Skip to content
1887

Abstract

is an invasive organism that frequently causes severe tissue damage in diabetic foot ulcers.

The characterisation of P. aeruginosa strains isolated from diabetic foot infections has not been carried out in Tunisia.

The aim was to determine the prevalence of isolated from patients with diabetic foot infections (DFIs) in Tunisia and to characterize their resistance, virulence and molecular typing.

Patients with DFIs admitted to the diabetes department of the International Hospital Centre of Tunisia, from September 2019 to April 2021, were included in this prospective study. were obtained from the wound swabs, aspiration and soft tissue biopsies during routine clinical care and were confirmed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Antimicrobial susceptibility testing, serotyping, integron and OprD characterization, virulence, biofilm production, pigment quantification, elastase activity and molecular typing were analysed in all recovered isolates by phenotypic tests, specific PCRs, sequencing, pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing.

Sixteen isolates (16.3 %) were recovered from 98 samples of 78 diabetic patients and were classified into 6 serotypes (O:11 the most frequent), 11 different PFGE patterns and 10 sequence types (three of them new ones). The high-risk clone ST235 was found in two isolates. The highest resistance percentages were observed to netilmicin (69 %) and cefepime (43.8 %). Four multidrug-resistant (MDR) isolates (25 %) were detected, three of them being carbapenem-resistant. The ST235-MDR strain harboured the In51 class 1 integron (). According to the detection of 14 genes involved in virulence or quorum sensing, 5 virulotypes were observed, including 5 -positive, 9 -positive and 2 -positive strains. The gene was truncated by IS insertion sequence in one isolate, and a deletion of 64 bp in the gene was detected in the ST235-MDR strain. Low biofilm, pyoverdine and elastase production were detected in all ; however, the -truncated strain showed a chronic infection phenotype characterized by loss of serotype-specific antigenicity, high production of phenazines and high biofilm formation.

Our study demonstrated for the first time the prevalence and the molecular characterization of strains from DFIs in Tunisia, showing a high genetic diversity, moderate antimicrobial resistance, but a high number of virulence-related traits, highlighting their pathological importance.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.001851
2024-07-04
2025-04-29
Loading full text...

Full text loading...

References

  1. Lipsky BA, Senneville É, Abbas ZG, Aragón‐Sánchez J, Diggle M et al. Guidelines on the diagnosis and treatment of foot infection in persons with diabetes (IWGDF 2019 update). Diabetes Metab Res Rev 2020; 36:e3280 [View Article] [PubMed]
    [Google Scholar]
  2. Kwon KT, Armstrong DG. Microbiology and antimicrobial therapy for diabetic foot infections. Infect Chemother 2018; 50:11–20 [View Article] [PubMed]
    [Google Scholar]
  3. Senneville É, Lipsky BA, Abbas ZG, Aragón‐Sánchez J, Diggle M et al. Diagnosis of infection in the foot in diabetes: a systematic review. Diabetes Metab Res Rev 2020; 36:e3281 [View Article] [PubMed]
    [Google Scholar]
  4. Magiorakos A-P, Srinivasan A, Carey RB, Carmeli Y, Falagas ME et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012; 18:268–281 [View Article] [PubMed]
    [Google Scholar]
