Skip to content
1887

Abstract

. Fungal infections are relevant health risks for individuals with acquired immunodeficiency in the resource-limited tropics, but available surveillance data are scarce. For and spp., the evolution from environmental reservoirs to human pathogens causing life-threatening diseases is currently discussed as a public health concern in the context of climate change and limited treatment options.

. Uncovering the gastrointestinal tract as an epidemiological niche of fungi emerging from the environment into individuals for whom fungal infections are not diagnosed.

. To contribute to data on the local epidemiology of and spp. in Western African Ghana by analysing gastrointestinal samples of Ghanaian individuals.

. Four real-time PCR assays targeting and five real-time PCR assays targeting spp. were applied with stool samples of 875 non-age-stratified Ghanaian HIV patients and 30 Ghanaian control individuals without known HIV infection. Also, 664 samples from Ghanaian children under 2 years of age were investigated. The true abundance of the target micro-organism was considered as unlikely in the case of one or fewer positive signals, likely in the case of two to three positive signals and highly likely in the case of four or more positive signals per sample in the real-time PCR assays.

. The combined application of sensitive, target-specific real-time PCR assays indicates that neither , complex nor complex were part of the gut microbiota of Ghanaian individuals with or without HIV infection.

. Despite the significant disease burden from these pathogens in immunosuppressed Ghanaian individuals, detection from gastrointestinal samples was unlikely, which should be taken into account when discussing screening strategies for these fungi of public health concern. In contrast, the detection of these fungi from such samples should not routinely be considered as commensal colonization flora.

Funding
This study was supported by the:
  • Bundesministerium der Verteidigung (Award 36K2-S-45 1922)
    • Principle Award Recipient: HagenFrickmann
  • Deutsche Forschungsgemeinschaft (Award 68748488)
    • Principle Award Recipient: StefanieSchoppen
  • BonaRes (Award 01KA1102)
    • Principle Award Recipient: TorstenFeldt
Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.001916
2024-10-11
2025-07-09
Loading full text...

Full text loading...

References

  1. Gushiken AC, Saharia KK, Baddley JW. Cryptococcosis. Infect Dis Clin North Am 2021; 35:493–514 [View Article] [PubMed]
    [Google Scholar]
  2. Tugume L, Ssebambulidde K, Kasibante J, Ellis J, Wake RM et al. Cryptococcal meningitis. Nat Rev Dis Primers 2023; 9:62 [View Article] [PubMed]
    [Google Scholar]
  3. Okoye CA, Nweze E, Ibe C. Invasive candidiasis in Africa, what is the current picture?. Pathog Dis 2022; 80:ftac012 [View Article] [PubMed]
    [Google Scholar]
  4. Osei Sekyere J. Candida auris: a systematic review and meta-analysis of current updates on an emerging multidrug-resistant pathogen. Microbiologyopen 2018; 7:e00578 [View Article] [PubMed]
    [Google Scholar]
  5. Limper AH, Adenis A, Le T, Harrison TS. Fungal infections in HIV/AIDS. Lancet Infect Dis 2017; 17:e334-43 [View Article] [PubMed]
    [Google Scholar]
  6. Sati H, Alastruey-Izquierdo A, Perfect J, Govender NP, Harrison TS et al. HIV and fungal priority pathogens. Lancet HIV 2023; 10:e750–e754 [View Article] [PubMed]
    [Google Scholar]
