SARS-CoV-2 and spp.: friend or foe? A systematic literature review Open Access

Abstract

During this global pandemic of the COVID-19 disease, a lot of information has arisen in the media and online without scientific validation, and among these is the possibility that this disease could be aggravated by a secondary bacterial infection such as as well as the interest or not in using azithromycin, a potentially active antimicrobial agent. The aim of this study was to carry out a systematic literature review, to prove or disprove these allegations by scientific arguments. The search included Medline, PubMed, and Pubtator Central databases for English-language articles published 1999–2021. After removing duplicates, a total of final eligible studies (=149) were selected. There were more articles showing an increase of abundance in the presence of viral infection like that related to Human Immunodeficiency Virus (HIV), (HPV), and respiratory virus, highlighting differences according to methodologies and patient groups. The arguments for or against the use of azithromycin are stated in light of the results of the literature, showing the role of intercurrent factors, such as age, drug consumption, the presence of cancer or periodontal diseases. However, clinical trials are lacking to prove the direct link between the presence of spp. and a worsening of COVID-19, mainly those using azithromycin alone in this indication.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.001520
2022-05-05
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/71/5/jmm001520.html?itemId=/content/journal/jmm/10.1099/jmm.0.001520&mimeType=html&fmt=ahah

References

  1. Guan W-J, Ni Z-Y, Hu Y, Liang W-H, Ou C-Q et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020; 382:1708–1720 [View Article] [PubMed]
    [Google Scholar]
  2. Reddy SGK, Mantena M, Garlapati SKP, Manohar BP, Singh H et al. COVID-2019-2020-2021: systematic review and meta-analysis. J Pharm Bioallied Sci 2021; 13:S921–S926 [View Article] [PubMed]
    [Google Scholar]
  3. Fujita K, Takata I, Sugiyama H, Suematsu H, Yamagishi Y et al. Antimicrobial susceptibilities of clinical isolates of the anaerobic bacteria which can cause aspiration pneumonia. Anaerobe 2019; 57:86–89 [View Article] [PubMed]
    [Google Scholar]
  4. Zhou H, Shen Y, Shen Q, Zhou J. Thoracic empyema caused by Prevotella spp. diagnosed using 16S rDNA sequence analysis. Clin Respir J 2015; 9:121–124 [View Article] [PubMed]
    [Google Scholar]
  5. Marra A, Hillejan L, Ukena D. Management of lung abscess. Zentralbl Chir 2015; 140 Suppl 1:S47–53 [View Article] [PubMed]
    [Google Scholar]
  6. Ito K, Ito Y, Mizuta K, Ogawa H, Suzuki T et al. Bacteriology of chronic otitis media, chronic sinusitis, and paranasal mucopyocele in Japan. Clin Infect Dis 1995; 20 Suppl 2:S214–9 [View Article] [PubMed]
    [Google Scholar]
  7. Larsen JM. The immune response to Prevotella bacteria in chronic inflammatory disease. Immunology 2017; 151:363–374 [View Article] [PubMed]
    [Google Scholar]
  8. Asakawa M, Takeshita T, Furuta M, Kageyama S, Takeuchi K et al. Tongue microbiota and oral health status in community-dwelling elderly adults. mSphere 2018; 3:e00332-18 [View Article] [PubMed]
    [Google Scholar]
  9. Devoto AE, Santini JM, Olm MR, Anantharaman K, Munk P et al. Megaphages infect Prevotella and variants are widespread in gut microbiomes. Nat Microbiol 2019; 4:693–700 [View Article] [PubMed]
