Skip to content
1887

Abstract

. The FilmArray blood culture identification panel (BCID) panel is a multiplex PCR assay with high sensitivity and specificity to identify the most common pathogens in bloodstream infections (BSIs).

. We hypothesize that the BCID panel has good diagnostic performance for BSIs and can be popularized in clinical application.

To provide summarized evidence for the diagnostic accuracy of the BCID panel for the identification of positive blood cultures.

We searched the MEDLINE, EMBASE and Cochrane databases through March 2021 and assessed the efficacy of the diagnostic test of the BCID panel. We performed a meta-analysis and calculated the summary sensitivity and specificity of the BCID panel. Systematic review protocols were registered in the International Prospective Register of Systematic Reviews (PROSPERO) (registration number CRD42021239176).

. A total of 16 full-text articles were eligible for analysis. The overall sensitivities of the BCID panel on Gram-positive bacteria, Gram-negative bacteria and fungi were 97 % (95 % CI, 0.96–0.98), 100 % (95 % CI, 0.98–01.00) and 99 % (95 % CI, 0.87–1.00), respectively. The pooled diagnostic specificities were 99 % (95 % CI, 0.97–1.00), 100 % (95 % CI, 1.00–1.00) and 100 % (95 % CI, 1.00–1.00) for Gram-positive bacteria, Gram-negative bacteria and fungi, respectively.

. The BCID panel has high rule-in value for the early detection of BSI patients. The BCID panel can still provide valuable information for ruling out bacteremia or fungemia in populations with low pretest probability.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.001608
2023-09-15
2025-01-25
Loading full text...

Full text loading...