  7. Rathore SS, Sathiyamoorthy J, Lalitha C, Ramakrishnan J. A holistic review on Cryptococcus neoformans. Microb Pathog 2022; 166:105521 [View Article] [PubMed]
    [Google Scholar]
  8. Zhao Y, Ye L, Zhao F, Zhang L, Lu Z et al. Cryptococcus neoformans, a global threat to human health. Infect Dis Poverty 2023; 12:20 [View Article] [PubMed]
    [Google Scholar]
  9. Kassaza K, Wasswa F, Nielsen K, Bazira J. Cryptococcus neoformans genotypic diversity and disease outcome among HIV patients in Africa. J Fungi 2022; 8:734 [View Article] [PubMed]
    [Google Scholar]
  10. Maziarz EK, Perfect JR. Cryptococcosis. Infect Dis Clin North Am 2016; 30:179–206 [View Article] [PubMed]
    [Google Scholar]
  11. Zaragoza O. Basic principles of the virulence of Cryptococcus. Virulence 2019; 10:490–501
    [Google Scholar]
  12. Lan J, Lv L, Ye L, Wang T, Wu Z et al. Post-infectious inflammatory response syndrome in an HIV-negative patient after Cryptococcus gattii meningoencephalitis: a case report and review of the literature. J Med Case Rep 2023; 17:332 [View Article] [PubMed]
    [Google Scholar]
  13. Shi ZW, Chen Y, Ogoke KM, Strickland AB, Shi M. Cryptococcal immune reconstitution inflammatory syndrome: from clinical studies to animal experiments. Microorganisms 2022; 10:2419 [View Article] [PubMed]
    [Google Scholar]
  14. Heung LJ, Wiesner DL, Wang K, Rivera A, Hohl TM. Immunity to fungi in the lung. Semin Immunol 2023; 66:101728 [View Article] [PubMed]
    [Google Scholar]
  15. Coelho C, Farrer RA. Pathogen and host genetics underpinning cryptococcal disease. Adv Genet 2020; 105:1–66 [View Article] [PubMed]
    [Google Scholar]
  16. Chen Y, Shi ZW, Strickland AB, Shi M. Cryptococcus neoformans infection in the central nervous system: the battle between host and pathogen. J Fungi 2022; 8:1069 [View Article]
    [Google Scholar]
  17. Gifford A, Jayawardena N, Carlesse F, Lizarazo J, McMullan B et al. Pediatric Cryptococcosis. Pediatr Infect Dis J 2024; 43:307–312 [View Article] [PubMed]
    [Google Scholar]
  18. Simantirakis SC, MacCallum DM. Mouse gastrointestinal colonization model for Candida auris. Methods Mol Biol 2022; 2517:329–340 [View Article] [PubMed]
    [Google Scholar]
  19. Abe M, Katano H, Nagi M, Higashi Y, Sato Y et al. Potency of gastrointestinal colonization and virulence of Candida auris in a murine endogenous candidiasis. PLoS One 2020; 15:e0243223 [View Article] [PubMed]
    [Google Scholar]
  20. Fu L, Le T, Wang L, Guo H, Liu Z et al. Study on growth characteristics of Candida auris under different conditions in vitro and its in vivo toxicity [article in Chinese]. Nan Fang Yi Ke Da Xue Xue Bao 2020; 40:1049–1055
    [Google Scholar]
  21. Rosario I, Acosta B, Colom MF. La paloma y otras aves como reservorio de Cryptococcus spp [Pigeons and other birds as a reservoir for Cryptococcus spp] [article in Spanish]. Ver Iberoam Micol 2008; 25:S13–S18 [View Article]
    [Google Scholar]
  22. Powell KE, Dahl BA, Weeks RJ, Tosh FE. Airborne Cryptococcus neoformans: particles from pigeon excreta compatible with alveolar deposition. J Infect Dis 1972; 125:412–415 [View Article] [PubMed]
    [Google Scholar]
  23. Weber A, Schäfer R. Untersuchungen zum vorkommen von cryptococcus neoformans in kotproben von im menschlichen wohnbereich gehaltenen Vögeln [the occurrence of cryptococcus neoformans in fecal samples from birds kept in human living areas][article in german]. Berl Munch Tierarztl Wochenschr 1991; 104:419–421
    [Google Scholar]