    [Google Scholar]
  10. Edwards RA. Prodigious Prevotella phages. Nat Microbiol 2019; 4:550–551 [View Article] [PubMed]
    [Google Scholar]
  11. Khan AA, Khan Z. COVID-2019-associated overexpressed Prevotella proteins mediated host-pathogen interactions and their role in coronavirus outbreak. Bioinformatics 2020; 36:4065–4069 [View Article] [PubMed]
    [Google Scholar]
  12. Koh HW, Kim MS, Lee JS, Kim H, Park SJ. Changes in the swine gut microbiota in response to porcine epidemic diarrhea infection. Microbes Environ 2015; 30:284–287 [View Article] [PubMed]
    [Google Scholar]
  13. Rosas-Salazar C, Kimura KS, Shilts MH, Strickland BA, Freeman MH et al. SARS-CoV-2 infection and viral load are associated with the upper respiratory tract microbiome. J Allergy Clin Immunol 2021; 147:1226–1233 [View Article] [PubMed]
    [Google Scholar]
  14. Ventero MP, Cuadrat RRC, Vidal I, Andrade BGN, Molina-Pardines C et al. Nasopharyngeal microbial communities of patients infected With SARS-CoV-2 that developed COVID-19. Front Microbiol 2021; 12:637430 [View Article] [PubMed]
    [Google Scholar]
  15. Kim D, Quinn J, Pinsky B, Shah NH, Brown I. Rates of Co-infection between SARS-CoV-2 and other respiratory pathogens. JAMA 2020; 323:2085–2086 [View Article] [PubMed]
    [Google Scholar]
  16. Xiong D, Muema C, Zhang X, Pan X, Xiong J et al. Enriched opportunistic pathogens revealed by metagenomic sequencing hint potential linkages between pharyngeal microbiota and COVID-19. Virol Sin 2021; 36:924–933 [View Article] [PubMed]
    [Google Scholar]
  17. Tricco AC, Lillie E, Zarin W, O’Brien KK, Colquhoun H et al. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med 2018; 169:467–473 [View Article] [PubMed]
    [Google Scholar]
  18. Wei CH, Allot A, Leaman R, Lu Z. PubTator central: automated concept annotation for biomedical full text articles. Nucleic Acids Res 2019; 47:W587–W593 [View Article] [PubMed]
    [Google Scholar]
  19. Brook I. Microbiology of chronic rhinosinusitis. Eur J Clin Microbiol Infect Dis 2016; 35:1059–1068 [View Article] [PubMed]
    [Google Scholar]
  20. Lee KH, Gordon A, Shedden K, Kuan G, Ng S et al. The respiratory microbiome and susceptibility to influenza virus infection. PLoS One 2019; 14:e0207898 [View Article] [PubMed]
    [Google Scholar]
  21. Tsang TK, Lee KH, Foxman B, Balmaseda A, Gresh L et al. Association between the respiratory microbiome and susceptibility to influenza virus infection. Clin Infect Dis 2020; 71:1195–1203 [View Article] [PubMed]
    [Google Scholar]
  22. Salk HM, Simon WL, Lambert ND, Kennedy RB, Grill DE et al. Taxa of the nasal microbiome are associated with influenza-specific IgA response to live attenuated influenza vaccine. PLoS One 2016; 11:e0162803 [View Article] [PubMed]
    [Google Scholar]
  23. de Steenhuijsen Piters WAA, Huijskens EGW, Wyllie AL, Biesbroek G, van den Bergh MR et al. Dysbiosis of upper respiratory tract microbiota in elderly pneumonia patients. ISME J 2016; 10:97–108 [View Article] [PubMed]
    [Google Scholar]
  24. Langevin S, Pichon M, Smith E, Morrison J, Bent Z et al. Early nasopharyngeal microbial signature associated with severe influenza in children: a retrospective pilot study. J Gen Virol 2017; 98:2425–2437 [View Article] [PubMed]
    [Google Scholar]
  25. Leung RK-K, Zhou J-W, Guan W, Li S-K, Yang Z-F et al. Modulation of potential respiratory pathogens by pH1N1 viral infection. Clin Microbiol Infect 2013; 19:930–935 [View Article] [PubMed]
