1887

Abstract

Members of the group (SAG) are frequently involved in pyogenic infections in humans. In the present study, the antimicrobial susceptibility of 141 clinical SAG isolates to six antimicrobial agents was analysed by agar dilution. All isolates were susceptible to penicillin, cefotaxime and vancomycin. However, 12.8 % displayed increased MIC values (0.12 mg l) for penicillin. Resistance to erythromycin was detected in eight (5.7 %) isolates. Characterization of the erythromycin-resistant isolates with the double-disc diffusion test revealed Macrolide-Lincosamide-Streptogramin and M-type resistance in six and two isolates, respectively. The erythromycin-resistant isolates were further characterized by PCR for the resistance genes , and . Resistance and intermediate resistance to ciprofloxacin were detected in two and six isolates, respectively. Molecular typing by PFGE revealed a high genetic heterogeneity among the SAG isolates and no evidence for a clonal relationship between the erythromycin-resistant isolates. Our data show that resistance to erythromycin, clindamycin and ciprofloxacin has emerged among SAG isolates in Germany. The implications of these findings for susceptibility testing and antimicrobial therapy of SAG infections are discussed.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.001560-0
2009-02-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/jmm/58/2/222.html?itemId=/content/journal/jmm/10.1099/jmm.0.001560-0&mimeType=html&fmt=ahah