  5. Lipsky BA, Berendt AR, Cornia PB, Pile JC, Peters EJG et al. Infectious Diseases Society of America clinical practice guideline for the diagnosis and treatment of diabetic foot infections. Clin Infect Dis 2012; 54:e132-73 [View Article] [PubMed]
    [Google Scholar]
  6. Vardakas KZ, Horianopoulou M, Falagas ME. Factors associated with treatment failure in patients with diabetic foot infections: an analysis of data from randomized controlled trials. Diabetes Res Clin Pract 2008; 80:344–351 [View Article] [PubMed]
    [Google Scholar]
  7. Gadepalli R, Dhawan B, Sreenivas V, Kapil A, Ammini AC et al. A clinico-microbiological study of diabetic foot ulcers in an Indian tertiary care hospital. Diabetes Care 2006; 29:1727–1732 [View Article] [PubMed]
    [Google Scholar]
  8. Hatipoglu M, Mutluoglu M, Turhan V, Uzun G, Lipsky BA et al. Causative pathogens and antibiotic resistance in diabetic foot infections: a prospective multi-center study. J Diabet Complicat 2016; 30:910–916 [View Article] [PubMed]
    [Google Scholar]
  9. Serra R, Grande R, Butrico L, Rossi A, Settimio UF et al. Chronic wound infections: the role of Pseudomonas aeruginosa and Staphylococcus aureus. Expert Rev Anti Infect Ther 2015; 13:605–613 [View Article] [PubMed]
    [Google Scholar]
  10. Henig O, Pogue JM, Martin E, Hayat U, Ja’ara M et al. The impact of multidrug-resistant organisms on outcomes in patients with diabetic foot infections. Open Forum Infect Dis 2020; 7:faa161 [View Article] [PubMed]
    [Google Scholar]
  11. Uçkay I, Gariani K, Pataky Z, Lipsky BA. Diabetic foot infections: state-of-the-art. Diabet Obes Metab 2014; 16:305–316 [View Article] [PubMed]
    [Google Scholar]
  12. Saseedharan S, Sahu M, Chaddha R, Pathrose E, Bal A et al. Epidemiology of diabetic foot infections in a reference tertiary hospital in India. Braz J Microbiol 2018; 49:401–406 [View Article] [PubMed]
    [Google Scholar]
  13. Pang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv 2019; 37:177–192 [View Article] [PubMed]
    [Google Scholar]
  14. Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis 2018; 18:318–327 [View Article] [PubMed]
    [Google Scholar]
  15. Del Barrio-Tofiño E, López-Causapé C, Oliver A. Pseudomonas aeruginosa epidemic high-risk clones and their association with horizontally-acquired β-lactamases: 2020 update. Int J Antimicrob Agents 2020; 56:106196 [View Article] [PubMed]
    [Google Scholar]
  16. Kos VN, Déraspe M, McLaughlin RE, Whiteaker JD, Roy PH et al. The resistome of Pseudomonas aeruginosa in relationship to phenotypic susceptibility. Antimicrob Agents Chemother 2015; 59:427–436 [View Article] [PubMed]
    [Google Scholar]
  17. Kocsis B, Toth A, Gulyas D, Ligeti B, Katona K et al. Acquired qnrVC1 and blaNDM-1 resistance markers in an international high-risk Pseudomonas aeruginosa ST773 clone. J Med Microbiol 2019; 68:336–338 [View Article] [PubMed]
    [Google Scholar]
  18. Woodford N, Turton JF, Livermore DM. Multiresistant Gram-negative bacteria: the role of high-risk clones in the dissemination of antibiotic resistance. FEMS Microbiol Rev 2011; 35:736–755 [View Article] [PubMed]
    [Google Scholar]
  19. Silva FM, Carmo MS, Silbert S, Gales AC. SPM-1-producing Pseudomonas aeruginosa: analysis of the ancestor relationship using multilocus sequence typing, pulsed-field gel electrophoresis, and automated ribotyping. Microb Drug Resist 2011; 17:215–220 [View Article] [PubMed]
    [Google Scholar]
  20. Martínez JL, Baquero F. Interactions among strategies associated with bacterial infection: pathogenicity, epidemicity, and antibiotic resistance. Clin Microbiol Rev 2002; 15:647–679 [View Article] [PubMed]
