Skip to content
1887

Abstract

Enterotoxigenic (ETEC) strains produce at least one of two types of enterotoxins: the heat-labile (LT) and heat-stable (ST) toxins, which are responsible for the watery secretory diarrhoea that is a hallmark of the human ETEC infection. One regulatory system that controls the transcription of virulence genes in pathogenic bacteria is the CpxRA two-component system (TCS). We reported that the bicistronic operon, which encodes for the A and B subunits of LT, was repressed for the CpxRA TCS by direct binding of CpxR-P from −12 to +6 bp with respect to the transcription start site of . Moreover, the Cpx-response activation down-regulated the transcription of genes, and this negative effect was CpxRA-dependent. Our data show that CpxRA TCS is a negative regulator of the LT, one of the main virulence determinants of ETEC.

Keyword(s): CpxRA , eltAB , ETEC and heat-labile toxin
Funding
This study was supported by the:
  • Fondo de Investigación en Salud (FIS)-IMSS (Award FIS/IMSS/PROT/G18/1821)
    • Principle Award Recipient: MiguelA. Ares
Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.001682
2023-04-12
2025-01-13
Loading full text...

Full text loading...

References

  1. Khalil IA, Troeger C, Blacker BF, Rao PC, Brown A et al. Morbidity and mortality due to Shigella and enterotoxigenic Escherichia coli diarrhoea: the global burden of disease study 1990-2016. Lancet Infect Dis 2018; 18:1229–1240 [View Article] [PubMed]
    [Google Scholar]
  2. Mirhoseini A, Amani J, Nazarian S. Review on pathogenicity mechanism of enterotoxigenic Escherichia coli and vaccines against it. Microb Pathog 2018; 117:162–169 [View Article] [PubMed]
    [Google Scholar]
  3. Qadri F, Svennerholm A-M, Faruque ASG, Sack RB. Enterotoxigenic Escherichia coli in developing countries: epidemiology, microbiology, clinical features, treatment, and prevention. Clin Microbiol Rev 2005; 18:465–483 [View Article] [PubMed]
    [Google Scholar]
  4. Fleckenstein JM, Hardwidge PR, Munson GP, Rasko DA, Sommerfelt H et al. Molecular mechanisms of enterotoxigenic Escherichia coli infection. Microbes Infect 2010; 12:89–98 [View Article] [PubMed]
    [Google Scholar]
  5. Madhavan TPV, Sakellaris H. Colonization factors of enterotoxigenic Escherichia coli. Adv Appl Microbiol 2015; 90:155–197 [View Article] [PubMed]
    [Google Scholar]
  6. Raivio TL. Everything old is new again: an update on current research on the Cpx envelope stress response. Biochim Biophys Acta 2014; 1843:1529–1541 [View Article] [PubMed]
    [Google Scholar]
  7. Hunke S, Keller R, Müller VS. Signal integration by the Cpx-envelope stress system. FEMS Microbiol Lett 2012; 326:12–22 [View Article] [PubMed]
    [Google Scholar]
  8. Vogt SL, Raivio TL. Just scratching the surface: an expanding view of the Cpx envelope stress response. FEMS Microbiol Lett 2012; 326:2–11 [View Article] [PubMed]
    [Google Scholar]
  9. Mitobe J, Arakawa E, Watanabe H. A sensor of the two-component system CpxA affects expression of the type III secretion system through posttranscriptional processing of InvE. J Bacteriol 2005; 187:107–113 [View Article] [PubMed]
    [Google Scholar]
  10. Macritchie DM, Ward JD, Nevesinjac AZ, Raivio TL. Activation of the Cpx envelope stress response down-regulates expression of several locus of enterocyte effacement-encoded genes in enteropathogenic Escherichia coli. Infect Immun 2008; 76:1465–1475 [View Article] [PubMed]
    [Google Scholar]