    [Google Scholar]
  26. Hasegawa K, Mansbach JM, Ajami NJ, Espinola JA, Henke DM et al. Association of nasopharyngeal microbiota profiles with bronchiolitis severity in infants hospitalised for bronchiolitis. Eur Respir J 2016; 48:1329–1339 [View Article] [PubMed]
    [Google Scholar]
  27. Edouard S, Million M, Bachar D, Dubourg G, Michelle C et al. The nasopharyngeal microbiota in patients with viral respiratory tract infections is enriched in bacterial pathogens. Eur J Clin Microbiol Infect Dis 2018; 37:1725–1733 [View Article] [PubMed]
    [Google Scholar]
  28. Cook RR, Fulcher JA, Tobin NH, Li F, Lee D et al. Effects of HIV viremia on the gastrointestinal microbiome of young MSM. AIDS 2019; 33:793–804 [View Article] [PubMed]
    [Google Scholar]
  29. Dillon SM, Lee EJ, Kotter CV, Austin GL, Dong Z et al. An altered intestinal mucosal microbiome in HIV-1 infection is associated with mucosal and systemic immune activation and endotoxemia. Mucosal Immunol 2014; 7:983–994 [View Article] [PubMed]
    [Google Scholar]
  30. Ling Z, Jin C, Xie T, Cheng Y, Li L et al. Alterations in the fecal microbiota of patients with HIV-1 infection: an observational study in a Chinese population. Sci Rep 2016; 6:30673 [View Article] [PubMed]
    [Google Scholar]
  31. Lu W, Feng Y, Jing F, Han Y, Lyu N et al. Association between gut microbiota and CD4 recovery in HIV-1 infected patients. Front Microbiol 2018; 9:1451 [View Article] [PubMed]
    [Google Scholar]
  32. Marcos Sánchez F, Albo Castaño I, Arbol Linde F, Celdrán Gil J. Lung abscess caused by Prevotella oralis and Prevotella ruminicola in a HIV-positive patient. An Med Interna 2003; 20:164–165 [View Article]
    [Google Scholar]
  33. Maurice JB, Garvey L, Tsochatzis EA, Wiltshire M, Cooke G et al. Monocyte-macrophage activation is associated with nonalcoholic fatty liver disease and liver fibrosis in HIV monoinfection independently of the gut microbiome and bacterial translocation. AIDS 2019; 33:805–814 [View Article]
    [Google Scholar]
  34. Pereira VT, Pavan P, Souza RC, Souto R, Vettore MV et al. The association between detectable plasmatic human immunodeficiency virus (HIV) viral load and different subgingival microorganisms in Brazilian adults With HIV: a multilevel analysis. Journal of Periodontology 2014; 85:697–705 [View Article] [PubMed]
    [Google Scholar]
  35. Saxena D, Li Y, Devota A, Pushalkar S, Abrams W et al. Modulation of the orodigestive tract microbiome in HIV-infected patients. Oral Dis 2016; 22:73–78 [View Article] [PubMed]
    [Google Scholar]
  36. Xu S, Tsai A, Sze MA, Vucic EA, Shaipanich T et al. Decreased microbiome diversity in the HIV small airway epithelium. Respir Res 2018; 19:140 [View Article] [PubMed]
    [Google Scholar]
  37. Armstrong AJS, Shaffer M, Nusbacher NM, Griesmer C, Fiorillo S et al. An exploration of Prevotella-rich microbiomes in HIV and men who have sex with men. Microbiome 2018; 6:198 [View Article] [PubMed]
    [Google Scholar]
  38. Hensley-McBain T, Wu MC, Manuzak JA, Cheu RK, Gustin A et al. Increased mucosal neutrophil survival is associated with altered microbiota in HIV infection. PLoS Pathog 2019; 15:e1007672 [View Article] [PubMed]
    [Google Scholar]
  39. Blum FC, Hardy BL, Bishop-Lilly KA, Frey KG, Hamilton T et al. Microbial dysbiosis during simian immunodeficiency virus infection is partially reverted with combination anti-retroviral therapy. Sci Rep 2020; 10:6387 [View Article] [PubMed]