    [Google Scholar]
  21. Jordana-Lluch E, Barceló IM, Escobar-Salom M, Estévez MA, Zamorano L et al. The balance between antibiotic resistance and fitness/virulence in Pseudomonas aeruginosa: an update on basic knowledge and fundamental research. Front Microbiol 2023; 14:1270999 [View Article] [PubMed]
    [Google Scholar]
  22. Qin S, Xiao W, Zhou C, Pu Q, Deng X et al. Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduct Target Ther 2022; 7:199 [View Article] [PubMed]
    [Google Scholar]
  23. Alonso B, Fernández-Barat L, Di Domenico EG, Marín M, Cercenado E et al. Correction to: characterization of the virulence of Pseudomonas aeruginosa strains causing ventilator-associated pneumonia. BMC Infect Dis 2020; 20:951 [View Article] [PubMed]
    [Google Scholar]
  24. Babiker RA, Elsharief UA, Mohammed NA. Pseudomonas aeruginosa in diabetic foot infections, Gadarif Diabetic Center, Sudan (2017-2018). J Trop Med Health 2019; 3:140 [View Article]
    [Google Scholar]
  25. Yakout MA, Abdelwahab IA. Diabetic foot ulcer infections and Pseudomonas aeruginosa biofilm production during the COVID-19 pandemic. J Pure Appl Microbiol 2022; 16:138–146 [View Article]
    [Google Scholar]
  26. Ertugrul BM, Lipsky BA, Ture M, Sakarya S. Risk factors for infection with Pseudomonas aeruginosa in diabetic foot infections. J Am Podiatr Med Assoc 2017; 107:483–489 [View Article] [PubMed]
    [Google Scholar]
  27. Bellazreg F, Guigua A, Ferjani A, Hattab Z, Boukadida J et al. Correlation between superficial and intra-operative specimens in diabetic foot infections: results of a cross-sectional Tunisian study. Afr Health Sci 2019; 19:2505–2514 [View Article] [PubMed]
    [Google Scholar]
  28. Ben Moussa M, Khalfallah M, Boutiba Ben Boubaker I, Nouira R, Slim A et al. Bacteriological and therapeutic profile of diabetic foot infection: a prospective study of 100 patients. Tunis Med 2016; 94:95–101 [PubMed]
    [Google Scholar]
  29. Hammami M, Lahiani D, Guemri B, Maalej M, Elleuch E et al. Les infections du pied diabétique: étude de 136cas. Annales d’Endocrinologie 2015; 76:552 [View Article]
    [Google Scholar]
  30. Arfaoui A, Sallem RB, Fernández-Fernández R, Eguizábal P, Dziri R et al. Methicillin-resistant Staphylococcus aureus from diabetic foot infections in a Tunisian hospital with the first detection of MSSA CC398-t571. Antibiotics 2022; 11:1755 [View Article] [PubMed]
    [Google Scholar]
  31. CLSI Performance standards for antimicrobial susceptibility testing. In CLSI Supplement M100, 32nd edn. Clinical and Laboratory Standards Institute; 2022
    [Google Scholar]
  32. Estepa V, Rojo-Bezares B, Torres C, Sáenz Y. Genetic lineages and antimicrobial resistance in Pseudomonas spp. isolates recovered from food samples. Foodborne Pathog Dis 2015; 12:486–491 [View Article] [PubMed]
    [Google Scholar]
  33. Fethi M, Rojo-Bezares B, Arfaoui A, Dziri R, Chichón G et al. High prevalence of GES-5 variant and co-expression of VIM-2 and GES-45 among clinical Pseudomonas aeruginosa strains in Tunisia. Antibiotics 2023; 12:1394 [View Article] [PubMed]
    [Google Scholar]
  34. Heras J, Domínguez C, Mata E, Pascual V, Lozano C et al. GelJ--a tool for analyzing DNA fingerprint gel images. BMC Bioinform 2015; 16:270 [View Article] [PubMed]
    [Google Scholar]
  35. Curran B, Jonas D, Grundmann H, Pitt T, Dowson CG. Development of a multilocus sequence typing scheme for the opportunistic pathogen Pseudomonas aeruginosa. J Clin Microbiol 2004; 42:5644–5649 [View Article] [PubMed]