References

  1. McNamara JF, Righi E, Wright H, Hartel GF, Harris PNA et al. Long-term morbidity and mortality following bloodstream infection: a systematic literature review. J Infect 2018; 77:1–8 [View Article]
    [Google Scholar]
  2. Kern WV, Rieg S. Burden of bacterial bloodstream infection-a brief update on epidemiology and significance of multidrug-resistant pathogens. Clin Microbiol Infect 2020; 26:151–157 [View Article]
    [Google Scholar]
  3. Tarr PI, Warner BB. Gut bacteria and late-onset neonatal bloodstream infections in preterm infants. Semin Fetal Neonatal Med 2016; 21:388–393 [View Article]
    [Google Scholar]
  4. Fisher M, Golestaneh L, Allon M, Abreo K, Mokrzycki MH. Prevention of Bloodstream Infections in Patients Undergoing Hemodialysis. Clin J Am Soc Nephrol 2020; 15:132–151 [View Article]
    [Google Scholar]
  5. Uslan DZ, Crane SJ, Steckelberg JM, Cockerill FR, St Sauver JL et al. Age- and sex-associated trends in bloodstream infection: a population-based study in Olmsted County, Minnesota. Arch Intern Med 2007; 167:834–839 [View Article]
    [Google Scholar]
  6. Laupland KB, Niven DJ, Pasquill K, Parfitt EC, Steele L. Culturing rate and the surveillance of bloodstream infections: a population-based assessment. Clin Microbiol Infect 2018; 24:910–914 [View Article]
    [Google Scholar]
  7. Wilson J, Elgohari S, Livermore DM, Cookson B, Johnson A et al. Trends among pathogens reported as causing bacteraemia in England, 2004-2008. Clin Microbiol Infect 2011; 17:451–458 [View Article]
    [Google Scholar]
  8. Skogberg K, Lyytikäinen O, Ollgren J, Nuorti JP, Ruutu P. Population-based burden of bloodstream infections in Finland. Clin Microbiol Infect 2012; 18:E170–6 [View Article]
    [Google Scholar]
  9. Buetti N, Atkinson A, Marschall J, Kronenberg A. Swiss Centre for Antibiotic Resistance (ANRESIS) Incidence of bloodstream infections: a nationwide surveillance of acute care hospitals in switzerland 2008-2014. BMJ Open 2017; 7:e013665 [View Article]
    [Google Scholar]
  10. Goto M, Al-Hasan MN. Overall burden of bloodstream infection and nosocomial bloodstream infection in North America and Europe. Clin Microbiol Infect 2013; 19:501–509 [View Article]
    [Google Scholar]
  11. Hall MJ, Williams SN, DeFrances CJ, Golosinskiy A. Inpatient care for septicemia or sepsis: a challenge for patients and hospitals. NCHS Data Brief 20111–8
    [Google Scholar]
  12. Torio CM, Andrews RM. National Inpatient Hospital Costs: The Most Expensive Conditions by Payer, 2011: Statistical Brief #160. Healthcare Cost and Utilization Project (HCUP) Statistical Briefs Rockville (MD): Agency for Healthcare Research and Quality (US); 2006
    [Google Scholar]
  13. Kadri SS, Lai YL, Warner S, Strich JR, Babiker A et al. Inappropriate empirical antibiotic therapy for bloodstream infections based on discordant in-vitro susceptibilities: a retrospective cohort analysis of prevalence, predictors, and mortality risk in US hospitals. Lancet Infect Dis 2021; 21:241–251 [View Article]
    [Google Scholar]
  14. Thaden JT, Ericson JE, Cross H, Bergin SP, Messina JA et al. Survival benefit of empirical therapy for Staphylococcus aureus bloodstream infections in infants. Pediatr Infect Dis J 2015; 34:1175–1179 [View Article]
    [Google Scholar]
  15. Schuttevaer R, Alsma J, Brink A, van Dijk W, de Steenwinkel JEM et al. Appropriate empirical antibiotic therapy and mortality: conflicting data explained by residual confounding. PLoS One 2019; 14:e0225478 [View Article]
    [Google Scholar]
  16. Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. P T 2015; 40:277–283
    [Google Scholar]
  17. Clemenceau M, Ahmed-Elie S, Vilfaillot A, Chocron R, Compain F et al. Appropriateness of empirical antibiotic prescription for bloodstream infections in an emergency department from 2006 to 2018: impact of the spread of ESBL-producing Enterobacterales. Eur J Clin Microbiol Infect Dis 2022; 41:71–77 [View Article]
    [Google Scholar]
  18. Lamy B, Dargère S, Arendrup MC, Parienti JJ, Tattevin P. How to optimize the use of blood cultures for the diagnosis of bloodstream infections? a state-of-the art. Front Microbiol 2016; 7:697 [View Article]
    [Google Scholar]
  19. Peters RPH, van Agtmael MA, Danner SA, Savelkoul PHM, Vandenbroucke-Grauls CMJE. New developments in the diagnosis of bloodstream infections. Lancet Infect Dis 2004; 4:751–760 [View Article]
    [Google Scholar]
  20. Patel PA, Ledeboer NA, Ginocchio CC, Condon S, Bouchard S et al. Performance of the BD GeneOhm MRSA achromopeptidase assay for real-time PCR detection of methicillin-resistant Staphylococcus aureus in nasal specimens. J Clin Microbiol 2011; 49:2266–2268 [View Article]
    [Google Scholar]
  21. Mai M, Müller I, Maneg D, Lohr B, Haecker A et al. Real-time PCR-based identification of bacterial and fungal pathogens from blood samples. Methods Mol Biol 2015; 1237:139–147 [View Article]
    [Google Scholar]
  22. Tjandra KC, Ram-Mohan N, Abe R, Hashemi MM, Lee JH et al. Diagnosis of bloodstream infections: an evolution of technologies towards accurate and rapid identification and antibiotic susceptibility testing. Antibiotics 2022; 11:511 [View Article]
