Skip to content
1887

Abstract

Enteropathogenic (EPEC) strains pose a significant threat as a leading cause of severe childhood diarrhoea in developing nations. EPEC pathogenicity relies on the type III secretion system (T3SS) encoded by the locus of enterocyte effacement (LEE), facilitating the secretion and translocation of bacterial effector proteins.

While the regulatory roles of PerC (plasmid-encoded regulator) and GrlA (global regulator of LEE-activator) in expression and LEE gene activation are well-documented in the EPEC prototype strain E2348/69, understanding the variability in LEE gene expression control mechanisms among clinical EPEC isolates remains an area requiring further investigation.

This study aims to explore the diversity in LEE gene expression control mechanisms among clinical EPEC isolates through a comparative analysis of secretion profiles under defined growth conditions favouring either PerC- or GrlA-mediated activation of LEE expression.

We compared T3SS-dependent secretion patterns and promoter expression in both typical EPEC (tEPEC) and atypical EPEC (aEPEC) clinical isolates under growth conditions favouring either PerC- or GrlA-mediated activation of LEE expression. Additionally, we conducted promoter reporter activity assays, quantitative real-time PCR and Western blot experiments to assess gene expression activity.

Significant differences in T3SS-dependent secretion were observed among tEPEC and aEPEC strains, independent of LEE sequence variations or T3SS gene functionality. Notably, a clinical tEPEC isolate exhibited increased secretion levels under repressive growth conditions and in the absence of both PerC and GrlA, implicating an alternative mechanism in the activation of Ler (LEE-encoded regulator) expression.

Our findings indicate that uncharacterized LEE regulatory mechanisms contribute to phenotypic diversity among clinical EPEC isolates, though their impact on clinical outcomes remains unknown. This challenges the conventional understanding based on reference strains and highlights the need to investigate beyond established models to comprehensively elucidate EPEC pathogenesis.

Funding
This study was supported by the:
  • Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México (Award DGAPA-PAPIIT IN213516 and IN218322)
    • Principal Award Recipient: JoseLuis Puente
  • Consejo Nacional de Ciencia y Tecnología (Award 154287, 239659, and FC-2015-2/950)
    • Principal Award Recipient: JoseLuis Puente
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.001907
2024-10-21
2025-11-16

Metrics

Loading full text...

Full text loading...

/deliver/fulltext/jmm/73/10/jmm001907.html?itemId=/content/journal/jmm/10.1099/jmm.0.001907&mimeType=html&fmt=ahah