  24. Swinne D, Taelman H, Batungwanayo J, Bigirankana A, Bogaerts J. Contribution a l’étude de l’écologie de cryptococcus neoformans en afrique centrale [ecology of cryptococcus neoformans in central africa] [article in frensh]. Med Trop 1994; 54:53–55
    [Google Scholar]
  25. Kahraman M, Karahan AG, Terzioğlu ME. Characterization of some microorganisms from human stool samples and determination of their effects on CT26 colorectal carcinoma cell line. Curr Microbiol 2022; 79:225 [View Article] [PubMed]
    [Google Scholar]
  26. Abou-Gabal M, Zorič V. Moronal®-Empfindlichkeit von 590 Hefen und hefeähnlichen Pilzen aus Stuhlproben von Patienten mit gastro-intestinalen Beschwerden [Moronal sensitivity of 590 yeasts and yeast-like fungi from fecal specimen of patients with gastrointestinal disturbances][article in German]. Mykosen 1969; 12:77–80 [View Article]
    [Google Scholar]
  27. Haenel H, Goldbach W, Hoffmann G, Köhler F, Müller-Beuthow W et al. Zum Nachweis von Hefen, Staphylokokken, aeroben Sporenbildern und Pseudomonas sowie von Lysozym im Stuhl gesunder Erwachsener [On the demonstration of yeasts, staphylococci, aerobic spore-formers and Pseudomonas as well as lysozyme in the feces of healthy adults][article in German]. Zentralbl Bakteriol Orig 1965; 197:244–255
    [Google Scholar]
  28. Tintelnot K, Losert H. Isolation of Cryptococcus adeliensis from clinical samples and the environment in Germany. J Clin Microbiol 2005; 43:1007 [View Article] [PubMed]
    [Google Scholar]
  29. Bhat V, Vira H, Khattry N, Toshniwal M. Cryptococcus laurentii diarrhea post hematopoietic stem cell transplant. Transpl Infect Dis 2017; 19:2 [View Article] [PubMed]
    [Google Scholar]
  30. Sciaudone G, Pellino G, Guadagni I, Somma A, D’Armiento FP et al. Disseminated Cryptococcus neoformans infection and Crohn’s disease in an immunocompetent patient. J Crohns Colitis 2011; 5:60–63 [View Article] [PubMed]
    [Google Scholar]
  31. Quincho-Lopez A, Montenegro-Idrogo J, Verona-Rubio RO. Colonic cryptococcosis as a rare presentation in HIV infection: a case report and review of the literature. Int J STD AIDS 2020; 31:1414–1419 [View Article] [PubMed]
    [Google Scholar]
  32. Naranjo-Saltos F, Hallo A, Hallo C, Mayancela A, Rojas A. Gastrointestinal cryptococcosis associated with intestinal lymphangiectasia. Case Rep Med 2020; 2020:7870154 [View Article] [PubMed]
    [Google Scholar]
  33. Hajoui FZ, Ghfir B, Moustachi A, Lyagoubi M, Aoufi S. Cryptococcose digestive: une présentation inhabituelle de cryptococcose disséminée [intestinal cryptococcosis: an unusual presentation of disseminated cryptococcosis][article in frensh]. Med Sante Trop 2014; 24:317–319 [View Article]
    [Google Scholar]
  34. Bava AJ, Troncoso A. Detection of Cryptococcus neoformans in faecal matter: a novel presentation of disseminated cryptococcosis. J Infect Dev Ctries 2009; 3:572–574 [View Article] [PubMed]
    [Google Scholar]
  35. Hokari S, Tsukada H, Ito K, Shibuya H. An autopsy case of disseminated cryptococcosis manifesting as acute diarrhea in a patient with primary biliary cirrhosis. Intern Med 2010; 49:1793–1796 [View Article] [PubMed]
    [Google Scholar]
  36. Li Q, Wang C, Tang C, He Q, Li N et al. Dysbiosis of gut fungal microbiota is associated with mucosal inflammation in Crohn’s disease. J Clin Gastroenterol 2014; 48:513–523 [View Article] [PubMed]
    [Google Scholar]