References

  1. Aracil, B., Gomez-Garces, J. L. & Alos, J. I. ( 1999; ). A study of susceptibility of 100 clinical isolates belonging to the Streptococcus milleri group to 16 cephalosporins. J Antimicrob Chemother 43, 399–402.[CrossRef]
    [Google Scholar]
  2. Arvand, M., Hoeck, M., Hahn, H. & Wagner, J. ( 2000; ). Antimicrobial resistance in Streptococcus pyogenes isolates in Berlin. J Antimicrob Chemother 46, 621–624.[CrossRef]
    [Google Scholar]
  3. Bartie, K. L., Wilson, M. J., Williams, D. W. & Lewis, M. A. ( 2000; ). Macrorestriction fingerprinting of “Streptococcus milleri” group bacteria by pulsed-field gel electrophoresis. J Clin Microbiol 38, 2141–2149.
    [Google Scholar]
  4. Clarridge, J. E., III, Attorri, S., Musher, D. M., Hebert, J. & Dunbar, S. ( 2001; ). Streptococcus intermedius, Streptococcus constellatus, and Streptococcus anginosus (“Streptococcus milleri group”) are of different clinical importance and are not equally associated with abscess. Clin Infect Dis 32, 1511–1515.[CrossRef]
    [Google Scholar]
  5. Clarridge, J. E., III, Osting, C., Jalali, M., Osborne, J. & Waddington, M. ( 1999; ). Genotypic and phenotypic characterization of “Streptococcus milleri” group isolates from a Veterans Administration hospital population. J Clin Microbiol 37, 3681–3687.
    [Google Scholar]
  6. Clinical and Laboratory Standards Institute ( 2008; ). Performance standards for antimicrobial susceptibility testing; eighteenth informational supplement M100–S13 28.
  7. Facklam, R. ( 2002; ). What happened to the streptococci: overview of taxonomic and nomenclature changes. Clin Microbiol Rev 15, 613–630.[CrossRef]
    [Google Scholar]
  8. File, T. M., Jr ( 2006; ). Clinical implications and treatment of multiresistant Streptococcus pneumoniae pneumonia. Clin Microbiol Infect 12, 31–41.[CrossRef]
    [Google Scholar]
  9. Jacobs, J. A. & Stobberingh, E. E. ( 1996; ). In vitro antimicrobial susceptibility of the “Streptococcus milleri” group (Streptococcus anginosus, Streptococcus constellatus and Streptococcus intermedius). J Antimicrob Chemother 37, 371–375.[CrossRef]
    [Google Scholar]
  10. Laupland, K. B., Ross, T., Church, D. L. & Gregson, D. B. ( 2006; ). Population-based surveillance of invasive pyogenic streptococcal infection in a large Canadian region. Clin Microbiol Infect 12, 224–230.[CrossRef]
    [Google Scholar]
  11. Limia, A., Jiménez, M. L., Alarcón, T. & López-Brea, M. ( 1999; ). Five-year analysis of antimicrobial susceptibility of the Streptococcus milleri group. Eur J Clin Microbiol Infect Dis 18, 440–444.[CrossRef]
    [Google Scholar]
  12. Livermore, D. M. ( 2000; ). Antibiotic resistance in staphylococci. Int J Antimicrob Agents 16, S3–S10.[CrossRef]
    [Google Scholar]
  13. Morosini, M. I., Cantón, R., Loza, E., del Campo, R., Almaraz, F. & Baquero, F. ( 2003; ). Streptococcus pyogenes isolates with characterized macrolide resistance mechanisms in Spain: in vitro activities of telithromycin and cethromycin. J Antimicrob Chemother 52, 50–55.[CrossRef]
    [Google Scholar]
  14. Deutsches Institut für Normung e. V. ( 1999; ). Normenausschuss Medizin in DIN. Susceptibility testing of pathogens to antimicrobial agents, part 4. DIN 5894–4.
  15. Olsson-Liljequist, B., Larsson, P., Walder, M. & Miörner, H. ( 1997; ). Antimicrobial susceptibility testing in Sweden. III. Methodology for susceptibility testing. Scand J Infect Dis Suppl 105, 13–23.
    [Google Scholar]
  16. Pallares, R., Viladrich, P. F., Liñares, J., Cabellos, C. & Guidol, F. ( 1998; ). Impact of antibiotic resistance on chemotherapy for pneumococcal infections. Microb Drug Resist 4, 339–347.[CrossRef]
    [Google Scholar]
  17. Rashid, R. M., Salah, W. & Parada, J. P. ( 2007; ).Streptococcus milleri’ aortic valve endocarditis and hepatic abscess. J Med Microbiol 56, 280–282.[CrossRef]
    [Google Scholar]
  18. Reinert, R. R., Al-Lahham, A., Lemperle, M., Tenholte, C., Briefs, C., Haupts, S., Gerards, H. H. & Lütticken, R. ( 2002; ). Emergence of macrolide and penicillin resistance among invasive pneumococcal isolates in Germany. J Antimicrob Chemother 49, 61–68.[CrossRef]
    [Google Scholar]
  19. Schoening, T. E., Wagner, J. & Arvand, M. ( 2005; ). Prevalence of erythromycin and clindamycin resistance among Streptococcus agalactiae isolates in Germany. Clin Microbiol Infect 11, 579–582.[CrossRef]
    [Google Scholar]
  20. Seppälä, H., Nissinen, A., Yu, Q. & Huovinen, P. ( 1993; ). Three different phenotypes of erythromycin-resistant Streptococcus pyogenes in Finland. J Antimicrob Chemother 32, 885–891.[CrossRef]
    [Google Scholar]
  21. Seppälä, H., Haanperä, M., Al-Juhaish, M., Järvinen, H., Jalava, J. & Huovinen, P. ( 2003; ). Antimicrobial susceptibility patterns and macrolide resistance genes of viridans group streptococci from normal flora. J Antimicrob Chemother 52, 636–644.[CrossRef]
    [Google Scholar]
  22. Sutcliffe, J., Grebe, T., Tait-Kamradt, A. & Wondrack, L. ( 1996a; ). Detection of erythromycin-resistant determinants by PCR. Antimicrob Agents Chemother 40, 2562–2566.
    [Google Scholar]
  23. Sutcliffe, J., Tait-Kamradt, A. & Wondrack, L. ( 1996b; ). Streptococcus pneumoniae and Streptococcus pyogenes resistant to macrolides but sensitive to clindamycin: a common resistance pattern mediated by an efflux system. Antimicrob Agents Chemother 40, 1817–1824.
    [Google Scholar]
  24. Tracy, M., Wanahita, A., Shuhatovich, Y., Goldsmith, E. A., Clarridge, J. E., III & Musher, D. M. ( 2001; ). Antibiotic susceptibilities of genetically characterized Streptococcus milleri group strains. Antimicrob Agents Chemother 45, 1511–1514.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.001560-0
Loading
/content/journal/jmm/10.1099/jmm.0.001560-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error