    [Google Scholar]
  40. Pinacchio C, Scagnolari C, Iebba V, Santinelli L, Innocenti GP et al. High abundance of genus Prevotella is associated with dysregulation of IFN-I and T cell response in HIV-1-infected patients. AIDS 2020; 34:1467–1473 [View Article] [PubMed]
    [Google Scholar]
  41. Borgdorff H, Tsivtsivadze E, Verhelst R, Marzorati M, Jurriaans S et al. Lactobacillus-dominated cervicovaginal microbiota associated with reduced HIV/STI prevalence and genital HIV viral load in African women. ISME J 2014; 8:1781–1793 [View Article] [PubMed]
    [Google Scholar]
  42. Alpagot T, Duzgunes N, Wolff LF, Lee A. Risk factors for periodontitis in HIV patients. J Periodontal Res 2004; 39:149–157 [View Article] [PubMed]
    [Google Scholar]
  43. Bascones-Martínez A, Escribano-Bermejo M. Necrotizing periodontal disease: a manifestation of systemic disorders. Med Clin (Barc) 2005; 125:706–713 [View Article] [PubMed]
    [Google Scholar]
  44. Patel M, Coogan M, Galpin JS. Periodontal pathogens in subgingival plaque of HIV-positive subjects with chronic periodontitis. Oral Microbiol Immunol 2003; 18:199–201 [View Article] [PubMed]
    [Google Scholar]
  45. Yeung SCH, Taylor BA, Sherson W, Lazarus R, Zhao ZZ et al. IgG subclass specific antibody response to periodontopathic organisms in HIV-positive patients. J Periodontol 2002; 73:1444–1450 [View Article] [PubMed]
    [Google Scholar]
  46. Ahmed N, Daniel B, Varghese J, Evangeline R, Jose T. Oropharyngeal microbiome of an HIV-positive patient. Microb Pathog 2020; 139:103805 [View Article] [PubMed]
    [Google Scholar]
  47. Akmatov MK, Koch N, Vital M, Ahrens W, Flesch-Janys D et al. Determination of nasal and oropharyngeal microbiomes in a multicenter population-based study - findings from Pretest 1 of the German National Cohort. Sci Rep 2017; 7:1855 [View Article] [PubMed]
    [Google Scholar]
  48. Tsang CS, Samaranayake LP. Predominant cultivable subgingival microbiota of healthy and HIV-infected ethnic Chinese. APMIS 2001; 109:117–126 [View Article] [PubMed]
    [Google Scholar]
  49. Lewy T, Hong B-Y, Weiser B, Burger H, Tremain A et al. Oral microbiome in HIV-infected women: shifts in the abundance of pathogenic and beneficial bacteria are associated with aging, HIV load, CD4 count, and antiretroviral therapy. AIDS Res Hum Retroviruses 2019; 35:276–286 [View Article] [PubMed]
    [Google Scholar]
  50. Imahashi M, Ode H, Kobayashi A, Nemoto M, Matsuda M et al. Impact of long-term antiretroviral therapy on gut and oral microbiotas in HIV-1-infected patients. Sci Rep 2021; 11:960 [View Article] [PubMed]
    [Google Scholar]
  51. Li S, Zhu J, Su B, Wei H, Chen F et al. Alteration in oral microbiome among men who have sex with men with acute and chronic HIV infection on antiretroviral therapy. Front Cell Infect Microbiol 2021; 11:695515 [View Article] [PubMed]
    [Google Scholar]
  52. Huang CB, Emerson KA, Gonzalez OA, Ebersole JL. Oral bacteria induce a differential activation of human immunodeficiency virus-1 promoter in T cells, macrophages and dendritic cells. Oral Microbiol Immunol 2009; 24:401–407 [View Article]
    [Google Scholar]
  53. Kehrmann J, Menzel J, Saeedghalati M, Obeid R, Schulze C et al. Gut microbiota in human immunodeficiency virus–infected individuals linked to coronary heart disease. J Infect Dis 2019; 219:497–508 [View Article] [PubMed]
    [Google Scholar]