    [Google Scholar]
  36. Wolter DJ, Hanson ND, Lister PD. Insertional inactivation of oprD in clinical isolates of Pseudomonas aeruginosa leading to carbapenem resistance. FEMS Microbiol Lett 2004; 236:137–143 [View Article] [PubMed]
    [Google Scholar]
  37. Gutiérrez O, Juan C, Cercenado E, Navarro F, Bouza E et al. Molecular epidemiology and mechanisms of carbapenem resistance in Pseudomonas aeruginosa isolates from Spanish hospitals. Antimicrob Agents Chemother 2007; 51:4329–4335 [View Article] [PubMed]
    [Google Scholar]
  38. Ellington MJ, Kistler J, Livermore DM, Woodford N. Multiplex PCR for rapid detection of genes encoding acquired metallo-beta-lactamases. J Antimicrob Chemother 2007; 59:321–322 [View Article] [PubMed]
    [Google Scholar]
  39. Hong SS, Kim K, Huh JY, Jung B, Kang MS et al. Multiplex PCR for rapid detection of genes encoding class A carbapenemases. Ann Lab Med 2012; 32:359–361 [View Article] [PubMed]
    [Google Scholar]
  40. Estepa V, Rojo-Bezares B, Torres C, Sáenz Y. Faecal carriage of Pseudomonas aeruginosa in healthy humans: antimicrobial susceptibility and global genetic lineages. FEMS Microbiol Ecol 2014; 89:15–19 [View Article] [PubMed]
    [Google Scholar]
  41. Ruiz-Roldán L, Rojo-Bezares B, de Toro M, López M, Toledano P et al. Antimicrobial resistance and virulence of Pseudomonas spp. among healthy animals: concern about exolysin ExlA detection. Sci Rep 2020; 10:11667 [View Article] [PubMed]
    [Google Scholar]
  42. Peeters E, Nelis HJ, Coenye T. Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates. J Microbiol Methods 2008; 72:157–165 [View Article] [PubMed]
    [Google Scholar]
  43. Pearson JP, Pesci EC, Iglewski BH. Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J Bacteriol 1997; 179:5756–5767 [View Article] [PubMed]
    [Google Scholar]
  44. Anantharajah A, Buyck JM, Sundin C, Tulkens PM, Mingeot-Leclercq M-P et al. Salicylidene acylhydrazides and hydroxyquinolines act as inhibitors of type three secretion systems in Pseudomonas aeruginosa by distinct mechanisms. Antimicrob Agents Chemother 2017; 61:e02566-16 [View Article] [PubMed]
    [Google Scholar]
  45. Farhat N, McClung D, Nagel J. Risk factors for Pseudomonas aeruginosa in diabetic foot infections. Open Forum Infect Dis 2017; 4:S108 [View Article] [PubMed]
    [Google Scholar]
  46. Veve MP, Mercuro NJ, Sangiovanni RJ, Santarossa M, Patel N. Prevalence and predictors of Pseudomonas aeruginosa among hospitalized patients With diabetic foot infections. Open Forum Infect Dis 2022; 9:fac297 [View Article] [PubMed]
    [Google Scholar]
  47. Uçkay I, Lebowitz D, Kressmann B, von Dach E, Lipsky BA et al. Pseudomonal diabetic foot infections: vive la différence?. Mayo Clin Proc Innov Qual Outcomes 2022; 6:250–256 [View Article] [PubMed]
    [Google Scholar]
  48. Bouharkat B, Tir Touil A, Mullié C, Chelli N, Meddah B. Bacterial ecology and antibiotic resistance mechanisms of isolated resistant strains from diabetic foot infections in the north west of Algeria. J Diabetes Metab Disord 2020; 19:1261–1271 [View Article] [PubMed]
    [Google Scholar]
  49. Choucair J, Saliba G, Chehata N, Nasnas R, Saad NR. Epidemiology of the diabetic foot infection in a tertiary care hospital in the Lebanon: a retrospective study between 2000 and 2011. J Infect Dis Ther 2018; 06:382 [View Article]
    [Google Scholar]
  50. Vatan A, Saltoglu N, Yemisen M, Balkan II, Surme S et al. Association between biofilm and multi/extensive drug resistance in diabetic foot infection. Int J Clin Pract 2018; 72:e13060 [View Article] [PubMed]
