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Abstract

Pseudomonas aeruginosa is one of the most versatile bacteria with renowned pathogenicity and extensive drug resistance. 
The diverse habitats of this bacterium include fresh, saline and drainage waters, soil, moist surfaces, taps, showerheads, 
pipelines, medical implants, nematodes, insects, plants, animals, birds and humans. The arsenal of virulence factors 
produced by P. aeruginosa includes pyocyanin, rhamnolipids, siderophores, lytic enzymes, toxins and polysaccharides. All 
these virulent elements coupled with intrinsic, adaptive and acquired antibiotic resistance facilitate persistent coloniza-
tion and lethal infections in different hosts. To date, treating pulmonary diseases remains complicated due to the chronic 
secondary infections triggered by hospital-acquired P. aeruginosa. On the contrary, this bacterium can improve plant 
growth by suppressing phytopathogens and insects. Notably, P. aeruginosa is one of the very few bacteria capable of trans-
kingdom transmission and infection. Transfer of P. aeruginosa strains from plant materials to hospital wards, animals to 
humans, and humans to their pets occurs relatively often. Recently, we have identified that plant-associated P. aeruginosa 
strains could be pathologically similar to clinical isolates. In this review, we have highlighted the genomic and metabolic 
factors that facilitate the dominance of P. aeruginosa across different biological kingdoms and the varying roles of this 
bacterium in plant and human health.

INTRODUCTION
Pseudomonas aeruginosa is one of the ‘ESKAPE’ pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneu-
moniae, Acinetobacter baumannii, P. aeruginosa and Enterobacter species) noted for their ability to thwart commonly 
used antibiotics [1]. The US Centers for Disease Control and Prevention, World Health Organization and UK Public 
Health England have declared the multi-drug resistant (MDR) P. aeruginosa a serious threat [2, 3]. This bacterium 
is one of the leading causes of hospital-acquired lethal infections [4, 5]. It is one of the most intractable organisms 
colonizing the lungs of patients with cystic fibrosis (CF), a fatal genetic disease [6]. P. aeruginosa-associated lethality 
usually occurs in critically sick and immunocompromised individuals. However, the healthy population is not exempted 
from folliculitis, endocarditis, osteomyelitis and keratitis caused by P. aeruginosa [7–9]. Although there are antibiotics 
and other treatment strategies to combat such infections, the organism’s inherent and acquired resistance renders 
many such anti-pseudomonal regimens ineffective [10, 11]. This review provides an overview of P. aeruginosa and its 
(1) habitat, (2) genomic and metabolic versatility, (3) virulence factors, (4) role in healthcare systems and (5) role in 
agricultural systems.
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NATURAL HABITATS OF P. AERUGINOSA
P. aeruginosa is an aerobic, non-spore-forming, monoflagellated, Gram-negative rod. It is a ubiquitous micro-organism 
commonly found in water, soil and sewage as well as on the surfaces of plants, animals, insects, fruits and vegetables [12–15]. 
Natural bodies of water such as oceans, lakes, rivers and sites of urban drainage are major sources of the bacterium [16–18]. 
A high incidence of P. aeruginosa has been recorded in agricultural soil, particularly in the rhizosphere regions with rich 
root exudation [19–21]. The presence of P. aeruginosa on crops has been reported since the 1970s [13, 22]. The occur-
rence of MDR P. aeruginosa in the open ocean was reported for the first time at the University of Tokyo, Japan [16]. MDR  
P. aeruginosa was recently isolated from edible plants such as cucumber, tomato, eggplant and chili [21].

P. aeruginosa’s ability to thrive in aqueous environments has made it a problem in the hospital setting, where it is often 
isolated from soaps, ointments, disinfectants, irrigation fluids and eye drops [23]. The simple nutritional needs allow the 
organism to grow even on negligible impurities in aqueous solutions found in hospitals. Specifically, a study found that 
P. aeruginosa was able to not only grow but also thrive in the distilled water of mist therapy units [24]. Tap water is also 
a major source of nosocomial infections when it is inadvertently used to prepare solutions to be used in that setting [25]. 
The prevalence of P. aeruginosa in tap water likely results from the colonization of showerheads, faucets and sinks, from 
which it has also been detected [26]. Additionally, P. aeruginosa has also been isolated from holy water, aerators, baby baths, 
hot tubs, swimming pools, contact lens solutions, cosmetics and even the insole of sneakers [27–29]. In short, aqueous 
and moist environments seem to be the natural and preferred reservoirs for P. aeruginosa and, when contaminated, can be 
potential sources of infection.