  54. Yoder AC, Guo K, Dillon SM, Phang T, Lee EJ et al. The transcriptome of HIV-1 infected intestinal CD4+ T cells exposed to enteric bacteria. PLoS Pathog 2017; 13:e1006226 [View Article] [PubMed]
    [Google Scholar]
  55. Gonçalves L de S, Soares Ferreira SM, Souza CO, Souto R, Colombo AP. Clinical and microbiological profiles of human immunodeficiency virus (HIV)–seropositive brazilians undergoing highly active antiretroviral therapy and hiv-seronegative brazilians with chronic periodontitis. J Periodontol 2007; 78:87–96 [View Article] [PubMed]
    [Google Scholar]
  56. Gonçalves LS, Ferreira D de C, Heng NCK, Vidal F, Santos HF et al. Oral bacteriome of HIV-1-infected children from Rio de Janeiro, Brazil: Next-generation DNA sequencing analysis. J Clin Periodontol 2019; 46:1192–1204 [View Article] [PubMed]
    [Google Scholar]
  57. Li Y, Saxena D, Chen Z, Liu G, Abrams WR et al. HIV infection and microbial diversity in saliva. J Clin Microbiol 2014; 52:1400–1411 [View Article] [PubMed]
    [Google Scholar]
  58. Zhou Y, Ou Z, Tang X, Zhou Y, Xu H et al. Alterations in the gut microbiota of patients with acquired immune deficiency syndrome. J Cell Mol Med 2018; 22:2263–2271 [View Article] [PubMed]
    [Google Scholar]
  59. Parbie PK, Mizutani T, Ishizaka A, Kawana-Tachikawa A, Runtuwene LR et al. Dysbiotic Fecal Microbiome in HIV-1 Infected Individuals in Ghana. Front Cell Infect Microbiol 2021; 11:646467 [View Article] [PubMed]
    [Google Scholar]
  60. Nowak P, Troseid M, Avershina E, Barqasho B, Neogi U et al. Gut microbiota diversity predicts immune status in HIV-1 infection. AIDS 2015; 29:2409–2418 [View Article] [PubMed]
    [Google Scholar]
  61. Nowak RG, Bentzen SM, Ravel J, Crowell TA, Dauda W et al. Rectal microbiota among HIV-uninfected, untreated HIV, and treated HIV-infected in Nigeria. AIDS 2017; 31:857–862 [View Article]
    [Google Scholar]
  62. Bhadriraju S, Fadrosh DW, Shenoy MK, Lin DL, Lynch KV et al. Distinct lung microbiota associate with HIV-associated chronic lung disease in children. Sci Rep 2020; 10:16186 [View Article]
    [Google Scholar]
  63. Sainz T, Gosalbes MJ, Talavera A, Jimenez-Hernandez N, Prieto L et al. Effect of a nutritional intervention on the intestinal microbiota of vertically HIV-infected children: the pediabiota study. Nutrients 2020; 12:2112 [View Article] [PubMed]
    [Google Scholar]
  64. Fulcher JA, Hussain SK, Cook R, Li F, Tobin NH et al. Effects of substance use and sex practices on the intestinal microbiome during HIV-1 infection. J Infect Dis 2018; 218:1560–1570 [View Article]
    [Google Scholar]
  65. Tezal M, Sullivan Nasca M, Stoler DL, Melendy T, Hyland A et al. Chronic periodontitis−human papillomavirus synergy in base of tongue cancers. Arch Otolaryngol Head Neck Surg 2009; 135:391 [View Article] [PubMed]
    [Google Scholar]
  66. Ganly I, Yang L, Giese RA, Hao Y, Nossa CW et al. Periodontal pathogens are a risk factor of oral cavity squamous cell carcinoma, independent of tobacco and alcohol and human papillomavirus. Int J Cancer 2019; 145:775–784 [View Article] [PubMed]
    [Google Scholar]
  67. Brotman RM, Shardell MD, Gajer P, Tracy JK, Zenilman JM et al. Interplay between the temporal dynamics of the vaginal microbiota and human papillomavirus detection. J Infect Dis 2014; 210:1723–1733 [View Article] [PubMed]
    [Google Scholar]
  68. Di Paola M, Sani C, Clemente AM, Iossa A, Perissi E et al. Characterization of cervico-vaginal microbiota in women developing persistent high-risk Human Papillomavirus infection. Sci Rep 2017; 7:10200 [View Article] [PubMed]