  37. Prazeres TR, de Vasconcellos MAM, Sousa MS, Ortiz ES, Ribeiro Junior U et al. Small-bowel cryptococcosis diagnosed by double-balloon endoscopy in patient without human immunodeficiency virus. Endoscopy 2021; 53:E150–E152 [View Article] [PubMed]
    [Google Scholar]
  38. Akaihe CL, Nweze EI. Epidemiology of Cryptococcus and cryptococcosis in Western Africa. Mycoses 2021; 64:4–17 [View Article] [PubMed]
    [Google Scholar]
  39. Lakoh S, Kamudumuli PS, Penney ROS, Haumba SM, Jarvis JN et al. Diagnostic capacity for invasive fungal infections in advanced HIV disease in Africa: a continent-wide survey. Lancet Infect Dis 2023; 23:598–608 [View Article] [PubMed]
    [Google Scholar]
  40. Taori SK, Rhodes J, Khonyongwa K, Szendroi A, Smith M et al. First experience of implementing Candida auris real-time PCR for surveillance in the UK: detection of multiple introductions with two international clades and improved patient outcomes. J Hosp Infect 2022; 127:111–120 [View Article] [PubMed]
    [Google Scholar]
  41. Malczynski M, Dowllow N, Rezaeian S, Rios J, Dirnberger L et al. Optimizing a real-time PCR assay for rapid detection of Candida auris in nasal and axillary/groin samples. J Med Microbiol 2020; 69:824–829 [View Article] [PubMed]
    [Google Scholar]
  42. Freitas BL, Leach L, Chaturvedi V, Chaturvedi S. Reverse Transcription-Quantitative Real-Time PCR (RT-qPCR) assay for the rapid enumeration of live Candida auris cells from the health care environment. J Clin Microbiol 2022; 60:e0077921 [View Article] [PubMed]
    [Google Scholar]
  43. Crawford LC, Kidd SE, Anninos TM, Turra M, Weldhagen GF. Candida auris PCR for high-throughput infection control screening. Med Mycol 2022; 60:myac057 [View Article] [PubMed]
    [Google Scholar]
  44. Ibrahim A, Baron SA, Yousfi H, Hadjadj L, Lalaoui R et al. Development and standardization of a specific real-time PCR assay for the rapid detection of Candida auris. Eur J Clin Microbiol Infect Dis 2021; 40:1547–1551 [View Article] [PubMed]
    [Google Scholar]
  45. Contreras DA, Morgan MA. Surveillance diagnostic algorithm using real-time PCR assay and strain typing method development to assist with the control of C. auris amid COVID-19 pandemic. Front Cell Infect Microbiol 2022; 12:887754 [View Article]
    [Google Scholar]
  46. Leach L, Zhu Y, Chaturvedi S. Development and validation of a real-time PCR assay for rapid detection of Candida auris from surveillance samples. J Clin Microbiol 2018; 56:e01223-17 [View Article] [PubMed]
    [Google Scholar]
  47. Leach L, Russell A, Zhu Y, Chaturvedi S, Chaturvedi V. A rapid and automated sample-to-result Candida auris real-time PCR assay for high-throughput testing of surveillance samples with the BD max open system. J Clin Microbiol 2019; 57:e00630-19 [View Article] [PubMed]
    [Google Scholar]
  48. Arastehfar A, Fang W, Daneshnia F, Al-Hatmi AM, Liao W et al. Novel multiplex real-time quantitative PCR detecting system approach for direct detection of Candida auris and its relatives in spiked serum samples. Future Microbiol 2019; 14:33–45 [View Article] [PubMed]
    [Google Scholar]
  49. Alvarado M, Bartolomé Álvarez J, Lockhart SR, Valentín E, Ruiz-Gaitán AC et al. Identification of Candida auris and related species by multiplex PCR based on unique GPI protein-encoding genes. Mycoses 2021; 64:194–202 [View Article] [PubMed]
    [Google Scholar]
  50. Lima A, Widen R, Vestal G, Uy D, Silbert SA. A TaqMan probe-based real-time PCR assay for the rapid identification of the emerging multidrug-resistant pathogen Candida auris on the BD max system. J Clin Microbiol 2019; 57:e01604-18 [View Article] [PubMed]