    [Google Scholar]
  23. Henrickson KJ. Cost-effective use of rapid diagnostic techniques in the treatment and prevention of viral respiratory infections. Pediatr Ann 2005; 34:24–31 [View Article]
    [Google Scholar]
  24. Gonzales R, Malone DC, Maselli JH, Sande MA. Excessive antibiotic use for acute respiratory infections in the United States. Clin Infect Dis 2001; 33:757–762 [View Article]
    [Google Scholar]
  25. Woo PC, Chiu SS, Seto WH, Peiris M. Cost-effectiveness of rapid diagnosis of viral respiratory tract infections in pediatric patients. J Clin Microbiol 1997; 35:1579–1581 [View Article]
    [Google Scholar]
  26. Mahony JB, Blackhouse G, Babwah J, Smieja M, Buracond S et al. Cost analysis of multiplex PCR testing for diagnosing respiratory virus infections. J Clin Microbiol 2009; 47:2812–2817 [View Article]
    [Google Scholar]
  27. Phaneuf CR, Pak N, Saunders DC, Holst GL, Birjiniuk J et al. Thermally multiplexed polymerase chain reaction. Biomicrofluidics 2015; 9:044117 [View Article]
    [Google Scholar]
  28. Lin JF, Ge MC, Liu TP, Chang SC, Lu JJ. A simple method for rapid microbial identification from positive monomicrobial blood culture bottles through matrix-assisted laser desorption ionization time-of-flight mass spectrometry. J Microbiol Immunol Infect 2018; 51:659–665 [View Article]
    [Google Scholar]
  29. Payne M, Champagne S, Lowe C, Leung V, Hinch M et al. Evaluation of the FilmArray blood culture identification panel compared to direct MALDI-TOF MS identification for rapid identification of pathogens. J Med Microbiol 2018; 67:1253–1256 [View Article]
    [Google Scholar]
  30. Mahony JB. Nucleic acid amplification-based diagnosis of respiratory virus infections. Expert Rev Anti Infect Ther 2010; 8:1273–1292 [View Article]
    [Google Scholar]
  31. Ginocchio CC, Zhang F, Manji R, Arora S, Bornfreund M et al. Evaluation of multiple test methods for the detection of the novel 2009 influenza A (H1N1) during the New York City outbreak. J Clin Virol 2009; 45:191–195 [View Article]
    [Google Scholar]
  32. Elnifro EM, Ashshi AM, Cooper RJ, Klapper PE. Multiplex PCR: optimization and application in diagnostic virology. Clin Microbiol Rev 2000; 13:559–570 [View Article]
    [Google Scholar]
  33. Law JW-F, Ab Mutalib N-S, Chan K-G, Lee L-H. Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations. Front Microbiol 2014; 5:770 [View Article]
    [Google Scholar]
  34. Markoulatos P, Siafakas N, Moncany M. Multiplex polymerase chain reaction: a practical approach. J Clin Lab Anal 2002; 16:47–51 [View Article]
    [Google Scholar]
  35. Blaschke AJ, Heyrend C, Byington CL, Fisher MA, Barker E et al. Rapid identification of pathogens from positive blood cultures by multiplex polymerase chain reaction using the FilmArray system. Diagn Microbiol Infect Dis 2012; 74:349–355 [View Article]
    [Google Scholar]
  36. Bzdyl NM, Urosevic N, Payne B, Brockenshire R, McIntyre M et al. Field trials of blood culture identification FilmArray in regional Australian hospitals. J Med Microbiol 2018; 67:669–675 [View Article]
    [Google Scholar]
  37. Altun O, Almuhayawi M, Ullberg M, Ozenci V. Clinical evaluation of the FilmArray blood culture identification panel in identification of bacteria and yeasts from positive blood culture bottles. J Clin Microbiol 2013; 51:4130–4136 [View Article]
    [Google Scholar]
  38. Salimnia H, Fairfax MR, Lephart PR, Schreckenberger P, DesJarlais SM et al. Evaluation of the FilmArray blood culture identification panel: results of a multicenter controlled trial. J Clin Microbiol 2016; 54:687–698 [View Article]
    [Google Scholar]
  39. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 2009; 339:b2700 [View Article]
    [Google Scholar]
  40. Leeflang MMG. Systematic reviews and meta-analyses of diagnostic test accuracy. Clin Microbiol Infect 2014; 20:105–113 [View Article]
    [Google Scholar]
  41. Leeflang MMG, Deeks JJ, Gatsonis C, Bossuyt PMM. Systematic reviews of diagnostic test accuracy. Ann Intern Med 2008; 149:889–897 [View Article]
    [Google Scholar]
  42. Whiting PF, Rutjes AWS, Westwood ME, Mallett S, Deeks JJ et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 2011; 155:529–536 [View Article]
    [Google Scholar]
  43. Chu H, Cole SR. Bivariate meta-analysis of sensitivity and specificity with sparse data: a generalized linear mixed model approach. J Clin Epidemiol 2006; 59:1331–1332 [View Article]
    [Google Scholar]
  44. Leeflang MMG, Deeks JJ, Takwoingi Y, Macaskill P. Cochrane diagnostic test accuracy reviews. Syst Rev 2013; 2:82 [View Article]
    [Google Scholar]
  45. Jones CM, Athanasiou T. Summary receiver operating characteristic curve analysis techniques in the evaluation of diagnostic tests. Ann Thorac Surg 2005; 79:16–20 [View Article]
    [Google Scholar]