    [Google Scholar]
  51. Abd-El Mohsen SA. Diabetic foot ulcer infection rate, bacterial etiology and antibiotic susceptibility: a cross sectional study. Biomed Pharmacol J 2020; 13:11–17 [View Article]
    [Google Scholar]
  52. Hefni A-H, Ibrahim A-MR, Attia KM, Moawad MM, El-ramah AF et al. Bacteriological study of diabetic foot infection in Egypt. J Arab Soc Med Res 2013; 8:26 [View Article]
    [Google Scholar]
  53. Aydin SA, Pinar HT, Burhan AM. Isolation and distribution of microorganisms causing wound infections in diabetic patients in Kirkuk city, Iraq. Indian J Public Health Res Dev 2020; 11:1678–1682 [View Article]
    [Google Scholar]
  54. Lipsky BA. Diabetic foot infections: current treatment and delaying the “post-antibiotic era.”. Diabetes Metab Res Rev 2016; 32:246–253 [View Article] [PubMed]
    [Google Scholar]
  55. Uçkay I, Berli M, Sendi P, Lipsky BA. Principles and practice of antibiotic stewardship in the management of diabetic foot infections. Curr Opin Infect Dis 2019; 32:95–101 [View Article] [PubMed]
    [Google Scholar]
  56. Omolase CO, Adeleke OE, Afolabi AO, Afolabi OT. Self medication amongst general outpatients in a nigerian community hospital. Ann Ib Postgrad Med 2007; 5:64–67 [View Article] [PubMed]
    [Google Scholar]
  57. Mendes JJ, Marques-Costa A, Vilela C, Neves J, Candeias N et al. Clinical and bacteriological survey of diabetic foot infections in Lisbon. Diabetes Res Clin Pract 2012; 95:153–161 [View Article] [PubMed]
    [Google Scholar]
  58. Surme S, Saltoglu N, Kurt AF, Karaali R, Balkan II et al. Changing bacterial etiology and antimicrobial resistance profiles as prognostic determinants of diabetic foot infections: a ten-year retrospective cohort study. Surg Infect 2022; 23:667–674 [View Article] [PubMed]
    [Google Scholar]
  59. Zubair M, Malik A, Ahmad J. Clinico-microbiological study and antimicrobial drug resistance profile of diabetic foot infections in North India. Foot 2011; 21:6–14 [View Article] [PubMed]
    [Google Scholar]
  60. Trivedi U, Parameswaran S, Armstrong A, Burgueno-Vega D, Griswold J et al. Prevalence of multiple antibiotic resistant infections in diabetic versus nondiabetic wounds. J Pathog 2014; 2014:173053 [View Article] [PubMed]
    [Google Scholar]
  61. Zhang J, Chu Y, Wang P, Ji X, Li X et al. Clinical outcomes of multidrug resistant Pseudomonas aeruginosa infection and the relationship with type III secretion system in patients with diabetic foot. Int J Low Extrem Wounds 2014; 13:205–210 [View Article] [PubMed]
    [Google Scholar]
  62. Goldufsky J, Wood SJ, Jayaraman V, Majdobeh O, Chen L et al. Pseudomonas aeruginosa uses T3SS to inhibit diabetic wound healing. Wound Repair Regen 2015; 23:557–564 [View Article] [PubMed]
    [Google Scholar]
  63. Lister PD, Wolter DJ, Hanson ND. Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev 2009; 22:582–610 [View Article] [PubMed]
    [Google Scholar]
  64. Pottier M, Gravey F, Castagnet S, Auzou M, Langlois B et al. A 10-year microbiological study of Pseudomonas aeruginosa strains revealed the circulation of populations resistant to both carbapenems and quaternary ammonium compounds. Sci Rep 2023; 13:2639 [View Article] [PubMed]
    [Google Scholar]
  65. El Amin N, Giske CG, Jalal S, Keijser B, Kronvall G et al. Carbapenem resistance mechanisms in Pseudomonas aeruginosa: alterations of porin OprD and efflux proteins do not fully explain resistance patterns observed in clinical isolates. APMIS 2005; 113:187–196 [View Article] [PubMed]