References

  1. Levine MM, Nasrin D, Acácio S, Bassat Q, Powell H et al. Diarrhoeal disease and subsequent risk of death in infants and children residing in low-income and middle-income countries: analysis of the GEMS case-control study and 12-month GEMS-1A follow-on study. Lancet Glob Health 2020; 8:e204–e214 [View Article] [PubMed]
    [Google Scholar]
  2. Croxen MA, Law RJ, Scholz R, Keeney KM, Wlodarska M et al. Recent advances in understanding enteric pathogenic Escherichia coli. Clin Microbiol Rev 2013; 26:822–880 [View Article] [PubMed]
    [Google Scholar]
  3. Lai Y, Rosenshine I, Leong JM, Frankel G. Intimate host attachment: enteropathogenic and enterohaemorrhagic Escherichia coli. Cell Microbiol 2013; 15:1796–1808 [View Article] [PubMed]
    [Google Scholar]
  4. Gaytán MO, Martínez-Santos VI, Soto E, González-Pedrajo B. Type three secretion system in attaching and effacing pathogens. Front Cell Infect Microbiol 2016; 6:129 [View Article]
    [Google Scholar]
  5. Bhatt S, Egan M, Critelli B, Kouse A, Kalman D et al. The evasive enemy: insights into the virulence and epidemiology of the emerging attaching and effacing pathogen Escherichia albertii. Infect Immun 2019; 87:e00254-18 [View Article] [PubMed]
    [Google Scholar]
  6. Milon A, Oswald E, De Rycke J. Rabbit EPEC: a model for the study of enteropathogenic Escherichia coli. Vet Res 1999; 30:203–219 [PubMed]
    [Google Scholar]
  7. Mullineaux-Sanders C, Sanchez-Garrido J, Hopkins EGD, Shenoy AR, Barry R et al. Citrobacter rodentium-host-microbiota interactions: immunity, bioenergetics and metabolism. Nat Rev Microbiol 2019; 17:701–715 [View Article] [PubMed]
    [Google Scholar]
  8. Hu J, Torres AG. Enteropathogenic Escherichia coli: foe or innocent bystander?. Clin Microbiol Infect 2015; 21:729–734 [View Article] [PubMed]
    [Google Scholar]
  9. Trabulsi LR, Keller R, Tardelli Gomes TA. Typical and atypical enteropathogenic Escherichia coli. Emerg Infect Dis 2002; 8:508–513 [View Article] [PubMed]
    [Google Scholar]
  10. Hernandes RT, Elias WP, Vieira MAM, Gomes TAT. An overview of atypical enteropathogenic Escherichia coli. . FEMS Microbiol Lett 2009; 297:137–149 [View Article] [PubMed]
    [Google Scholar]
  11. Ochoa TJ, Contreras CA. Enteropathogenic Escherichia coli infection in children. Curr Opin Infect Dis 2011; 24:478–483 [View Article] [PubMed]
    [Google Scholar]
  12. Yerushalmi G, Litvak Y, Gur-Arie L, Rosenshine I. Dynamics of expression and maturation of the type III secretion system of enteropathogenic Escherichia coli. . J Bacteriol 2014; 196:2798–2806 [View Article] [PubMed]
    [Google Scholar]
  13. Platenkamp A, Mellies JL. Environment controls LEE regulation in enteropathogenic Escherichia coli. Front Microbiol 2018; 9:1694 [View Article] [PubMed]
    [Google Scholar]
  14. Barba J, Bustamante VH, Flores-Valdez MA, Deng W, Finlay BB et al. A positive regulatory loop controls expression of the locus of enterocyte effacement-encoded regulators Ler and GrlA. J Bacteriol 2005; 187:7918–7930 [View Article] [PubMed]
    [Google Scholar]
  15. Bustamante VH, Santana FJ, Calva E, Puente JL. Transcriptional regulation of type III secretion genes in enteropathogenic Escherichia coli: Ler antagonizes H-NS-dependent repression. Mol Microbiol 2001; 39:664–678 [View Article] [PubMed]
    [Google Scholar]
  16. Elliott SJ, Sperandio V, Girón JA, Shin S, Mellies JL et al. The locus of enterocyte effacement (LEE)-encoded regulator controls expression of both LEE- and non-LEE-encoded virulence factors in enteropathogenic and enterohemorrhagic Escherichia coli. Infect Immun 2000; 68:6115–6126 [View Article] [PubMed]
    [Google Scholar]
  17. Sperandio V, Mellies JL, Delahay RM, Frankel G, Crawford JA et al. Activation of enteropathogenic Escherichia coli (EPEC) LEE2 and LEE3 operons by Ler. Mol Microbiol 2000; 38:781–793 [View Article] [PubMed]
    [Google Scholar]
  18. Franzin FM, Sircili MP. Locus of enterocyte effacement: a pathogenicity island involved in the virulence of enteropathogenic and enterohemorragic Escherichia coli subjected to a complex network of gene regulation. Biomed Res Int 2015; 2015:534738 [View Article] [PubMed]