    [Google Scholar]
  51. Walchak RC, Buckwalter SP, Zinsmaster NM, Henn KM, Johnson KM et al. Candida auris direct detection from surveillance swabs, blood, and urine using a laboratory-developed PCR method. J Fungi 2020; 6:224 [View Article] [PubMed]
    [Google Scholar]
  52. Jafarian H, Khodadadi H, Badiee P. Development a hydrolysis probe-based quantitative PCR assay for the specific detection and quantification of Candida auris. Curr Med Mycol 2020; 6:50–56 [View Article] [PubMed]
    [Google Scholar]
  53. Sexton DJ, Kordalewska M, Bentz ML, Welsh RM, Perlin DS et al. Direct detection of emergent fungal pathogen Candida auris in clinical skin swabs by SYBR green-based quantitative PCR assay. J Clin Microbiol 2018; 56:e01337-18 [View Article] [PubMed]
    [Google Scholar]
  54. Martínez-Murcia A, Bru G, Navarro A. qPCR detection of Candida auris using the GPSTM CanAur MONODOSE dtec-qPCR test. Methods Mol Biol 2022; 2517:43–51 [View Article] [PubMed]
    [Google Scholar]
  55. Sattler J, Noster J, Brunke A, Plum G, Wiegel P et al. Comparison of two commercially available qPCR kits for the detection of Candida auris. J Fungi 2021; 7:54 [View Article] [PubMed]
    [Google Scholar]
  56. Ahmad A, Spencer JE, Lockhart SR, Singleton S, Petway DJ et al. A high-throughput and rapid method for accurate identification of emerging multidrug-resistant Candida auris. Mycoses 2019; 62:513–518 [View Article] [PubMed]
    [Google Scholar]
  57. Kordalewska M, Zhao Y, Lockhart SR, Chowdhary A, Berrio I et al. Rapid and accurate molecular identification of the emerging multidrug-resistant pathogen Candida auris. J Clin Microbiol 2017; 55:2445–2452 [View Article]
    [Google Scholar]
  58. Jainlabdin MH, Batra A, Sánchez Paredes E, Hernández Hernández F, Fu G et al. Single-tube, dual channel pentaplexing for the identification of Candida strains associated with human infection. Sci Rep 2019; 9:14692 [View Article] [PubMed]
    [Google Scholar]
  59. Tay E, Chen SC-A, Green W, Lopez R, Halliday CL. Development of a real-time PCR assay to identify and distinguish between Cryptococcus neoformans and Cryptococcus gattii species complexes. J Fungi 2022; 8:462 [View Article] [PubMed]
    [Google Scholar]
  60. Liu W, Li M, Xu Y, Wang F, Wang J et al. Evaluation of the performance of a multiplex real-time PCR assay for the identification of Aspergillus, Cryptococcus neoformans, and Pneumocystis jirovecii simultaneously from Sputum in multicenter. Infect Drug Resist 2022; 15:6009–6017 [View Article] [PubMed]
    [Google Scholar]
  61. Kelley EJ, Driebe EM, Etienne K, Brandt ME, Schupp JM et al. Real-time PCR assays for genotyping of Cryptococcus gattii in North America. BMC Microbiol 2014; 14:125 [View Article] [PubMed]
    [Google Scholar]
  62. Gago S, Esteban C, Valero C, Zaragoza O, Puig de la Bellacasa J et al. A multiplex real-time PCR assay for identification of Pneumocystis jirovecii, Histoplasma capsulatum, and Cryptococcus neoformans/Cryptococcus gattii in samples from AIDS patients with opportunistic pneumonia. J Clin Microbiol 2014; 52:1168–1176 [View Article] [PubMed]
    [Google Scholar]
  63. Bialek R, Weiss M, Bekure-Nemariam K, Najvar LK, Alberdi MB et al. Detection of Cryptococcus neoformans DNA in tissue samples by nested and real-time PCR assays. Clin Diagn Lab Immunol 2002; 9:461–469 [View Article] [PubMed]
    [Google Scholar]