  46. Otlu B, Bayindir Y, Ozdemir F, Ince V, Cuglan S et al. Rapid detection of bloodstream pathogens in liver transplantation patients with FilmArray multiplex polymerase chain reaction assays: comparison with conventional methods. Transplant Proc 2015; 47:1926–1932 [View Article]
    [Google Scholar]
  47. Altun O, Almuhayawi M, Ullberg M, Özenci V. Rapid identification of microorganisms from sterile body fluids by use of FilmArray. J Clin Microbiol 2015; 53:710–712 [View Article]
    [Google Scholar]
  48. Paolucci M, Foschi C, Tamburini MV, Ambretti S, Lazzarotto T et al. Comparison between MALDI-TOF MS and FilmArray blood culture identification panel for rapid identification of yeast from positive blood culture. J Microbiol Methods 2014; 104:92–93 [View Article]
    [Google Scholar]
  49. Leitner E, Hoenigl M, Wagner B, Krause R, Feierl G et al. Performance of the FilmArray Blood culture identification panel in positive blood culture bottles and cerebrospinal fluid for the diagnosis of sepsis and meningitis. GMS Infect Dis 2016; 4:Doc06 [View Article]
    [Google Scholar]
  50. Rand KH, Delano JP. Direct identification of bacteria in positive blood cultures: comparison of two rapid methods, FilmArray and mass spectrometry. Diagn Microbiol Infect Dis 2014; 79:293–297 [View Article]
    [Google Scholar]
  51. Saito K, Endo S, Katsumi M, Ishizawa C, Fujikawa Y et al. Evaluation of the FilmArray blood culture identification panel on detection of pathogenic microorganisms in positive blood cultures: the first clinical report in Japan. Jpn J Infect Dis 2018; 71:145–147 [View Article]
    [Google Scholar]
  52. Bhatti MM, Boonlayangoor S, Beavis KG, Tesic V. Evaluation of FilmArray and verigene systems for rapid identification of positive blood cultures. J Clin Microbiol 2014; 52:3433–3436 [View Article]
    [Google Scholar]
  53. Oberhettinger P, Zieger J, Autenrieth I, Marschal M, Peter S. Evaluation of two rapid molecular test systems to establish an algorithm for fast identification of bacterial pathogens from positive blood cultures. Eur J Clin Microbiol Infect Dis 2020; 39:1147–1157 [View Article]
    [Google Scholar]
  54. Verhoeven PO, Haddar CH, Rigaill J, Fonsale N, Carricajo A et al. Comparison of the fully automated FilmArray BCID assay to a 4-hour culture test coupled to mass spectrometry for day 0 identification of microorganisms in positive blood cultures. Biomed Res Int 2018; 2018:7013470 [View Article]
    [Google Scholar]
  55. López-Amor L, García-Prieto E, Fernández-Suárez J, Escudero D, Vázquez F et al. Evaluation of a commercial multiplex PCR for diagnosis of Central Nervous System (CNS) nosocomial infections. J Microbiol Methods 2020; 171:105865 [View Article]
    [Google Scholar]
  56. Chang S-S, Hsieh W-H, Liu T-S, Lee S-H, Wang C-H et al. Multiplex PCR system for rapid detection of pathogens in patients with presumed sepsis - a systemic review and meta-analysis. PLoS One 2013; 8:e62323 [View Article]
    [Google Scholar]
  57. Tansarli GS, Chapin KC. Diagnostic test accuracy of the BioFire® FilmArray® meningitis/encephalitis panel: a systematic review and meta-analysis. Clin Microbiol Infect 2020; 26:281–290 [View Article]
    [Google Scholar]
  58. De Angelis G, Grossi A, Menchinelli G, Boccia S, Sanguinetti M et al. Rapid molecular tests for detection of antimicrobial resistance determinants in Gram-negative organisms from positive blood cultures: a systematic review and meta-analysis. Clin Microbiol Infect 2020; 26:271–280 [View Article]
    [Google Scholar]
  59. Huang H-S, Tsai C-L, Chang J, Hsu T-C, Lin S et al. Multiplex PCR system for the rapid diagnosis of respiratory virus infection: systematic review and meta-analysis. Clin Microbiol Infect 2018; 24:1055–1063 [View Article]
    [Google Scholar]
  60. Desoubeaux G, Franck-Martel C, Bailly É, Le Brun C, Gyan E et al. Prospective assessment of FilmArray® technology for the rapid identification of yeast isolated from blood cultures. J Microbiol Methods 2014; 106:119–122 [View Article]
    [Google Scholar]
  61. Fiori B, D’Inzeo T, Giaquinto A, Menchinelli G, Liotti FM et al. Optimized use of the MALDI biotyper system and the FilmArray BCID panel for direct identification of microbial pathogens from positive blood cultures. J Clin Microbiol 2016; 54:576–584 [View Article]
    [Google Scholar]
  62. Kang C-M, Chen X-J, Chih C-C, Hsu C-C, Chen P-H et al. Rapid identification of bloodstream bacterial and fungal pathogens and their antibiotic resistance determinants from positively flagged blood cultures using the BioFire FilmArray blood culture identification panel. J Microbiol Immunol Infect 2020; 53:882–891 [View Article]
    [Google Scholar]
  63. Southern TR, VanSchooneveld TC, Bannister DL, Brown TL, Crismon AS et al. Implementation and performance of the biofire FilmArray® blood culture identification panel with antimicrobial treatment recommendations for bloodstream infections at a midwestern academic tertiary hospital. Diagn Microbiol Infect Dis 2015; 81:96–101 [View Article]
    [Google Scholar]
/content/journal/jmm/10.1099/jmm.0.001608
Loading
/content/journal/jmm/10.1099/jmm.0.001608
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error