    [Google Scholar]
  19. Furniss RCD, Clements A. Regulation of the locus of enterocyte effacement in attaching and effacing pathogens. J Bacteriol 2018; 200:e00336-17 [View Article] [PubMed]
    [Google Scholar]
  20. Turner NCA, Connolly JPR, Roe AJ. Control freaks-signals and cues governing the regulation of virulence in attaching and effacing pathogens. Biochem Soc Trans 2019; 47:229–238 [View Article] [PubMed]
    [Google Scholar]
  21. Deng W, Puente JL, Gruenheid S, Li Y, Vallance BA et al. Dissecting virulence: systematic and functional analyses of a pathogenicity island. Proc Natl Acad Sci U S A 2004; 101:3597–3602 [View Article] [PubMed]
    [Google Scholar]
  22. Gómez-Duarte OG, Kaper JB. A plasmid-encoded regulatory region activates chromosomal eaeA expression in enteropathogenic Escherichia coli. Infect Immun 1995; 63:1767–1776 [View Article] [PubMed]
    [Google Scholar]
  23. Huang LH, Syu WJ. GrlA of enterohemorrhagic Escherichia coli O157:H7 activates LEE1 by binding to the promoter region. J Microbiol Immunol Infect 2008; 41:9–16 [PubMed]
    [Google Scholar]
  24. Iyoda S, Koizumi N, Satou H, Lu Y, Saitoh T et al. The GrlR-GrlA regulatory system coordinately controls the expression of flagellar and LEE-encoded type III protein secretion systems in enterohemorrhagic Escherichia coli. . J Bacteriol 2006; 188:5682–5692 [View Article] [PubMed]
    [Google Scholar]
  25. Iyoda S, Watanabe H. ClpXP protease controls expression of the type III protein secretion system through regulation of RpoS and GrlR levels in enterohemorrhagic Escherichia coli. J Bacteriol 2005; 187:4086–4094 [View Article] [PubMed]
    [Google Scholar]
  26. Jiménez R, Cruz-Migoni SB, Huerta-Saquero A, Bustamante VH, Puente JL. Molecular characterization of GrlA, a specific positive regulator of ler expression in enteropathogenic Escherichia coli. J Bacteriol 2010; 192:4627–4642 [View Article] [PubMed]
    [Google Scholar]
  27. Laaberki MH, Janabi N, Oswald E, Repoila F. Concert of regulators to switch on LEE expression in enterohemorrhagic Escherichia coli O157:H7: interplay between Ler, GrlA, HNS and RpoS. Int J Med Microbiol 2006; 296:197–210 [View Article] [PubMed]
    [Google Scholar]
  28. Mellies JL, Platenkamp A, Osborn J, Ben-Avi L. Perc manipulates metabolism and surface antigens in enteropathogenic Escherichia coli. Front Cell Infect Microbiol 2017; 7:32 [View Article] [PubMed]
    [Google Scholar]
  29. Sirisaengtaksin N, Odem MA, Bosserman RE, Flores EM, Krachler AM. The E. coli transcription factor GrlA is regulated by subcellular compartmentalization and activated in response to mechanical stimuli. Proc Natl Acad Sci U S A 2020; 117:9519–9528 [View Article] [PubMed]
    [Google Scholar]
  30. Lara-Ochoa C, Huerta-Saquero A, Medrano-López A, Deng W, Finlay BB et al. GrlR, a negative regulator in enteropathogenic E. coli, also represses the expression of LEE virulence genes independently of its interaction with its cognate partner GrlA. Front Microbiol 2023; 14:1063368 [View Article] [PubMed]
    [Google Scholar]
  31. Lio JC-W, Syu W-J. Identification of a negative regulator for the pathogenicity island of enterohemorrhagic Escherichia coli O157:H7. J Biomed Sci 2004; 11:855–863 [View Article] [PubMed]
    [Google Scholar]
  32. Padavannil A, Jobichen C, Mills E, Velazquez-Campoy A, Li M et al. Structure of GrlR-GrlA complex that prevents GrlA activation of virulence genes. Nat Commun 2013; 4:2546 [View Article] [PubMed]
    [Google Scholar]
  33. Creasey EA, Delahay RM, Daniell SJ, Frankel G. Yeast two-hybrid system survey of interactions between LEE-encoded proteins of enteropathogenic Escherichia coli. Microbiology 2003; 149:2093–2106 [View Article] [PubMed]
    [Google Scholar]
  34. Jobichen C, Li M, Yerushalmi G, Tan YW, Mok YK et al. Structure of GrlR and the implication of its EDED motif in mediating the regulation of type III secretion system in EHEC. PLoS Pathog 2007; 3:e69 [View Article] [PubMed]
    [Google Scholar]