    [Google Scholar]
  66. Ruiz-Roldán L, Bellés A, Bueno J, Azcona-Gutiérrez JM, Rojo-Bezares B et al. Pseudomonas aeruginosa isolates from Spanish children: occurrence in faecal samples, antimicrobial resistance, virulence, and molecular typing. Biomed Res Int 2018; 2018:8060178 [View Article] [PubMed]
    [Google Scholar]
  67. Rojo-Bezares B, Estepa V, Cebollada R, de Toro M, Somalo S et al. Carbapenem-resistant Pseudomonas aeruginosa strains from a Spanish hospital: characterization of metallo-beta-lactamases, porin OprD and integrons. Int J Med Microbiol 2014; 304:405–414 [View Article] [PubMed]
    [Google Scholar]
  68. Valenza G, Tuschak C, Nickel S, Krupa E, Lehner-Reindl V et al. Prevalence, antimicrobial susceptibility, and genetic diversity of Pseudomonas aeruginosaas intestinal colonizer in the community. Infect Dis 2015; 47:654–657 [View Article] [PubMed]
    [Google Scholar]
  69. Oliver A, Mulet X, López-Causapé C, Juan C. The increasing threat of Pseudomonas aeruginosa high-risk clones. Drug Resist Updat 2015; 21–22:41–59 [View Article] [PubMed]
    [Google Scholar]
  70. Koutsogiannou M, Drougka E, Liakopoulos A, Jelastopulu E, Petinaki E et al. Spread of multidrug-resistant Pseudomonas aeruginosa clones in a university hospital. J Clin Microbiol 2013; 51:665–668 [View Article] [PubMed]
    [Google Scholar]
  71. Omar A, Wright JB, Schultz G, Burrell R, Nadworny P. Microbial biofilms and chronic wounds. Microorganisms 2017; 5:9 [View Article] [PubMed]
    [Google Scholar]
  72. Abednezhad A, Bakhshi B, Moghadam NA, Faraji N, Derakhshan-Nezhad E et al. Characteristics of multiresistant Pseudomonas aeruginosa isolates from burn patients in Iran. Acta Microbiol Immunol Hung 2023; 70:29–37 [View Article] [PubMed]
    [Google Scholar]
  73. Recio R, Viedma E, González-Bodí S, Villa J, Orellana et al. Clinical and bacterial characteristics of Pseudomonas aeruginosa affecting the outcome of patients with bacteraemic pneumonia. Int J Antimicrob Agents 2021; 58:106450 [View Article] [PubMed]
    [Google Scholar]
  74. Gómez-Zorrilla S, Juan C, Cabot G, Camoez M, Tubau F et al. Impact of multidrug resistance on the pathogenicity of Pseudomonas aeruginosa: in vitro and in vivo studies. Int J Antimicrob Agents 2016; 47:368–374 [View Article] [PubMed]
    [Google Scholar]
  75. Sánchez-Diener I, Zamorano L, López-Causapé C, Cabot G, Mulet X et al. Interplay among resistance profiles, high-risk clones, and virulence in the Caenorhabditis elegans Pseudomonas aeruginosa infection model. Antimicrob Agents Chemother 2017; 61:e01586-17 [View Article] [PubMed]
    [Google Scholar]
  76. Sánchez-Diener I, Zamorano L, Peña C, Ocampo-Sosa A, Cabot G et al. Weighting the impact of virulence on the outcome of Pseudomonas aeruginosa bloodstream infections. Clin Microbiol Infect 2020; 26:351–357 [View Article] [PubMed]
    [Google Scholar]
  77. Richard E, Darracq B, Loot C, Mazel D. Unbridled integrons: a matter of host factors. Cells 2022; 11:925 [View Article] [PubMed]
    [Google Scholar]
  78. Shahi SK, Kumar A. Isolation and genetic analysis of multidrug resistant bacteria from diabetic foot ulcers. Front Microbiol 2015; 6:1464 [View Article] [PubMed]
    [Google Scholar]
  79. Al-Kraety IAA, Al-Muhanna SG, Almayali EJB. Molecular investigating class I II and III integrons in Pseudomonas aeruginosa isolated from diabetic foot infection patients in Najaf province. Eur J Mol Clin Med 2020; 7:457–463
    [Google Scholar]