METABOLIC VERSATILITY
Like other Pseudomonads, renowned for their nutritional versatility, P. aeruginosa has simple nutritional needs and can use 
a multitude of organic compounds for its growth [30]. As a chemo-organotroph, P. aeruginosa can metabolize a variety of 
simple and complex organic substrates as a sole carbon and energy source. If a mixture of diverse carbon sources is offered 
to this bacterium, carbon catabolite repression is activated to facilitate an orderly use of substrates based on survival needs 
[31, 32]. P. aeruginosa can shunt its tricarboxylic acid (TCA) pathway to gain biochemical protection against aminoglycoside 
antibiotics [33]. It also harbours multiple metabolite-specific transporters that allow efficient uptake of nutrients, almost 
sequentially [34, 35]. The well-organized and hierarchical utilization of metabolites is the primary strategy supporting  
P. aeruginosa’s omnipresence [32]. Such metabolic flexibilities help P. aeruginosa strains to flourish in multiple hosts and 
diverse environments. This bacterium can tolerate various physical conditions, including severe drought, salinity, hypoxia, 
heavy metal pollution and hydrocarbon contamination [36–38]. P. aeruginosa is a catalase- and oxidase-positive bacterium. 
Although it cannot ferment lactose and its metabolism is primarily respiratory, it can also grow under anaerobic conditions 
by using nitrate as a terminal electron acceptor or fermenting arginine [39]. Additionally, P. aeruginosa strains produce 
a fruity or grape-like odour due to the production of 2-aminoacetophenone [40]. This compound is one of the volatile 
biomarkers of P. aeruginosa infection [41]. Nearly 70 different compounds have been detected in the core volatilome of 
clinical P. aeruginosa, which can be potential diagnostic biomarkers [42]. In particular, a high level of volatile hydrogen 
cyanide in the nose-exhaled breath of cystic fibrosis (CF) patients helps in the non-invasive detection of P. aeruginosa 
infection in the lower airways [43].

GENOMIC VERSATILITY
P. aeruginosa is one of the few bacterial species with a highly adaptable genome (5.5–7.75 Mbp) [44, 45]. The largest P. aeruginosa 
genome that has been sequenced as of today belongs to an industrial strain, RW109 [45]. P. aeruginosa has multiple genes that 
help to utilize a wide range of carbon and nitrogen sources. The genome encodes numerous regulatory two-component systems 
(TCSs), which support environmental adaptability [46–48]. CbrA/B is one of the TCSs in the P. aeruginosa genome that regulates 
different catabolic pathways supporting its nutritional versatility [49–51]. The MifS/MifR system allows selective utilization of 
alpha-ketoglutarate [34]. Nearly 17 respiratory dehydrogenases, including three NADH dehydrogenases and succinate dehydro-
genase, have been identified in the P. aeruginosa genome [52]. Moreover, P. aeruginosa constantly acquires new genes through 
horizontal gene transfer (HGT) [53–57]. The addition of such new genetic elements accounts for the genomic plasticity of this 
bacterium. A Liverpool epidemic strain of P. aeruginosa, LESB58, acquired 596 new genes indicative of its adaptive evolution 
[58]. The reference strain of P. aeruginosa, PAO1, maintained in different laboratories, showed wide genotypic and phenotypic 
variations despite being derived from the same parent subline [59]. Similarly, diverse genotypic and phenotypic traits in the  
P. aeruginosa population within a particular host have been documented [60–62].

Comparative genomic analyses have shown that 6.6 % of the P. aeruginosa genome comprises essential core genes, while the rest 
of its genome varies from strain to strain [63]. These strain-specific fragments were termed regions of genomic plasticity (RGPs) 
[54]. Over 100 RGPs have been identified since then [44, 64]. During the past few decades, the P. aeruginosa genome has acquired 
many antibiotic-resistance genes through HGT that are integrated at the RGPs [44, 54, 64, 65]. Several studies have shown that 
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aminoglycoside and β-lactam resistance genes in P. aeruginosa were acquired by HGT through different plasmids and integrons 
[66–69]. During long-term human infections, P. aeruginosa loses its virulence-related genes as an adaptive strategy to evade the 
host immune system [70]. In a nutshell, the complexity of the P. aeruginosa genome reflects its adaptive evolution to sustain in 
diverse ecosystems [46].

INTER-KINGDOM TRANSMISSION AND SURVIVAL OF P. AERUGINOSA
Despite its ubiquitous nature, P. aeruginosa been scarce in pristine environments [71–73]. The environmental occurrence of  
P. aeruginosa has shown a strong correlation with human and animal activities [71, 74]. Farmyard manure and composts poten-
tially disseminate P. aeruginosa strains into agricultural settings [12, 75]. In addition, contaminated water bodies efficiently 
distribute P. aeruginosa into diverse channels [76]. Nearly 100 different strains of antibiotic-resistant P. aeruginosa have been 
isolated from a freshwater spring contaminated with domestic sewage [77]. Domestic and hospital sewages are major dissemina-
tors of pathogenic and drug-resistant P. aeruginosa. Specifically, hospital wastewater carries numerous strains of extensively 
drug-resistant P. aeruginosa, which could potentially contaminate other water bodies when managed poorly [78, 79]. Wastewater 
treatment lagoons also harbour virulent P. aeruginosa strains that eventually get dispersed into several rural catchments [75].

Using improperly treated wastewater for irrigation purposes transmits millions of P. aeruginosa cells into agricultural 
ecosystems [80–82]. As a result, P. aeruginosa has been isolated in farms from many edible crops, including wheat, chili, 
pepper, tomato, ginger, sugar cane, chickpea, Aloe vera and Achyranthes [83–92]. This potentially puts the farm animals and 
farmworkers at risk of P. aeruginosa exposure. Additionally, fresh vegetables, including cabbages, lettuces, tomatoes, carrots 
and sweet potatoes in more than 50 % of the tested supermarkets had P. aeruginosa contamination [93]. The constant spread 
of P. aeruginosa in hospitals through contaminated vegetables and flowers was identified and reported decades ago [94, 95]. 
Similarly, we identified that the P. aeruginosa strains present in the endophytic and rhizospheric niches of cucumber, tomato, 
eggplant and chili harvested directly from agricultural farms carry virulence traits critical for human infection [21].