  35. Bustamante VH, Villalba MI, García-Angulo VA, Vázquez A, Martínez LC et al. PerC and GrlA independently regulate Ler expression in enteropathogenic Escherichia coli. Mol Microbiol 2011; 82:398–415 [View Article] [PubMed]
    [Google Scholar]
  36. Carlino MJ, Kralicek SE, Santiago SA, Sitaraman LM, Harrington AT et al. Quantitative analysis and virulence phenotypes of atypical enteropathogenic Escherichia coli (EPEC) acquired from diarrheal stool samples from a Midwest US hospital. Gut Microbes 2020; 12:1–21 [View Article] [PubMed]
    [Google Scholar]
  37. Contreras CA, Ochoa TJ, Lacher DW, DebRoy C, Navarro A et al. Allelic variability of critical virulence genes (eae, bfpA and perA) in typical and atypical enteropathogenic Escherichia coli in Peruvian children. J Med Microbiol 2010; 59:25–31 [View Article] [PubMed]
    [Google Scholar]
  38. Hazen TH, Daugherty SC, Shetty AC, Nataro JP, Rasko DA. Transcriptional variation of diverse enteropathogenic Escherichia coli isolates under virulence-inducing conditions. mSystems 2017; 2:e00024-17 [View Article] [PubMed]
    [Google Scholar]
  39. Hazen TH, Sahl JW, Fraser CM, Donnenberg MS, Scheutz F et al. Refining the pathovar paradigm via phylogenomics of the attaching and effacing Escherichia coli. Proc Natl Acad Sci U S A 2013; 110:12810–12815 [View Article] [PubMed]
    [Google Scholar]
  40. Hernandes RT, Hazen TH, Dos Santos LF, Richter TKS, Michalski JM et al. Comparative genomic analysis provides insight into the phylogeny and virulence of atypical enteropathogenic Escherichia coli strains from Brazil. PLoS Negl Trop Dis 2020; 14:e0008373 [View Article] [PubMed]
    [Google Scholar]
  41. Ingle DJ, Tauschek M, Edwards DJ, Hocking DM, Pickard DJ et al. Evolution of atypical enteropathogenic E. coli by repeated acquisition of LEE pathogenicity island variants. Nat Microbiol 2016; 1:15010 [View Article] [PubMed]
    [Google Scholar]
  42. Lacher DW, Steinsland H, Blank TE, Donnenberg MS, Whittam TS. Molecular evolution of typical enteropathogenic Escherichia coli: clonal analysis by multilocus sequence typing and virulence gene allelic profiling. J Bacteriol 2007; 189:342–350 [View Article] [PubMed]
    [Google Scholar]
  43. Narimatsu H, Ogata K, Makino Y, Ito K. Distribution of non-locus of enterocyte effacement pathogenic island-related genes in Escherichia coli carrying eae from patients with diarrhea and healthy individuals in Japan. J Clin Microbiol 2010; 48:4107–4114 [View Article] [PubMed]
    [Google Scholar]
  44. Scaletsky ICA, Aranda KRS, Souza TB, Silva NP. Adherence factors in atypical enteropathogenic Escherichia coli strains expressing the localized adherence-like pattern in HEp-2 cells. J Clin Microbiol 2010; 48:302–306 [View Article] [PubMed]
    [Google Scholar]
  45. Kenny B, Finlay BB. Protein secretion by enteropathogenic Escherichia coli is essential for transducing signals to epithelial cells. Proc Natl Acad Sci U S A 1995; 92:7991–7995 [View Article] [PubMed]
    [Google Scholar]
  46. Ochoa TJ, Ecker L, Barletta F, Mispireta ML, Gil AI et al. Age-related susceptibility to infection with diarrheagenic Escherichia coli among infants from Periurban areas in Lima, Peru. Clin Infect Dis 2009; 49:1694–1702 [View Article] [PubMed]
    [Google Scholar]
  47. Martínez-Laguna Y, Calva E, Puente JL. Autoactivation and environmental regulation of bfpT expression, the gene coding for the transcriptional activator of bfpA in enteropathogenic Escherichia coli. . Mol Microbiol 1999; 33:153–166 [View Article] [PubMed]
    [Google Scholar]
  48. Puente JL, Bieber D, Ramer SW, Murray W, Schoolnik GK. The bundle-forming pili of enteropathogenic Escherichia coli: transcriptional regulation by environmental signals. Mol Microbiol 1996; 20:87–100 [View Article] [PubMed]
    [Google Scholar]
  49. Sambrook J, Russell DW. Molecular Cloning: A Laboratory Manual, 3rd edn Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2001
    [Google Scholar]
  50. Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 2000; 97:6640–6645 [View Article] [PubMed]
    [Google Scholar]
  51. Leh H, Khodr A, Bouger M-C, Sclavi B, Rimsky S et al. Bacterial-chromatin structural proteins regulate the bimodal expression of the Locus of Enterocyte Effacement (LEE) pathogenicity island in enteropathogenic Escherichia coli. mBio 2017; 8:e00773-17 [View Article] [PubMed]