  64. Tavares ER, Azevedo CS, Panagio LA, Pelisson M, Pinge-Filho P et al. Accurate and sensitive real-time PCR assays using intergenic spacer 1 region to differentiate Cryptococcus gattii sensu lato and Cryptococcus neoformans sensu lato. Med Mycol 2016; 54:89–96 [View Article] [PubMed]
    [Google Scholar]
  65. Satoh K, Maeda M, Umeda Y, Miyajima Y, Makimura K. Detection and identification of probable endemic fungal pathogen, Cryptococcus gattii, and worldwide pathogen, Cryptococcus neoformans, by real-time PCR. Microbiol Immunol 2011; 55:454–457 [View Article] [PubMed]
    [Google Scholar]
  66. Veron V, Simon S, Blanchet D, Aznar C. Real-time polymerase chain reaction detection of Cryptococcus neoformans and Cryptococcus gattii in human samples. Diagn Microbiol Infect Dis 2009; 65:69–72 [View Article] [PubMed]
    [Google Scholar]
  67. Wang L, Wang Y, Wang F, Zhao M, Gao X et al. Development and application of rapid clinical visualization molecular diagnostic technology for cryptococcus neoformans/C. gattii based on recombinase polymerase amplification combined with a lateral flow strip. Front Cell Infect Microbiol 2022; 11:803798 [View Article]
    [Google Scholar]
  68. Rivera V, Gaviria M, Muñoz-Cadavid C, Cano L, Naranjo T. Validation and clinical application of a molecular method for the identification of Cryptococcus neoformans/Cryptococcus gattii complex DNA in human clinical specimens. Braz J Infect Dis 2015; 19:563–570 [View Article] [PubMed]
    [Google Scholar]
  69. Sarfo FS, Eberhardt KA, Dompreh A, Kuffour EO, Soltau M et al. Helicobacter pylori infection is associated with higher CD4 T cell counts and lower HIV-1 viral loads in ART-naïve HIV-positive patients in ghana. PLoS One 2015; 10:e0143388 [View Article] [PubMed]
    [Google Scholar]
  70. Guo N, Bindt C, Te Bonle M, Appiah-Poku J, Tomori C et al. Mental health related determinants of parenting stress among urban mothers of young children--results from a birth-cohort study in Ghana and Côte d’Ivoire. BMC Psychiatry 2014; 14:156 [View Article] [PubMed]
    [Google Scholar]
  71. Backhaus J, Kann S, Hahn A, Weinreich F, Blohm M et al. Clustering of gastrointestinal microorganisms in human stool samples from Ghana. Pathogens 2024; 13:583 [View Article] [PubMed]
    [Google Scholar]
  72. Fiedorová K, Radvanský M, Němcová E, Grombiříková H, Bosák J et al. The impact of DNA extraction methods on stool bacterial and fungal microbiota community recovery. Front Microbiol 2019; 10:821 [View Article] [PubMed]
    [Google Scholar]
  73. COPY NUMBER CALCULATOR. n.d https://www.technologynetworks.com/tn/tools/copynumbercalculator accessed 8 July 2024
  74. Niesters HG. Quantitation of viral load using real-time amplification techniques. Methods 2001; 25:419–429 [View Article] [PubMed]
    [Google Scholar]
  75. Martínez-Murcia F, Navarro A, Bru G, Chowdhary A, Hagen F et al. Internal validation of GPS™ MONODOSE CanAur dtec-qPCR kit following the UNE/EN ISO/IEC 17025:2005 for detection of the emerging yeast Candida auris. Mycoses 2018; 61:877–884 [View Article] [PubMed]
    [Google Scholar]
  76. Fuchs F, Aldejohann AM, Hoffmann AM, Walther G, Kurzai O et al. In vitro activity of nitroxoline in antifungal-resistant candida species isolated from the urinary tract. Antimicrob Agents Chemother 2022; 66:e0226521
    [Google Scholar]
  77. Fitri LE, Candradikusuma D, Setia YD, Wibawa PA, Iskandar A et al. Diagnostic methods of common intestinal protozoa: current and future immunological and molecular methods. Trop Med Infect Dis 2022; 7:253 [View Article] [PubMed]