P. aeruginosa PA14 isolated from the burns ward at Mercy Hospital, Pittsburgh, USA, has virulence genes essential for plant 
infections [94, 96, 97]. This human-associated strain caused local and systemic disease in Arabidopsis and sweet basil [98, 99] 
and extensive rot of cucumber, lettuce, potato and tomato [14, 100]. Several P. aeruginosa strains have been isolated from 
farm animals and their milk, reflecting the risk of human transmission during milk and meat consumption [101–104]. 
Zoonotic and zooanthroponotic transmissions of drug-resistant P. aeruginosa are predicted to generate severe public health 
risks [105, 106]. In Brazil, a carbapenem-resistant P. aeruginosa sequence type 233 was detected in a hospitalized man, which 
was also identified in his pet dog and household settings [106]. This report indicates the dissemination of clinical strains of 
P. aeruginosa between the human–animal–environment interfaces [106]. Similarly, there was a case report in the UK on the 
transmission of a Liverpool epidemic P. aeruginosa strain from a CF patient to a pet cat [107]. Inter-kingdom transmission of 
P. aeruginosa strains between plants, animals and humans continues to occur in a vicious cycle (Fig. 1).

P. AERUGINOSA VIRULENCE FACTORS
The success of P. aeruginosa across the kingdoms is often driven by the arsenal of virulence factors released by this bacterium 
irrespective of the niche, including its quorum-sensing (QS) molecules, and major secondary metabolites such as pyocyanin, 
rhamnolipids and siderophores (pyochelin, and pyoverdine), polysaccharides, toxins and lytic enzymes [108–113]. These virulence 
factors collectively contribute to the inter-kingdom pathogenicity of P. aeruginosa.

Pyocyanin
Pyocyanin, the signature metabolite of P. aeruginosa, is a blue–green, water-soluble phenazine pigment [114, 115]. Phenazine 
compounds are commonly found in nature and are produced by bacteria such as Streptomyces and Pseudomonas. Pyocyanin 
(1-hydroxy-5-methyl-phenazine) is derived from chorismate, an intermediate in the biosynthesis of aromatic amino acids in 
plants and micro-organisms [116, 117]. Pyocyanin and other phenazine compounds appear to contribute to the virulence and 
competitive fitness of the producing organisms [118–121]. Specifically, pyocyanin disrupts the beating of human cilia and inhibits 
mammalian cell respiration thereby helping P. aeruginosa colonize the host lungs [122]. Pyocyanin is a zwitterion that crosses the 
host cell membrane and oxidizes NADH and NADPH molecules, generating reactive oxygen species (ROS) [115, 123, 124]. The 
ROS further contributes to cytotoxicity in the respiratory, vascular and central nervous systems of the eukaryotic hosts [125]. ROS 
cytotoxicity also inhibits lymphocyte proliferation and epidermal cell growth in eukaryotes. Pyocyanin also plays a major role 
in the antimicrobial, antibiofilm and anti-QS activities of P. aeruginosa [126–129]. Pyocyanin extracted from P. aeruginosa can 
inhibit the growth of several human pathogens, including Staphylococcus aureus, K. pneumonia, Enterococcus faecalis, Burkholderia 
cenocepacia and Escherichia coli [130]. P. aeruginosa pyocyanin also inhibits the growth of soil-borne pathogens, which protect 
the plants from several bacterial and fungal plant diseases [131, 132]. Pyocyanin released by endophytic P. aeruginosa strains can 
elicit induced systemic resistance of the host plant against various fungal pathogens [133, 134].
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Rhamnolipids
Rhamnolipids are amphipathic biosurfactants comprising a hydrophilic rhamnose moiety and a hydrophobic lipid moiety 
[135]. These are very potent virulence factors capable of destroying polymorphonuclear leukocytes, inhibiting phagocytosis 
by macrophages, and disrupting the mucociliary clearance and epithelial tight junctions, leading to paracellular infiltration of  
P. aeruginosa [136–139]. P. aeruginosa rhamnolipids show antimicrobial activity against several human pathogens including 
Staphylococcus aureus, E. aerogenes, Streptococcus faecalis, Serratia marcescens, K. pneumoniae and Proteus vulgaris [140]. P. 
aeruginosa can inhibit the growth of phytopathogens, including Xanthomonas oryzae, Fusarium oxysporum, Pythium aphani-
dermatum and Rhizoctonia solani [141]. This phytoprotection is in part due to the production of rhamnolipids [142, 143]. In 
addition, rhamnolipids protect the plants against sucking pests such as green peach aphids [144, 145].

Siderophores
Siderophores, in general, are extracellular compounds that have a high affinity for iron, are produced under iron-deficient condi-
tions, and have been known to stimulate and increase bacterial growth rate [111]. P. aeruginosa releases two different siderophores, 
pyoverdine and pyochelin [110, 111]. Pyoverdine is a water-soluble, fluorescent pigment that gives a yellowish-green appearance 
to P. aeruginosa, while pyochelin is a poorly water-soluble thiazoline derivative [146]. Production of siderophores during infec-
tion has been implicated in bacterial virulence as it contributes to an increased growth rate [147]. It has been demonstrated that 
pyoverdine-deficit mutants lacked virulence in mice models, which suggests the significance of siderophores in P. aeruginosa 
pathogenicity [146]. P. aeruginosa also appears to limit the growth of other bacteria by effectively competing for iron [148].  
P. aeruginosa siderophores can also inhibit the growth of fungal phytopathogens such as Fusarium, Trichoderma, Alternaria and 
Macrophomina [149].