  11. Spinola SM, Fortney KR, Baker B, Janowicz DM, Zwickl B et al. Activation of the CpxRA system by deletion of cpxA impairs the ability of Haemophilus ducreyi to infect humans. Infect Immun 2010; 78:3898–3904 [View Article] [PubMed]
    [Google Scholar]
  12. Liu J, Thanikkal EJ, Obi IR, Francis MS. Elevated CpxR~P levels repress the Ysc-Yop type III secretion system of Yersinia pseudotuberculosis. Res Microbiol 2012; 163:518–530 [View Article] [PubMed]
    [Google Scholar]
  13. De la Cruz MA, Pérez-Morales D, Palacios IJ, Fernández-Mora M, Calva E et al. The two-component system CpxR/A represses the expression of Salmonella virulence genes by affecting the stability of the transcriptional regulator HilD. Front Microbiol 2015; 6:807 [View Article] [PubMed]
    [Google Scholar]
  14. De la Cruz MA, Morgan JK, Ares MA, Yáñez-Santos JA, Riordan JT et al. The two-component system CpxRA negatively regulates the locus of enterocyte effacement of enterohemorrhagic Escherichia coli involving σ(32) and Lon protease. Front Cell Infect Microbiol 2016; 6:11 [View Article] [PubMed]
    [Google Scholar]
  15. Matter LB, Ares MA, Abundes-Gallegos J, Cedillo ML, Yáñez JA et al. The CpxRA stress response system regulates virulence features of avian pathogenic Escherichia coli. Environ Microbiol 2018; 20:3363–3377 [View Article] [PubMed]
    [Google Scholar]
  16. Ares MA, Abundes-Gallegos J, Rodríguez-Valverde D, Panunzi LG, Jiménez-Galicia C et al. The coli surface antigen CS3 of enterotoxigenic Escherichia coli is differentially regulated by H-NS, CRP, and CpxRA global regulators. Front Microbiol 2019; 10:1685 [View Article] [PubMed]
    [Google Scholar]
  17. Fei K, Chao HJ, Hu Y, Francis MS, Chen S. CpxR regulates the Rcs phosphorelay system in controlling the Ysc-Yop type III secretion system in Yersinia pseudotuberculosis. Microbiology 2021; 167:10 [View Article] [PubMed]
    [Google Scholar]
  18. Saoud J, Mani T, Faucher SP. The tail-specific protease is important for Legionella pneumophila to survive thermal stress in water and inside amoebae. Appl Environ Microbiol 2021; 87:e02975-20 [View Article] [PubMed]
    [Google Scholar]
  19. León-Montes N, Nava-Galeana J, Rodríguez-Valverde D, Soria-Bustos J, Rosales-Reyes R et al. The two-component system CpxRA represses Salmonella pathogenicity island 2 by directly acting on the ssrAB regulatory operon. Microbiol Spectr 2022; 10:e0271022 [View Article] [PubMed]
    [Google Scholar]
  20. Dbeibo L, van Rensburg JJ, Smith SN, Fortney KR, Gangaiah D et al. Evaluation of CpxRA as a therapeutic target for uropathogenic Escherichia coli infections. Infect Immun 2018; 86:e00798-17 [View Article] [PubMed]
    [Google Scholar]
  21. De la Cruz MA, Ruiz-Tagle A, Ares MA, Pacheco S, Yáñez JA et al. The expression of Longus type 4 pilus of enterotoxigenic Escherichia coli is regulated by LngR and LngS and by H-NS, CpxR and CRP global regulators. Environ Microbiol 2017; 19:1761–1775 [View Article] [PubMed]
    [Google Scholar]
  22. Ares MA, Abundes-Gallegos J, Rodríguez-Valverde D, Panunzi LG, Jiménez-Galicia C et al. The coli surface antigen CS3 of enterotoxigenic Escherichia coli is differentially regulated by H-NS, CRP, and CpxRA global regulators. Front Microbiol 2019; 10:1685 [View Article] [PubMed]
    [Google Scholar]
  23. Levine MM, Ristaino P, Marley G, Smyth C, Knutton S et al. Coli surface antigens 1 and 3 of colonization factor antigen II-positive enterotoxigenic Escherichia coli: morphology, purification, and immune responses in humans. Infect Immun 1984; 44:409–420 [View Article] [PubMed]
