1887

Abstract

A domestic short hair cat () suffering from a purulent wound infection resulting from a dog bite was sampled for bacterial culture and isolation as the wound had been unresponsive to prolonged antimicrobial treatment. A mycoplasma was isolated from the wound. Whole genome sequencing of the isolate was performed using short-read Illumina and long-read Oxford Nanopore chemistry, and the organism was identified as . Comparison of the genome sequence of the isolate to a reference genome sequence (canid isolate) identified the loss of several key bacterial factors involved in genome editing, as well the insertion of several novel ORFs most closely related to those found in other canine mycoplasmas, specifically and . This is only the second known report of disease caused by in a non-canid species, and the first report of it infecting and causing clinical disease in a cat.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.001788
2024-01-03
2024-12-02
Loading full text...

Full text loading...

/deliver/fulltext/jmm/73/1/jmm001788.html?itemId=/content/journal/jmm/10.1099/jmm.0.001788&mimeType=html&fmt=ahah

References

  1. Abrahamian FM. Dog bites: bacteriology, management, and prevention. Curr Infect Dis Rep 2000; 2:446–453 [View Article] [PubMed]
    [Google Scholar]
  2. Abrahamian FM, Goldstein EJC. Microbiology of animal bite wound infections. Clin Microbiol Rev 2011; 24:231–246 [View Article] [PubMed]
    [Google Scholar]
  3. Griffin GM, Holt DE. Dog-bite wounds: bacteriology and treatment outcome in 37 cases. J Am Anim Hosp Assoc 2001; 37:453–460 [View Article] [PubMed]
    [Google Scholar]
  4. Talan DA, Citron DM, Abrahamian FM, Moran GJ, Goldstein EJC. Bacteriologic analysis of infected dog and cat bites. N Engl J Med 1999; 340:85–92 [View Article]
    [Google Scholar]
  5. Walker RD, Walshaw R, Riggs CM, Mosser T. Recovery of two Mycoplasma species from abscesses in a cat following bite wounds from a dog. J Vet Diagn Invest 1995; 7:154–156 [View Article] [PubMed]
    [Google Scholar]
  6. Klein S, Klotz M, Eigenbrod T. First isolation of Mycoplasma canis from human tissue samples after a dog bite. New Microbes New Infect 2018; 25:14–15 [View Article] [PubMed]
    [Google Scholar]
  7. Sidrak D, Green J, Nawathe P, Morgan M, Soni PR. Canine-to-human transmission of Mycoplasma canis in the central nervous system. J Pediatric Infect Dis Soc 2021; 11:28–30 [View Article] [PubMed]
    [Google Scholar]
  8. Bezerra RDS, Diefenbach CF, Pereira DV, Kashima S, Slavov SN. Viral metagenomics performed in patients with acute febrile syndrome during Toxoplasma gondii outbreak in south Brazil. Braz J Infect Dis 2020; 24:250–255 [View Article] [PubMed]
    [Google Scholar]
  9. Chen X, Cao K, Wei Y, Qian Y, Liang J et al. Metagenomic next-generation sequencing in the diagnosis of severe pneumonias caused by Chlamydia psittaci. Infection 2020; 48:535–542 [View Article] [PubMed]
    [Google Scholar]
  10. Haston JC, Rostad CA, Jerris RC, Milla SS, McCracken C et al. Prospective cohort study of next-generation sequencing as a diagnostic modality for unexplained encephalitis in children. J Pediatric Infect Dis Soc 2020; 9:326–333 [View Article] [PubMed]
    [Google Scholar]
  11. Kong M, Li W, Kong Q, Dong H, Han A et al. Application of metagenomic next-generation sequencing in cutaneous tuberculosis. Front Cell Infect Microbiol 2022; 12:942073 [View Article] [PubMed]
    [Google Scholar]
  12. Avila-Herrera A, Thissen JB, Mulakken N, Schobel SA, Morrison MD et al. Metagenomic features of bioburden serve as outcome indicators in combat extremity wounds. Sci Rep 2022; 12:13816 [View Article] [PubMed]
    [Google Scholar]
  13. Schmidt BM. Emerging diabetic foot ulcer microbiome analysis using cutting edge technologies. J Diabetes Sci Technol 2022; 16:353–363 [View Article] [PubMed]
    [Google Scholar]
  14. Verbanic S, Deacon JM, Chen IA. The chronic wound phageome: phage diversity and associations with wounds and healing outcomes. Microbiol Spectr 2022; 10:e0277721 [View Article] [PubMed]
    [Google Scholar]
  15. Zhang J, Hao Y, Wang Z, Yang Q. Diagnosis of Coxiella burnetii infection via metagenomic next-generation sequencing: a case report. BMC Infect Dis 2022; 22:373 [View Article] [PubMed]
    [Google Scholar]