Lytic enzymes
P. aeruginosa uses its lytic enzymes to disrupt cell membrane integrity and cause vascular permeability, resulting in organ damage 
[108, 150–155]. Haemolysin, in particular, is produced by pathogens to lyse red blood cells and enable tissue invasion [156]. P. 
aeruginosa haemolysins can alter the host lung physiology and induce morbidity and mortality [155, 157]. P. aeruginosa LipA 
and LipC lipases and phospholipases A2 and C break down the membrane lipids and cause host cell death [158].

P. aeruginosa excretes a myriad of extracellular proteolytic enzymes, including LasA protease and elastase, LasB elastase, alkaline 
proteinase, staphylolytic endopeptidase, protease IV, PASP, LepA and aminopeptidase [159–161]. P. aeruginosa proteases destroy 
host immunoglobulins and are the major virulence factors during ocular, pulmonary, burn and bacteraemia infections [162–164]. 
LasA protease, in particular, contributes to the anti-staphylococcal activity of P. aeruginosa [165].

Fig. 1. From Farm to Human: Inter-Kingdom Transmission and Antibiotic Resistance Cycle. This figure portrays the progression of bacteria from 
animals to humans, highlighting the role of antibiotic use and environmental pathways. The human, animal, and feces symbolize how they serve 
as reservoirs for bacteria, potentially affecting health through contact or pollution. A syringe suggests antibiotic overuse in livestock and humans. 
Plants in the center suggest environmental and human transmission via crops. The image underscores human contributions to antibiotic resistance, 
including medication misuse and agricultural practices. The inset emphasizes soil and root colonization by resistant bacteria, posing challenges for 
infection control.
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Toxins
P. aeruginosa releases Type III secretory effectors such as exoenzymes (Exo) A, S, T, U and Y [166–169]. ExoA, ExoS and ExoT 
are ADP-ribosyltransferases and the most common toxins involved in the dissemination of P. aeruginosa into host organs [170]. 
Interestingly, P. aeruginosa strains mostly harbour either ExoS or ExoU, which indicates the dichotomy between the two toxins [171].  
P. aeruginosa ExoA causes respiratory failure, metabolic acidosis, hepatocellular necrosis, hypofibrinogenaemia, serosal haemorrhages, 
haemorrhagic skin necrosis and cytotoxicity in animals and humans [166, 172–174]. ExoU is a phospholipase associated with fatal 
pneumonia during lung infections and contributes to high mortality [175]. The ExoU and ExoS toxins collectively increase the ability 
of different P. aeruginosa strains to persist in lung tissues [167]. ExoY is a nucleotidyl cyclase that increases endothelial hyperperme-
ability during chronic lung infections [175]. ExoT protects P. aeruginosa cells from host defence mechanisms such as phagocytosis 
and facilitates host invasion and colonization [176].

Polysaccharides
P. aeruginosa produces three major polysaccharides, namely, alginate, pellicle polysaccharide (Pel) and polysaccharide synthesis locus 
(Psl) [177–179]. Readers are referred to Franklin et al. [180] for the biosynthesis and regulation of these polysaccharides. Polysac-
charides. in general, protect bacterial cells from biotic and abiotic stress including the host defence response [181–183]. The mucoid 
phenotype associated with P. aeruginosa in the lungs of CF patients during chronic infection is due to alginate production [184]. 
Alginate promotes a biofilm mode of growth, which in turn not only protects the bacterium from antimicrobial agents but also helps 
it to escape phagocytosis by host macrophages [185]. The mucoid conversion of P. aeruginosa is due to the constant bombardment 
of ROS released from activated host neutrophils [186]. The non-mucoid P. aeruginosa strains produce Pel, and Psl polysaccharides, 
which also play a predominant role in biofilm formation [184, 187, 188].

Quorum sensing systems
P. aeruginosa harbours four interconnected quorum sensing (QS) systems such as acyl-homoserine lactone (las), rhamnolipid (rhl), 
Pseudomonas quinolone signal (pqs) and integrated quinolone signal (iqs) [109, 189–192]. The las, rhl and pqs systems concomitantly 
coordinate the maturation and differentiation of P. aeruginosa biofilms [193, 194]. Additionally, the expression of all the virulence 
factors mentioned above is synchronously regulated by the P. aeruginosa QS systems in a population density-dependent manner 
[195, 196]. Other phenotypic traits controlled by these QS systems include motility (swarming, swimming, and twitching), nutrient 
metabolism, stress response and antibiotic resistance [197–199]. A significant decline in P. aeruginosa virulence and cytotoxicity is 
noted in QS-deficient mutants [200]. P. aeruginosa QS systems are the central regulatory networks that control its virulence, adaptability 
and versatility [112, 201].