    [Google Scholar]
  52. Serapio-Palacios A, Finlay BB. Dynamics of expression, secretion and translocation of type III effectors during enteropathogenic Escherichia coli infection. Curr Opin Microbiol 2020; 54:67–76 [View Article] [PubMed]
    [Google Scholar]
  53. Connolly JPR, Finlay BB, Roe AJ. From ingestion to colonization: the influence of the host environment on regulation of the LEE encoded type III secretion system in enterohaemorrhagic Escherichia coli. Front Microbiol 2015; 6:568 [View Article] [PubMed]
    [Google Scholar]
  54. Hazen TH, Daugherty SC, Shetty A, Mahurkar AA, White O et al. RNA-Seq analysis of isolate- and growth phase-specific differences in the global transcriptomes of enteropathogenic Escherichia coli prototype isolates. Front Microbiol 2015; 6:569 [View Article] [PubMed]
    [Google Scholar]
  55. von Mentzer A, Connor TR, Wieler LH, Semmler T, Iguchi A et al. Identification of enterotoxigenic Escherichia coli (ETEC) clades with long-term global distribution. Nat Genet 2014; 46:1321–1326 [View Article]
    [Google Scholar]
  56. Weinroth MD, Bono JL. Comparative genomics of Escherichia coli serotype O55:H7 using complete closed genomes. Microorganisms 2022; 10:1545 [View Article] [PubMed]
    [Google Scholar]
  57. Hazen TH, Donnenberg MS, Panchalingam S, Antonio M, Hossain A et al. Genomic diversity of EPEC associated with clinical presentations of differing severity. Nat Microbiol 2016; 1:15014 [View Article] [PubMed]
    [Google Scholar]
  58. Coipan CE, Friesema IH, van den Beld MJC, Bosch T, Schlager S et al. Sporadic occurrence of enteroaggregative shiga toxin-producing Escherichia coli O104:H4 similar to 2011 outbreak strain. Emerg Infect Dis 2022; 28:1890–1894 [View Article] [PubMed]
    [Google Scholar]
  59. Frank C, Werber D, Cramer JP, Askar M, Faber M et al. Epidemic profile of Shiga-toxin-producing Escherichia coli O104:H4 outbreak in Germany. N Engl J Med 2011; 365:1771–1780 [View Article] [PubMed]
    [Google Scholar]
  60. Munhoz DD, Santos FF, Mitsunari T, Schüroff PA, Elias WP et al. Hybrid atypical enteropathogenic and extraintestinal Escherichia coli (aEPEC/ExPEC) BA1250 strain: a draft genome. Pathogens 2021; 10:475 [View Article] [PubMed]
    [Google Scholar]
  61. Nascimento JAS, Santos FF, Santos-Neto JF, Trovão LO, Valiatti TB et al. Molecular epidemiology and presence of hybrid pathogenic Escherichia coli among isolates from community-acquired urinary tract infection. Microorganisms 2022; 10:302 [View Article] [PubMed]
    [Google Scholar]
  62. Soysal N, Mariani-Kurkdjian P, Smail Y, Liguori S, Gouali M et al. Enterohemorrhagic Escherichia coli hybrid pathotype O80:H2 as a new therapeutic challenge. Emerg Infect Dis 2016; 22:1604–1612 [View Article] [PubMed]
    [Google Scholar]
  63. Kralicek SE, Sitaraman LM, Kuprys PV, Harrington AT, Ramakrishna B et al. Clinical manifestations and stool load of atypical enteropathogenic Escherichia coli infections in United States children and adults. Gastroenterology 2022; 163:1321–1333 [View Article] [PubMed]
    [Google Scholar]
  64. Tennant SM, Tauschek M, Azzopardi K, Bigham A, Bennett-Wood V et al. Characterisation of atypical enteropathogenic E. coli strains of clinical origin. BMC Microbiol 2009; 9:117 [View Article] [PubMed]
    [Google Scholar]
  65. Fagerli K, Omore R, Kim S, Ochieng JB, Ayers TL et al. Factors associated with typical enteropathogenic Escherichia coli infection among children <5 years old with moderate-to-severe diarrhoea in rural western Kenya, 2008-2012. Epidemiol Infect 2020; 148:e281 [View Article] [PubMed]
    [Google Scholar]
  66. Kotloff KL, Nataro JP, Blackwelder WC, Nasrin D, Farag TH et al. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): a prospective, case-control study. Lancet 2013; 382:209–222 [View Article] [PubMed]
    [Google Scholar]
  67. Ronin I, Katsowich N, Rosenshine I, Balaban NQ. A long-term epigenetic memory switch controls bacterial virulence bimodality. elife 2017; 6:e19599 [View Article] [PubMed]