  16. Frey ML, Hanson RP, Andrson DP. A medium for the isolation of avian Mycoplasmas. Am J Vet Res 1968; 29:2163–2171 [PubMed]
    [Google Scholar]
  17. Krueger F. Trim Galore: A Wrapper Tool Around Cutadapt FastQC to Consistently Apply Quality Adapter Trimming to FastQ Files 2015
    [Google Scholar]
  18. Andrews S. FastQC: A Quality Control Tool for High Throughput Sequence Data Cambridge, United Kingdom: Babraham Bioinformatics, Babraham Institute; 2010
    [Google Scholar]
  19. De Coster W, D’Hert S, Schultz DT, Cruts M, Van Broeckhoven C. NanoPack: visualizing and processing long-read sequencing data. Bioinformatics 2018; 34:2666–2669 [View Article] [PubMed]
    [Google Scholar]
  20. Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol 2019; 37:540–546 [View Article] [PubMed]
    [Google Scholar]
  21. Wick RR, Holt KE. Polypolish: short-read polishing of long-read bacterial genome assemblies. PLoS Comput Biol 2022; 18:e1009802 [View Article] [PubMed]
    [Google Scholar]
  22. Wick RR, Judd LM, Gorrie CL, Holt KE, Phillippy AM. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLOS Comput Biol 2017; 13:e1005595 [View Article] [PubMed]
    [Google Scholar]
  23. Li W, O’Neill KR, Haft DH, DiCuccio M, Chetvernin V et al. RefSeq: expanding the prokaryotic genome annotation Pipeline reach with protein family model curation. Nucleic Acids Res 2020; 49:D1020–D1028 [View Article] [PubMed]
    [Google Scholar]
  24. Seemann T. snippy: fast bacterial variant calling from NGS reads; 2015 https://github.com/tseemann/snippy
  25. Tonkin-Hill G, MacAlasdair N, Ruis C, Weimann A, Horesh G et al. Producing polished prokaryotic pangenomes with the panaroo pipeline. Genome Biol 2020; 21:180 [View Article] [PubMed]
    [Google Scholar]
  26. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [View Article] [PubMed]
    [Google Scholar]
  27. Chernomor O, von Haeseler A, Minh BQ. Terrace aware data structure for phylogenomic inference from supermatrices. Syst Biol 2016; 65:997–1008 [View Article] [PubMed]
    [Google Scholar]
  28. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 2020; 37:1530–1534 [View Article] [PubMed]
    [Google Scholar]
  29. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 2017; 14:587–589 [View Article] [PubMed]
    [Google Scholar]
  30. Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol 2017; 35:518–522 [View Article] [PubMed]
    [Google Scholar]
  31. Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Preprints 2016 [View Article]
    [Google Scholar]
  32. Rosendal S. Canine mycoplasmas: cultural and biochemical studies of type and reference strains. Acta Pathol Microbiol Scand B Microbiol 1975; 83:457–462 [View Article]
    [Google Scholar]
  33. Kanamoto Y, Kotani H, Ogata M, Matsuo Y. Isolation of Mycoplasma and Ureaplasma species from raccoon dogs (Nyctereutes procyonoides viverrinus). Microbiology 1983; 129:2447–2450 [View Article] [PubMed]
    [Google Scholar]
  34. Jambhekar A, Robin E, Le Boedec K. A systematic review and meta-analyses of the association between 4 mycoplasma species and lower respiratory tract disease in dogs. J Vet Intern Med 2019; 33:1880–1891 [View Article] [PubMed]
    [Google Scholar]
  35. Chalker VJ. Canine mycoplasmas. Res Vet Sci 2005; 79:1–8 [View Article] [PubMed]
    [Google Scholar]
  36. Ilha MRS, Rajeev S, Watson C, Woldemeskel M. Meningoencephalitis caused by Mycoplasma edwardii in a dog. J Vet Diagn Invest 2010; 22:805–808 [View Article] [PubMed]
    [Google Scholar]
  37. Stenske KA, Bemis DA, Hill K, Krahwinkel DJ. Acute polyarthritis and septicemia from Mycoplasma edwardii after surgical removal of bilateral adrenal tumors in a dog. J Vet Intern Med 2005; 19:768–771 [View Article] [PubMed]
    [Google Scholar]
  38. Tully JG, Barile MF, Del Giudice RA, Carski TR, Armstrong D et al. Proposal for classifying strain PG-24 and related canine mycoplasmas as Mycoplasma edwardii sp. n. J Bacteriol 1970; 101:346–349 [View Article] [PubMed]
    [Google Scholar]
  39. Lalan SP, Warady BA, Blowey D, Waites KB, Selvarangan R. Mycoplasma edwardii peritonitis in a patient on maintenance peritoneal dialysis. Clin Nephrol 2015; 83:45–48 [View Article] [PubMed]
    [Google Scholar]