  80. Rojo-Bezares B, Cavalié L, Dubois D, Oswald E, Torres C et al. Characterization of carbapenem resistance mechanisms and integrons in Pseudomonas aeruginosa strains from blood samples in a French hospital. J Med Microbiol 2016; 65:311–319 [View Article] [PubMed]
    [Google Scholar]
  81. Cho HH, Kwon GC, Kim S, Koo SH. Distribution of Pseudomonas-derived cephalosporinase and metallo-β-lactamases in carbapenem-resistant Pseudomonas aeruginosa isolates from Korea. J Microbiol Biotechnol 2015; 25:1154–1162 [View Article] [PubMed]
    [Google Scholar]
  82. Martinez E, Marquez C, Ingold A, Merlino J, Djordjevic SP et al. Diverse mobilized class 1 integrons are common in the chromosomes of pathogenic Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother 2012; 56:2169–2172 [View Article] [PubMed]
    [Google Scholar]
  83. Khademi F, Ashrafi SS, Neyestani Z, Vaez H, Sahebkar A. Prevalence of class I, II and III integrons in multidrug-resistant and carbapenem-resistant Pseudomonas aeruginosa clinical isolates. Gene Rep 2021; 25:101407 [View Article]
    [Google Scholar]
  84. Bellés A, Bueno J, Rojo-Bezares B, Torres C, Javier Castillo F et al. Characterisation of VIM-2-producing Pseudomonas aeruginosa isolates from lower tract respiratory infections in a Spanish hospital. Eur J Clin Microbiol Infect Dis 2018; 37:1847–1856 [View Article] [PubMed]
    [Google Scholar]
  85. Feltner JB, Wolter DJ, Pope CE, Groleau M-C, Smalley NE et al. LasR variant cystic fibrosis isolates reveal an adaptable quorum-sensing hierarchy in Pseudomonas aeruginosa. mBio 2016; 7:e01513-16 [View Article] [PubMed]
    [Google Scholar]
  86. Kostylev M, Kim DY, Smalley NE, Salukhe I, Greenberg EP et al. Evolution of the Pseudomonas aeruginosa quorum-sensing hierarchy. Proc Natl Acad Sci U S A 2019; 116:7027–7032 [View Article] [PubMed]
    [Google Scholar]
  87. Groleau MC, Taillefer H, Vincent AT, Constant P, Déziel E. Pseudomonas aeruginosa isolates defective in function of the LasR quorum sensing regulator are frequent in diverse environmental niches. Environ Microbiol 2022; 24:1062–1075 [View Article] [PubMed]
    [Google Scholar]
  88. Ruiz-Roldán L, Rojo-Bezares B, Lozano C, López M, Chichón G et al. Occurrence of Pseudomonas spp. in raw vegetables: molecular and phenotypical analysis of their antimicrobial resistance and virulence-related traits. Int J Mol Sci 2021; 22:12626 [View Article] [PubMed]
    [Google Scholar]
  89. Chichón G, López M, de Toro M, Ruiz-Roldán L, Rojo-Bezares B et al. Spread of Pseudomonas aeruginosa ST274 clone in different niches: resistome, virulome, and phylogenetic relationship. Antibiotics 2023; 12:1561 [View Article] [PubMed]
    [Google Scholar]
  90. Dekimpe V, Déziel E. Revisiting the quorum-sensing hierarchy in Pseudomonas aeruginosa: the transcriptional regulator RhlR regulates LasR-specific factors. Microbiology 2009; 155:712–723 [View Article] [PubMed]
    [Google Scholar]
  91. Kaszab E, Szoboszlay S, Dobolyi C, Háhn J, Pék N et al. Antibiotic resistance profiles and virulence markers of Pseudomonas aeruginosa strains isolated from composts. Bioresour Technol 2011; 102:1543–1548 [View Article] [PubMed]
    [Google Scholar]
  92. Hauser AR. The type III secretion system of Pseudomonas aeruginosa: infection by injection. Nat Rev Microbiol 2009; 7:654–665 [View Article] [PubMed]
    [Google Scholar]
  93. Bradbury RS, Roddam LF, Merritt A, Reid DW, Champion AC. Virulence gene distribution in clinical, nosocomial and environmental isolates of Pseudomonas aeruginosa. J Med Microbiol 2010; 59:881–890 [View Article] [PubMed]