Antibiotic resistance
Unlike other bacteria, P. aeruginosa employs multiple strategies to evade antibiotics [202]. For instance, P. aeruginosa has a 
restricted permeability on its outer membrane, preventing the antibiotics from penetrating the bacterial cell membrane and 
reaching intracellular targets [203]. This bacterium also possesses numerous efflux systems on its cell membrane to pump 
diverse antibiotics out of its cell. These efflux systems fall under five major families, including resistance–nodulation–division, 
ATP-binding cassette, small multidrug resistance, major facilitator superfamily, and multidrug and toxic compound extru-
sion [204, 205]. Concomitant overexpression of multiple efflux systems has been documented in P. aeruginosa, making it an 
extremely drug-resistant (XDR) bacterium [65, 206, 207]. These efflux pumps have also contributed to the pathogenicity of P. 
aeruginosa apart from conferring drug resistance [208, 209]. P. aeruginosa can release antibiotic-degrading enzymes targeting 
specific drugs including penicillin, cephalosporins, streptomycin, aztreonam, kanamycin, neomycin, tobramycin, netilmicin, 
gentamicin and amikacin [210–212]. All the above-said mechanisms contribute to intrinsic drug resistance in P. aeruginosa.

This bacterium also exhibits biofilm- and polysaccharide-mediated adaptive resistance mechanisms [213]. The biofilms 
and polysaccharides are phenotypic adaptations that protect P. aeruginosa cells from antibiotics [214]. The biofilm-forming  
P. aeruginosa being least sensitive to antibiotics causes chronic pulmonary inflammation and is the primary cause of mortality 
in CF patients [215]. This bacterium also evolves resistance to new antibiotics by acquiring antibiotic resistance genes through 
HGT from the same or different bacterial species in the environment [216]. The XDR strains of P. aeruginosa are considered 
a severe public health risk and hospitalized patients are frequently predisposed to such strains [2, 217–219].

P. AERUGINOSA IN HUMAN HEALTH
P. aeruginosa is an opportunistic pathogen that could cause devastating infections in immunocompromised individuals and 
hospitalized patients. This bacterium is one of the common causes of ventilator-associated pneumonia (VAP) and catheter-
associated urinary tract infections (CAUTIs) in hospitals. Patients with pulmonary and immunodeficiency diseases and 
those who have recently undergone organ transplants and invasive surgeries are highly prone to P. aeruginosa infection and 
associated lethality. P. aeruginosa can cause meningitis, endocarditis, septicaemia, bacteraemia and other fatal complications 
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in hospitalized individuals. However, it can also cause folliculitis, otitis, keratitis, osteomyelitis and endocarditis in individuals 
without pre-existing clinical conditions.

Infections in healthy individuals
P. aeruginosa infections in healthy individuals often result from contact with contaminated water or solutions or after 
sustaining some form of external trauma such as a puncture wound [24, 220]. Folliculitis, for example, is an infection of the 
hair follicles caused by bacteria, including P. aeruginosa, which can occur after bathing in swimming pools, hot tubs and 
whirlpools that are not adequately treated with chlorine [8, 221–223]. Individuals involved in aquatic sports as well as those 
swimming and bathing in contaminated waters can also develop superficial infections of the ear canal known as external 
otitis [224–226]. P. aeruginosa is the causal agent of chronic suppurative otitis media, while acute infection is caused by 
other pathogens [227]. Chronic suppurative otitis media in the paediatric population could lead to permanent hearing loss 
if left untreated [228]. Minor injury to the eye or cornea, often related to the use of contact lenses, especially extended-wear 
lenses, can predispose an individual to eye infections, or keratitis, with P. aeruginosa [9, 229–231]. Contact lens solutions that 
are contaminated or even tap water used to handle contact lenses can all serve as potential sources of infection [232, 233]. 
Nevertheless, P. aeruginosa-related ocular infections could also occur in non-contact lens wearers [7, 234]. Furthermore,  
P. aeruginosa contamination in eye cosmetics has also led to corneal ulceration [235, 236].

Osteomyelitis, or infection of the bone, has also been reported, especially in children after incurring puncture wounds in the feet, 
with the source of the infection often being the sole or inner pad of the sneaker that was worn at the time of the injury [237, 238].  
P. aeruginosa-mediated osteomyelitis is predominant mainly in intravenous drug users [239, 240]. Nevertheless, chronic P. aeruginosa 
cervical spine osteomyelitis was documented in a young female with no history of medical illness or intravenous drug usage [241].

One of the most severe P. aeruginosa infections that can affect an otherwise healthy person is endocarditis or inflammation 
of the inner lining of the heart, often requiring replacement of the affected valve [242, 243]. The majority of P. aeruginosa 
endocarditis infections occur in intravenous drug users as the drugs are often mixed with contaminated water leading to 
bacteraemia and endocarditis [244, 245]. P. aeruginosa-related endocarditis, however, can also occur in burns and open-heart 
surgery patients [246, 247]. Recently, a US deployed military service member in Southwest Asia encountered cardiac arrest 
induced by an MDR P. aeruginosa [248].

Infections in immunocompromised patients
P. aeruginosa is an opportunistic human pathogen that readily exploits any deficiency in the host immune system to mount an 
infection. Since it is often intractable and resistant to a wide range of antibiotics, it represents a very serious problem not only 
for critically ill individuals, such as those in the hospital setting and intensive care units but also for immunocompromised 
patients [249]. P. aeruginosa has often been isolated as one of the most common pathogens causing septicaemia in patients 
with primary immunodeficiency [250, 251]. Several factors predispose the host to P. aeruginosa bacteraemia, including taking 
broad-spectrum antibiotics, receiving chemotherapy, as well as being an acquired immune deficiency syndrome (AIDS), 
leukaemia, cancer, diabetes, bone marrow or organ transplant patient [252–257].

