pregnant women typically have a higher vaginal microbiome diversity, and their pregnancies are at higher risk for adverse outcomes and complications.
Hypothesis. We hypothesized that the skin and oral microbiomes of newborns born to obese mothers would include more diverse, potentially pathogenic bacteria and that the skin and oral microbiome in C-section delivered newborns would be less diverse than vaginally delivered newborns.
Aim. We aim to begin to establish maternal obesity and mode of delivery as factors contributing to increased risk for negative newborn outcomes through impacts on newborn bacterial dysbiosis.
Methodology. A skin swab was collected immediately following delivery of 39 newborns from 13 healthy weight body mass index (BMI 18.50–24.99), 11 overweight (BMI 25.0–29.99) and 15 obese (BMI ≥30.00) pregnant participants. An oral swab was collected immediately following delivery for 38 of these newborns from 13 healthy weight, 10 overweight and 15 obese pregnant participants. Bacterial genera were identified via 16S rRNA amplicon sequencing.
Results. The newborn skin microbiome was comprised of typical skin bacteria (i.e. Corynebacterium). Newborns of obese participants had a higher relative abundance of Peptoniphilus in their skin microbiome compared to newborns of healthy weight participants (P=0.007). Neonates born via C-section had a higher relative abundance of Ureaplasma in their oral microbiome compared to neonates delivered vaginally (P=0.046).
Conclusion. We identified differences in the newborn skin and oral microbiomes based on pre-pregnancy BMI and method of delivery. These differences could be linked to an increased risk of allergies, autoimmune disease and infections. Future longitudinal studies will be crucial in determining the long-term impact of these specific genera on newborn outcomes. Understanding these connections could lead to targeted interventions that reduce the risk of adverse outcomes and improve overall health trajectory.