    [Google Scholar]
  68. Bueris V, Huerta-Cantillo J, Navarro-Garcia F, Ruiz RM, Cianciarullo AM et al. Late establishment of the attaching and effacing lesion caused by atypical enteropathogenic Escherichia coli depends on protein expression regulated by Per. Infect Immun 2015; 83:379–388 [View Article] [PubMed]
    [Google Scholar]
  69. Santos FF, Yamamoto D, Abe CM, Bryant JA, Hernandes RT et al. The Type III Secretion System (T3SS)-translocon of Atypical Enteropathogenic Escherichia coli (aEPEC) can mediate adherence. Front Microbiol 2019; 10:1527 [View Article] [PubMed]
    [Google Scholar]
  70. Knutton S, Lloyd DR, McNeish AS. Adhesion of enteropathogenic Escherichia coli to human intestinal enterocytes and cultured human intestinal mucosa. Infect Immun 1987; 55:69–77 [View Article] [PubMed]
    [Google Scholar]
  71. Hauser AR. The type III secretion system of Pseudomonas aeruginosa: infection by injection. Nat Rev Microbiol 2009; 7:654–665 [View Article] [PubMed]
    [Google Scholar]
  72. Scheffler RJ, Bratton BP, Gitai Z. Pseudomonas aeruginosa clinical blood isolates display significant phenotypic variability. PLoS One 2022; 17:e0270576 [View Article] [PubMed]
    [Google Scholar]
  73. Sarges E do SNF, Rodrigues YC, Furlaneto IP, de Melo MVH, Brabo GL da C et al. Pseudomonas aeruginosa type III secretion system virulotypes and their association with clinical features of cystic fibrosis patients. Infect Drug Resist 2020; 13:3771–3781 [View Article] [PubMed]
    [Google Scholar]
  74. Murray TS, Ledizet M, Kazmierczak BI. Swarming motility, secretion of type 3 effectors and biofilm formation phenotypes exhibited within a large cohort of Pseudomonas aeruginosa clinical isolates. J Med Microbiol 2010; 59:511–520 [View Article] [PubMed]
    [Google Scholar]
  75. Chandler CE, Horspool AM, Hill PJ, Wozniak DJ, Schertzer JW et al. Genomic and phenotypic diversity among ten laboratory isolates of Pseudomonas aeruginosa PAO1. J Bacteriol 2019; 201:e00595-18 [View Article] [PubMed]
    [Google Scholar]
  76. Stepińska M, Trafny EA. Diverse type III secretion phenotypes among Pseudomonas aeruginosa strains upon infection of murine macrophage-like and endothelial cell lines. Microb Pathog 2008; 44:448–458 [View Article] [PubMed]
    [Google Scholar]
  77. Wareham DW, Curtis MA. A genotypic and phenotypic comparison of type III secretion profiles of Pseudomonas aeruginosa cystic fibrosis and bacteremia isolates. Int J Med Microbiol 2007; 297:227–234 [View Article] [PubMed]
    [Google Scholar]
  78. Jain M, Ramirez D, Seshadri R, Cullina JF, Powers CA et al. Type III secretion phenotypes of Pseudomonas aeruginosa strains change during infection of individuals with cystic fibrosis. J Clin Microbiol 2004; 42:5229–5237 [View Article] [PubMed]
    [Google Scholar]
  79. Wehmhöner D, Häussler S, Tümmler B, Jänsch L, Bredenbruch F et al. Inter- and intraclonal diversity of the Pseudomonas aeruginosa proteome manifests within the secretome. J Bacteriol 2003; 185:5807–5814 [View Article] [PubMed]
    [Google Scholar]
  80. Nysten J, Sofras D, Van Dijck P. One species, many faces: the underappreciated importance of strain diversity. PLoS Pathog 2024; 20:e1011931 [View Article] [PubMed]
    [Google Scholar]
  81. Levine MM, Bergquist EJ, Nalin DR, Waterman DH, Hornick RB et al. Escherichia coli strains that cause diarrhoea but do not produce heat-labile or heat-stable enterotoxins and are non-invasive. Lancet 1978; 1:1119–1122 [View Article] [PubMed]
    [Google Scholar]
  82. Grant SG, Jessee J, Bloom FR, Hanahan D. Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proc Natl Acad Sci U S A 1990; 87:4645–4649 [View Article] [PubMed]
    [Google Scholar]
  83. Mayer MP. A new set of useful cloning and expression vectors derived from pBlueScript. Gene 1995; 163:41–46 [View Article] [PubMed]
    [Google Scholar]
/content/journal/jmm/10.1099/jmm.0.001907
Loading
/content/journal/jmm/10.1099/jmm.0.001907
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An error occurred
Approval was partially successful, following selected items could not be processed due to error