Although P. aeruginosa bacteraemia has been reported in patients with AIDS [258–260], it is not the most common pathogen 
in such cases [261, 262]. P. aeruginosa, however, is one of the leading causes of pneumonia [263, 264] and a prevalent 
respiratory pathogen in patients with AIDS, where it often leads to chronic and intractable infections [265, 266]. Before 1968,  
P. aeruginosa bacteraemia in cancer patients resulted in ∼80–90 % fatalities [267–269]. The development potent antipseu-
domonal drugs has dramatically improved outcomes and survival rates in these patients, with cure rates increasing from 
60% in the 1970s to 80% in the 2000s, provided that the infection is quickly and effectively treated [270–273]. Although 
prognosis has improved, the incidence of P. aeruginosa infections in cancer patients in the 1990s is between 5 to 12 % [274], 
and a 2008 report noted a 20% incidence of carbapenem-resistant P. aeruginosa infections among these patients [275]. P. 
aeruginosa is assoicated with a 22 % incidence of bloodstream infections in patients with haematological malignancies [276]. 
The recurrence of P. aeruginosa-associated bacteraemia is a rare but significantly increases mortality risk [277].

Hospital-acquired infections
P. aeruginosa is one of the leading pathogens accounting for 10–13 % of hospital-acquired infections (HAIs), with inci-
dences as high as 23 % reported in intensive care units [278–283]. P. aeruginosa was the sixth most frequently isolated 
pathogen, accounting for 7.1 % of all healthcare-associated infections in a survey of 183 US hospitals from 10 different 
states [5]. P. aeruginosa outbreaks in hospitals are disastrous due to horizontal transmission from patient to patient 
[284]. Notably, HAIs caused by metallo-β-lactamase (MBL)-producing P. aeruginosa generate higher mortality than 
its non-MBL counterparts [284]. P. aeruginosa pneumonia accounts for the majority of HAIs [5, 285]. This organism 
can easily colonize endotracheal tubes and mechanical ventilators and as such one of the leading causes of VAP, second 
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only to Staphylococcus aureus [285–287]. VAP has been associated with high mortality rates that exceed those of other 
types of pneumonia, such as community-acquired, healthcare-associated or hospital-acquired pneumonia [287, 288]. 
Mortality rates have been reported to be higher than 70 % when P. aeruginosa or Acinetobacter spp. are the causative 
agents [286–288]. Similarly, patients with lung transplants are highly prone to P. aeruginosa infections that might lead 
to bronchiolitis obliterans syndrome leading to lung failure and death [289]. Catheter-associated urinary tract infection 
(CAUTI) accounts for 40 % of the total HAIs [227]. P. aeruginosa is the second most commonly identified pathogen and 
is responsible for 11 % of CAUTIs [5, 285, 290].

P. aeruginosa is also a leading cause of HAIs in burn units primarily colonizing burn wounds but also responsible for pneu-
monia, bacteraemia and urinary tract infections [291–293]. On admission, generally, Staphylococcus aureus and coagulase-
negative staphylococci predominate the wounds of burns patients but the incidence of P. aeruginosa quickly increases 
during the first week of admission and continues to rise with time, often surpassing the incidence of other micro-organisms 
[294–296]. Burn wound infections with P. aeruginosa are especially problematic since they are correlated with bacteraemia, 
a high rate of sepsis and mortality [245, 291, 293]. Other HAIs caused by P. aeruginosa include endocarditis, meningitis, 
bacteraemia, and gastrointestinal and surgical site infections [5, 272, 285]. It causes devastating implant-associated infections 
which would put the patients at very high risk unless they are regularly administered with antibiotics [297]. P. aeruginosa 
outbreaks have also been reported during clinical diagnostic procedures such as endoscopic bronchoscopy and cholangio-
pancreatography [298–300].

Secondary infections in pulmonary disorders
P. aeruginosa is the most common and clinically relevant pathogen found in CF patients [301–304]. It is estimated that over 
80 % of CF patients will be infected with this bacterium by the time they reach adulthood [304]. Chronic infection of the 
airways with P. aeruginosa and the inflammation that follows represent a major problem for CF patients as the lungs steadily 
deteriorate auguring very poor overall prognosis and high mortality rates [305, 306]. CF is an autosomal, recessive genetic 
disease affecting about 30 000 people in the USA and about 70 000 worldwide [304]. This disease mainly affects Caucasian 
populations of European descent and is caused by mutations in the CF transmembrane conductance regulator gene located 
in the long arm of chromosome VII [307–309]. It leads to impairment of the mucociliary clearance apparatus setting the 
stage for persistent and chronic bacterial infections that are a hallmark of airway disease in CF patients. The conditions 
present in CF airways, namely, dehydrated, thick mucus coupled with impaired mucociliary clearance, provide an ideal 
environment that is conducive to colonization by several pathogens [301, 310]. Staphylococcus aureus, for example, often the 
first to colonize the respiratory tract of CF patients, is common in children less than 10 years old and is responsible for infant 
morbidity and mortality in the pre-antibiotic era [301, 304]. Few studies have shown the coexistence of Staphylococcus aureus 
and P. aeruginosa during CF, which worsens the patient’s health much faster than usual [311–313]. Haemophilus influenzae 
is another common pathogen and is predominantly found in young children [301, 310]. Other less common pathogens, 
such as Stenotrophomonas maltophilia, Alcaligenes xylosoxidans and B. cenocepacia complex, have also been isolated from 
the respiratory tract of CF patients [304]. Though found in in less than 10 % of the CF patients, B. cenocepacia has the worst 
prognosis [304].