    [Google Scholar]
  24. Girón JA, Levine MM, Kaper JB. Longus: a long pilus ultrastructure produced by human enterotoxigenic Escherichia coli. Mol Microbiol 1994; 12:71–82 [View Article] [PubMed]
    [Google Scholar]
  25. Jahn CE, Charkowski AO, Willis DK. Evaluation of isolation methods and RNA integrity for bacterial RNA quantitation. J Microbiol Methods 2008; 75:318–324 [View Article] [PubMed]
    [Google Scholar]
  26. Aranda PS, LaJoie DM, Jorcyk CL. Bleach gel: a simple agarose gel for analyzing RNA quality. Electrophoresis 2012; 33:366–369 [View Article] [PubMed]
    [Google Scholar]
  27. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25:402–408 [View Article] [PubMed]
    [Google Scholar]
  28. Kurabayashi K, Hirakawa Y, Tanimoto K, Tomita H, Hirakawa H. Role of the CpxAR two-component signal transduction system in control of fosfomycin resistance and carbon substrate uptake. J Bacteriol 2014; 196:248–256 [View Article] [PubMed]
    [Google Scholar]
  29. Rodríguez-Valverde D, León-Montes N, Soria-Bustos J, Martínez-Cruz J, González-Ugalde R et al. cAMP receptor protein positively regulates the expression of genes involved in the biosynthesis of Klebsiella oxytoca Tilivalline Cytotoxin. Front Microbiol 2021; 12:743594 [View Article] [PubMed]
    [Google Scholar]
  30. Danese PN, Snyder WB, Cosma CL, Davis LJB, Silhavy TJ. The Cpx two-component signal transduction pathway of Escherichia coli regulates transcription of the gene specifying the stress-inducible periplasmic protease, DegP. Genes Dev 1995; 9:387–398 [View Article] [PubMed]
    [Google Scholar]
  31. Snyder WB, Davis LJ, Danese PN, Cosma CL, Silhavy TJ. Overproduction of NlpE, a new outer membrane lipoprotein, suppresses the toxicity of periplasmic LacZ by activation of the Cpx signal transduction pathway. J Bacteriol 1995; 177:4216–4223 [View Article] [PubMed]
    [Google Scholar]
  32. Yang J, Tauschek M, Strugnell R, Robins-Browne RM. The H-NS protein represses transcription of the eltAB operon, which encodes heat-labile enterotoxin in enterotoxigenic Escherichia coli, by binding to regions downstream of the promoter. Microbiology 2005; 151:1199–1208 [View Article] [PubMed]
    [Google Scholar]
  33. De Wulf P, McGuire AM, Liu X, Lin ECC. Genome-wide profiling of promoter recognition by the two-component response regulator CpxR-P in Escherichia coli. J Biol Chem 2002; 277:26652–26661 [View Article] [PubMed]
    [Google Scholar]
  34. Yamamoto K, Ishihama A. Characterization of copper-inducible promoters regulated by CpxA/CpxR in Escherichia coli. Biosci Biotechnol Biochem 2006; 70:1688–1695 [View Article] [PubMed]
    [Google Scholar]
  35. Danese PN, Silhavy TJ. CpxP, a stress-combative member of the Cpx regulon. J Bacteriol 1998; 180:831–839 [View Article] [PubMed]
    [Google Scholar]
  36. Bodero MD, Munson GP. Cyclic AMP receptor protein-dependent repression of heat-labile enterotoxin. Infect Immun 2009; 77:791–798 [View Article] [PubMed]
    [Google Scholar]
  37. Horstman AL, Kuehn MJ. Bacterial surface association of heat-labile enterotoxin through lipopolysaccharide after secretion via the general secretory pathway. J Biol Chem 2002; 277:32538–32545 [View Article] [PubMed]
    [Google Scholar]
/content/journal/jmm/10.1099/jmm.0.001682
Loading
/content/journal/jmm/10.1099/jmm.0.001682
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error