    [Google Scholar]
  78. Cools P, van Lieshout L, Koelewijn R, Addiss D, Ajjampur SSR et al. First international external quality assessment scheme of nucleic acid amplification tests for the detection of Schistosoma and soil-transmitted helminths, including Strongyloides: a pilot study. PLoS Negl Trop Dis 2020; 14:e0008231 [View Article] [PubMed]
    [Google Scholar]
  79. Rittenour WR, Park JH, Cox-Ganser JM, Beezhold DH, Green BJ. Comparison of DNA extraction methodologies used for assessing fungal diversity via ITS sequencing. J Environ Monit 2012; 14:766–774 [View Article] [PubMed]
    [Google Scholar]
  80. Eibach D, Krumkamp R, Hahn A, Sarpong N, Adu-Sarkodie Y et al. Application of a multiplex PCR assay for the detection of gastrointestinal pathogens in a rural African setting. BMC Infect Dis 2016; 16:150 [View Article] [PubMed]
    [Google Scholar]
  81. Garcia-Bustos V. Is candida auris the first multidrug-resistant fungal zoonosis emerging from climate change?. mBio 2024; 15:e0014624
    [Google Scholar]
  82. Hofer U. Candida auris’ potential link to climate change. Nat Rev Microbiol 2019; 17:588 [View Article] [PubMed]
    [Google Scholar]
  83. Garcia-Bustos V, Cabañero-Navalon MD, Ruiz-Gaitán A, Salavert M, Tormo-Mas et al. Climate change, animals, and Candida auris: insights into the ecological niche of a new species from a One Health approach. Clin Microbiol Infect 2023; 29:858–862 [View Article] [PubMed]
    [Google Scholar]
  84. Casadevall A, Kontoyiannis DP, Robert V. On the emergence of Candida auris: climate change, azoles, swamps, and birds. mBio 2019; 10:e01397-19 [View Article] [PubMed]
    [Google Scholar]
  85. Casadevall A, Kontoyiannis DP, Robert V. Environmental Candida auris and the global warming emergence hypothesis. mBio 2021; 12:e00360-21 [View Article] [PubMed]
    [Google Scholar]
  86. Ellwanger JH, Chies JAB. Candida auris emergence as a consequence of climate change: impacts on Americas and the need to contain greenhouse gas emissions. Lancet Reg Health Am 2022; 11:100250 [View Article] [PubMed]
    [Google Scholar]
  87. Fonseca SNS. Overview of invasive fungal infections in children in South America - the threat of resistant Candida species and the role of climate change in the new geographic distribution of endemic systemic mycosis. Curr Opin Pediatr 2024; 36:136–143 [View Article] [PubMed]
    [Google Scholar]
  88. Leonhard SE, Chong GM, Foudraine DE, Bode LGM, Croughs P et al. Proposal for a screening protocol for Candida auris colonization. J Hosp Infect 2024; 146:31–36 [View Article] [PubMed]
    [Google Scholar]
  89. Heindel J, Zweigner J, Fuchs F, Hamprecht A. Usefulness of screening for Candida auris colonisation in international patients admitted to a large university hospital. Mycoses 2023; 66:138–143 [View Article] [PubMed]
    [Google Scholar]
  90. Hamprecht A, Barber AE, Mellinghoff SC, Thelen P, Walther G et al. Candida auris in germany and previous exposure to foreign healthcare. Emerg Infect Dis 2019; 25:1763–1765 [View Article] [PubMed]
    [Google Scholar]
  91. Govender NP, Magobo RE, Mpembe R, Mhlanga M, Matlapeng P et al. Candida auris in South Africa, 2012-2016. Emerg Infect Dis 2018; 24:2036–2040 [View Article] [PubMed]
    [Google Scholar]
/content/journal/jmm/10.1099/jmm.0.001916
Loading
/content/journal/jmm/10.1099/jmm.0.001916
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error