Examining the microbiome in the sputum of CF patients has shown that many (18/19) carry pathogenic fungal species 
of Aspergillus, Candida, Cryptococcus and Exophiala, among others [314]. Fungal infections are not uncommon in CF 
patients and can occur in association with other microorganisms [314, 315]. P. aeruginosa, however, remains the primary 
pathogen associated with morbidity and mortality in CF patients and is more frequently found in adults [305, 306]. An 
essential feature of P. aeruginosa infections is the tendency of the bacteria to convert into a mucoid phenotype in the lungs 
of CF patients [316]. This seminal study highlighted the importance of mucoid strains of P. aeruginosa, which produce 
a thick, protective alginate biofilm, in the decline of lung function in CF patients. The presence of mucoid P. aeruginosa 
was linked to more severe lung disease, increased morbidity, and a higher risk of mortality, marking a significant shift in 
understanding the pathophysiology of CF lung infections and the management of these infections in CF patients. This 
mucoid phenotype plays a very important role in helping the bacterium evade the host immune system [186, 301]. Alginate 
overproduction exacerbates the already detrimental conditions of the CF lungs leading to further blocking of the airways 
and inexorable death.

P. aeruginosa is increasingly recognized as an important pathogen colonizing the lungs of individuals afflicted with chronic 
respiratory diseases such as diffuse panbronchiolitis and chronic obstructive pulmonary disease (COPD). COPD, the third 
leading cause of death in the USA [317], is a progressive lung disease that makes it increasingly difficult to breathe and is 
primarily caused by cigarette smoking or exposure to smoke [318]. Bacterial and viral exacerbations are the main cause of 
hospitalizations and mortality in patients with COPD [319, 320]. In particular, P. aeruginosa is responsible for 5–10 % of 
COPD exacerbations [321–323], with such infections being associated with hyper-mutability, antibiotic resistance, a poor 
prognosis and an increase in morbidity and mortality [324, 325].



8

Ambreetha et al., Journal of Medical Microbiology 2024;73:001791

P. AERUGINOSA IN PLANT HEALTH
P. aeruginosa has both beneficial and pathogenic interactions with field crops. This organism plays a significant role in growth 
promotion in healthy plants and protects the host from pests and diseases [326–333]. Despite these reports, this bacterium 
has been identified as the causal agent of rot and wilt in a wide range of plants, including melon, ginseng, chickpea and 
maize [14, 22, 334–340].

Plant growth promotion
P. aeruginosa can solubilize the complex minerals in the soil, which supplies simple nutrients such as zinc, phosphorous and 
potassium to the associated plants [341–345]. Mineral-solubilizing P. aeruginosa strains have been identified to increase 
the growth of green gram, tomato, okra and spinach [346, 347]. An endophytic strain of P. aeruginosa, AL2-14B, isolated 
from a medicinal plant, Achyranthes aspera, was able to increase the nitrogen, phosphorous and potassium contents of its 
host by 3.8, 12.59 and 19.15 %, respectively, apart from increasing growth and antioxidant activity [86]. Plants generally 
cannot uptake organic forms of nitrogen or convert them into inorganic forms. Bacteria like P. aeruginosa convert the 
organic form of nitrogen into ammonia [86]. For instance, a P. aeruginosa strain, RRALC3, was identified to enhance the 
carbon and nitrogen contents of Pongamia in a degraded forest ecosystem [329]. Yet another strain, P. aeruginosa PGP, 
isolated from garbage soil, was capable of increasing the nitrogen and phosphorous contents of Indian mustard by 40 and 
100 %, respectively [348]. Also, seed treatment with P. aeruginosa can significantly increase the dry biomass of Abelmoschus 
esculentus (okra), Lycopersicon esculentum (tomato), and Amaranthus sp. (African spinach) [327]. A substantial increase in 
the germination percentage, shoot, root length, leaf area and number of pods has been noted in mung beans treated with  
P. aeruginosa [349]. Additionally, a salinity-tolerant P. aeruginosa FP6 improved seed germination, seedling vigour and plant 
height in cowpeas [350], and a multi-metal-resistant strain of P. aeruginosa KUJM isolated from a sewage treatment plant 
promoted seed germination in lentils [351].