    [Google Scholar]
  94. Juan C, Peña C, Oliver A. Host and pathogen biomarkers for severe Pseudomonas aeruginosa infections. J Infect Dis 2017; 215:S44–S51 [View Article] [PubMed]
    [Google Scholar]
  95. Horna G, Amaro C, Palacios A, Guerra H, Ruiz J. High frequency of the exoU+/exoS+ genotype associated with multidrug-resistant “high-risk clones” of Pseudomonas aeruginosa clinical isolates from Peruvian hospitals. Sci Rep 2019; 9:10874 [View Article] [PubMed]
    [Google Scholar]
  96. Morales-Espinosa R, Delgado G, Espinosa LF, Isselo D, Méndez JL et al. Fingerprint analysis and identification of strains ST309 as a potential high risk clone in a Pseudomonas aeruginosa population isolated from children with bacteremia in Mexico City. Front Microbiol 2017; 8:313 [View Article] [PubMed]
    [Google Scholar]
  97. Ozer EA, Nnah E, Didelot X, Whitaker RJ, Hauser AR. The population structure of Pseudomonas aeruginosa is characterized by genetic isolation of exoU+ and exoS+ lineages. Genome Biol Evol 2019; 11:1780–1796 [View Article] [PubMed]
    [Google Scholar]
  98. Song Y, Mu Y, Wong N-K, Yue Z, Li J et al. Emergence of hypervirulent Pseudomonas aeruginosa pathotypically armed with co-expressed T3SS effectors ExoS and ExoU. hLife 2023; 1:44–56 [View Article]
    [Google Scholar]
  99. Yi H, Sun Q, Wang X, Liu Y, Feng N et al. Study on virulence genes of type III secretion system of Pseudomonas aeruginosa in Xinjiang Province. Clin Lab 2021; 67:67 [View Article] [PubMed]
    [Google Scholar]
  100. Meirelles LA, Newman DK. Both toxic and beneficial effects of pyocyanin contribute to the lifecycle of Pseudomonas aeruginosa. Mol Microbiol 2018; 110:995–1010 [View Article] [PubMed]
    [Google Scholar]
  101. Dietrich LEP, Teal TK, Price-Whelan A, Newman DK. Redox-active antibiotics control gene expression and community behavior in divergent bacteria. Science 2008; 321:1203–1206 [View Article] [PubMed]
    [Google Scholar]
  102. Cabeen MT. Stationary phase-specific virulence factor overproduction by a lasR mutant of Pseudomonas aeruginosa. PLoS One 2014; 9:e88743 [View Article] [PubMed]
    [Google Scholar]
  103. Soto-Aceves MP, Cocotl-Yañez M, Servín-González L, Soberón-Chávez G. The Rhl quorum-sensing system is at the top of the regulatory hierarchy under phosphate-limiting conditions in Pseudomonas aeruginosa PAO1. J Bacteriol 2021; 203:e00475-20 [View Article] [PubMed]
    [Google Scholar]
  104. Mottola C, Mendes JJ, Cristino JM, Cavaco-Silva P, Tavares L et al. Polymicrobial biofilms by diabetic foot clinical isolates. Folia Microbiol 2016; 61:35–43 [View Article] [PubMed]
    [Google Scholar]
  105. Karballaei Mirzahosseini H, Hadadi-Fishani M, Morshedi K, Khaledi A. Meta-analysis of biofilm formation, antibiotic resistance pattern, and biofilm-related genes in Pseudomonas aeruginosa isolated from clinical samples. Microb Drug Resist 2020; 26:815–824 [View Article] [PubMed]
    [Google Scholar]
  106. Ciofu O, Tolker-Nielsen T. Tolerance and resistance of Pseudomonas aeruginosa biofilms to antimicrobial agents-how P. aeruginosa can escape antibiotics. Front Microbiol 2019; 10:913 [View Article] [PubMed]
    [Google Scholar]
  107. Mah TF, O’Toole GA. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 2001; 9:34–39 [View Article] [PubMed]
    [Google Scholar]
/content/journal/jmm/10.1099/jmm.0.001851
Loading
/content/journal/jmm/10.1099/jmm.0.001851
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error