  40. Eberle G, Kirchhoff H, Trautwein G. Experimental infection of mice, gerbils, and rats with mycoplasms from canine pericardium and cardial value (author’s transl). Zentralblatt fur Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene. In Erste Abteilung Originale. Reihe A: Medizinische Mikrobiologie Und Parasitologie vol 239 1977 pp 95–103
    [Google Scholar]
  41. Pitcher DG, Nicholas RAJ. Mycoplasma host specificity: fact or fiction?. Vet J 2005; 170:300–306 [View Article] [PubMed]
    [Google Scholar]
  42. Baranowski E, Dordet-Frisoni E, Sagné E, Hygonenq M-C, Pretre G et al. The Integrative Conjugative Element (ICE) of Mycoplasma agalactiae: key elements involved in horizontal dissemination and influence of coresident ICEs. mBio 2018; 9:e00873-00818 [View Article] [PubMed]
    [Google Scholar]
  43. Teachman AM, French CT, Yu H, Simmons WL, Dybvig K. Gene transfer in Mycoplasma pulmonis. J Bacteriol 2002; 184:947–951 [View Article] [PubMed]
    [Google Scholar]
  44. Torres-Puig S, Martínez-Torró C, Granero-Moya I, Querol E, Piñol J et al. Activation of σ20-dependent recombination and horizontal gene transfer in Mycoplasma genitalium. DNA Res 2018; 25:383–393 [View Article] [PubMed]
    [Google Scholar]
  45. Dordet-Frisoni E, Sagné E, Baranowski E, Breton M, Nouvel LX et al. Chromosomal transfers in Mycoplasmas: when minimal genomes go mobile. mBio 2014; 5:e01958-01914 [View Article] [PubMed]
    [Google Scholar]
  46. Noormohammadi AH, Markham PF, Kanci A, Whithear KG, Browning GF. A novel mechanism for control of antigenic variation in the haemagglutinin gene family of Mycoplasma synoviae. Mol Microbiol 2000; 35:911–923 [View Article] [PubMed]
    [Google Scholar]
  47. Pereyre S, Sirand-Pugnet P, Beven L, Charron A, Renaudin H et al. Life on arginine for Mycoplasma hominis: clues from its minimal genome and comparison with other human urogenital mycoplasmas. PLoS Genet 2009; 5:e1000677 [View Article] [PubMed]
    [Google Scholar]
  48. Citti C, Dordet-Frisoni E, Nouvel LX, Kuo CH, Baranowski E. Horizontal gene transfers in Mycoplasmas (Mollicutes). Curr Issues Mol Biol 2018; 29:3–22 [View Article] [PubMed]
    [Google Scholar]
  49. Noormohammadi AH, Markham PF, Duffy MF, Whithear KG, Browning GF. Multigene families encoding the major hemagglutinins in phylogenetically distinct mycoplasmas. Infect Immun 1998; 66:3470–3475 [View Article] [PubMed]
    [Google Scholar]
  50. Sirand-Pugnet P, Lartigue C, Marenda M, Jacob D, Barré A et al. Being pathogenic, plastic, and sexual while living with a nearly minimal bacterial genome. PLoS Genet 2007; 3:e75 [View Article] [PubMed]
    [Google Scholar]
  51. Kloesges T, Popa O, Martin W, Dagan T. Networks of gene sharing among 329 proteobacterial genomes reveal differences in lateral gene transfer frequency at different phylogenetic depths. Mol Biol Evol 2011; 28:1057–1074 [View Article] [PubMed]
    [Google Scholar]
  52. Brocchi M, Vasconcelos A de, Zaha A. Restriction-modification systems in Mycoplasma spp. Genet Mol Biol 2007; 30:236–244 [View Article]
    [Google Scholar]
  53. Ipoutcha T, Tsarmpopoulos I, Talenton V, Gaspin C, Moisan A et al. Multiple origins and specific evolution of CRISPR/Cas9 systems in minimal bacteria (Mollicutes). Front Microbiol 2019; 10:2701 [View Article] [PubMed]
    [Google Scholar]
  54. Jiang W, Maniv I, Arain F, Wang Y, Levin BR et al. Dealing with the evolutionary downside of CRISPR immunity: bacteria and beneficial plasmids. PLoS Genet 2013; 9:e1003844 [View Article] [PubMed]
    [Google Scholar]
  55. Fadiel A, Eichenbaum KD, El Semary N, Epperson B. Mycoplasma genomics: tailoring the genome for minimal life requirements through reductive evolution. Front Biosci 2007; 12:2020–2028 [View Article] [PubMed]
    [Google Scholar]
  56. Delaney NF, Balenger S, Bonneaud C, Marx CJ, Hill GE et al. Ultrafast evolution and loss of CRISPRs following a host shift in a novel wildlife pathogen, Mycoplasma gallisepticum. PLoS Genet 2012; 8:e1002511 [View Article] [PubMed]
    [Google Scholar]
  57. Yu G, Smith DK, Zhu H, Guan Y, Lam TT-Y. Ggtree: an R package for visualization and annotation of Phylogenetic trees with their covariates and other associated data. Methods Ecol Evol 2017; 8:28–36 [View Article]
    [Google Scholar]
/content/journal/jmm/10.1099/jmm.0.001788
Loading
/content/journal/jmm/10.1099/jmm.0.001788
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error