Plant protection against abiotic stress
P. aeruginosa can protect the host plants from drought, salinity, heavy metal contamination and insecticide-mediated cyto-
toxicity. P. aeruginosa strains have alleviated salinity, heat and drought stresses in soybean, mung bean, sorghum and tomato 
[352–355]. In particular, P. aeruginosa GGRJ21 inoculation alleviated drought stress in mung bean plants by upregulating 
the stress-responsive genes and inducing the production of cellular osmolytes and antioxidant enzymes [354]. Despite 
drought stress, maize seed treatment with P. aeruginosa Pa2 increased plant biomass, leaf area, and shoot and root length 
[356]. Moreover, the inoculated maize plants had relatively high levels of water content, proline and sugars compared with 
the uninoculated controls [356]. P. aeruginosa PF23 treatment protected sunflower crops from high-concentration salt stress 
[357]. Using an insecticide-tolerant P. aeruginosa PS1 as a biofertilizer augmented the growth of green gram plants cultivated 
in insecticide-contaminated soil [347]. Additionally, P. aeruginosa can also reduce the toxic hexavalent chromium, Cr(VI), in 
the soil into a non-toxic form, Cr(III), thereby protecting the plants from phytotoxic effects [358]. P. aeruginosa OSG41 has 
been recommended as a bio-inoculant to increase nodulation efficiency, grain yield and protein content of chickpeas grown 
in chromium-contaminated soil [359]. Also, a cadmium-resistant strain of P. aeruginosa has helped in rhizoremediation of 
cadmium contamination in black gram-cultivated fields [360]. Yet another study has recommended a multi-metal-resistant 
P. aeruginosa KUJM for bioremediation of heavy metal-contaminated agricultural soil due to its xenobiotic resistance and 
plant-growth-promoting abilities [351].

Plant protection against biotic stress
P. aeruginosa can protect plants from biotic stress (pests and pathogens) through its volatile and non-volatile metabolites 
including phenazines, rhamnolipid, siderophores, salicylic acid and hydrogen cyanide [134, 142, 361–363]. A phenazine-
producing P. aeruginosa strain, CMR12a, effectively controlled Rhizoctonia root rot in beans compared to a phenazine-deficit 
mutant [364]. Pyocyanin, the most-studied phenazine of P. aeruginosa, is a redox-active secondary metabolite that can 
inhibit the growth of soil pathogens [126, 131, 132]. This compound also elicits the plant immune system against diverse 
fungal pathogens [133, 134].

Rhamnolipids released by P. aeruginosa help in the killing of several insects and pathogens [142–145]. P. aeruginosa rham-
nolipid causes 80 % mortality in aphids within a day and has been recommended as a bio-insecticide [144]. Rhamnolipids 
can also lyse fungal zoospores and prevent the mycelial growth of pathogenic fungi [365]. Several studies have shown 
that 0.005–1 mg ml−1 of rhamnolipid from P. aeruginosa effectively triggers plant immunity against many phytopathogens, 
including Leptosphaeria maculans, Botrytis cinerea, Brassica napus, Colletotrichum orbiculare, Pseudomonas syringae and 
Alternaria alternata [142, 143, 366–369]. Also, 10–20 mg ml−1 of this metabolite has been recommended for direct inhibition 
of Xanthomonas campestris, Fusarium solani and Corticium invisum [369]. A drastic decline in biocontrol ability has been 
observed in pyocyanin- and rhamnolipid-deficit mutants of P. aeruginosa [370].
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The P. aeruginosa siderophores, pyoverdine and pyochelin, impede the growth of fungal pathogens such as Fusarium, Trichoderma, 
Alternaria and Macrophomina [149]. In addition, P. aeruginosa can also inhibit the plant cell wall degrading enzyme produced by a 
fungal pathogen, Agroathelia rolfsii (Sclerotium rolfsii), thereby reducing the severity of stem rot in groundnut plants [371].

Plant pathogenicity
The plant pathogenicity of P. aeruginosa has yet to be studied as extensively as its human pathogenicity. However, this bacterium 
has been identified as an opportunistic pathogen causing diseases in a wide range of plants, including ginseng, wheat, maize, melon, 
calla lily, chickpea and tobacco [14, 22, 334–340]. P. aeruginosa-mediated fruit rot disease has occurred in India during round melon 
cultivation [337]. Similarly, P. aeruginosa was identified as the causal agent of bacterial leaf spots in tobacco seedlings in China [372]. 
Furthermore, this organism has caused collar rot in lily and root rot in ginseng and inhibited maize seed germination [338–340]. A 
QS-regulated compound, l-2-amino-4-methoxy-trans-3-butenoic acid, released by rhizospheric P. aeruginosa was identified as the 
inhibitor of seed germination [373]. P. aeruginosa PA14 mucD mutants had a significantly lower ability to infect Arabidopsis than the 
wild strain, indicating the role of serine protease in plant pathogenicity [374]. Nevertheless, most of the P. aeruginosa isolates from 
agricultural ecosystems have so far been plant-beneficial rather than plant-pathogenic.

CONCLUDING REMARKS
P. aeruginosa uses its metabolic and genomic versatility to survive in multiple ecosystems and establish host infections. It is quite inter-
esting to find controversial reports on the association of P. aeruginosa with the plant kingdom. Since it is an opportunistic bacterium, 
it might support plant growth or cause an infection based on the circumstances. The anti-microbial and anti-insecticidal compounds 
released by P. aeruginosa for their own defence might unintentionally protect the plants from pests and diseases. However, the ability 
of this bacterium to cause numerous infections and lethality in the animal kingdom is indisputable. Understanding the key factors that 
facilitate the rapid transmission and survival of P. aeruginosa in diverse habitats is essential for regulating the environment-to-host, 
host-to-environment and host-to-host dissemination of this bacterium.
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