    [Google Scholar]
  69. Laniewski P, Barnes D, Goulder A, Cui H, Roe DJ et al. Linking cervicovaginal immune signatures, HPV and microbiota composition in cervical carcinogenesis in non-hispanic and hispanic women. Sci Rep 2018; 8:7593 [View Article]
    [Google Scholar]
  70. Lee JE, Lee S, Lee H, Song Y-M, Lee K et al. Association of the vaginal microbiota with human papillomavirus infection in a korean twin cohort. PLoS ONE 2013; 8:e63514 [View Article] [PubMed]
    [Google Scholar]
  71. Ritu W, Enqi W, Zheng S, Wang J, Ling Y et al. Evaluation of the associations between cervical microbiota and HPV infection, clearance, and persistence in cytologically normal women. Cancer Prev Res (Phila) 2019; 12:43–56 [View Article]
    [Google Scholar]
  72. Dareng EO, Ma B, Famooto AO, Adebamowo SN, Offiong RA et al. Prevalent high-risk HPV infection and vaginal microbiota in Nigerian women. Epidemiol Infect 2016; 144:123–137 [View Article] [PubMed]
    [Google Scholar]
  73. Chao X-P, Sun T-T, Wang S, Fan Q-B, Shi H-H et al. Correlation between the diversity of vaginal microbiota and the risk of high-risk human papillomavirus infection. Int J Gynecol Cancer 2019; 29:28–34 [View Article] [PubMed]
    [Google Scholar]
  74. Cheng L, Norenhag J, Hu YOO, Brusselaers N, Fransson E et al. Vaginal microbiota and human papillomavirus infection among young Swedish women. NPJ Biofilms Microbiomes 2020; 6:39 [View Article] [PubMed]
    [Google Scholar]
  75. Chen Y, Qiu X, Wang W, Li D, Wu A et al. Human papillomavirus infection and cervical intraepithelial neoplasia progression are associated with increased vaginal microbiome diversity in a Chinese cohort. BMC Infect Dis 2020; 20:629 [View Article] [PubMed]
    [Google Scholar]
  76. Chen Y, Hong Z, Wang W, Gu L, Gao H et al. Association between the vaginal microbiome and high-risk human papillomavirus infection in pregnant Chinese women. BMC Infect Dis 2019; 19:677
    [Google Scholar]
  77. Onywera H, Williamson AL, Mbulawa ZZA, Coetzee D, Meiring TL. The cervical microbiota in reproductive-age South African women with and without human papillomavirus infection. Papillomavirus Res 2019a; 7:154–163
    [Google Scholar]
  78. Onywera H, Williamson AL, Cozzuto L, Bonnin S, Mbulawa ZZA et al. The penile microbiota of Black South African men: relationship with human papillomavirus and HIV infection. BMC Microbiol 2020; 20:78 [View Article]
    [Google Scholar]
  79. Nowak RG, Bentzen SM, Ravel J, Crowell TA, Dauda W et al. Anal microbial patterns and oncogenic human papillomavirus in a pilot study of Nigerian men who have sex with men at risk for or living with HIV. AIDS Res Hum Retroviruses 2019; 35:267–275 [View Article]
    [Google Scholar]
  80. Robayo DAG, Erira HAT, Jaimes FOG, Torres AM, Galindo AIC. Oropharyngeal squamous cell carcinoma: human papilloma virus coinfection with Streptococcus anginosus. Braz Dent J 2019; 30:626–633
    [Google Scholar]
  81. Campisciano G, Gheit T, De Seta F, Cason C, Zanotta N et al. Oncogenic virome benefits from the different vaginal microbiome-immune axes. Microorganisms 2019; 7:E414 [View Article] [PubMed]
    [Google Scholar]
  82. Zhang Z, Li T, Zhang D, Zong X, Bai H et al. Distinction between vaginal and cervical microbiota in high-risk human papilloma virus-infected women in China. BMC Microbiol 2021; 21:90 [View Article] [PubMed]
    [Google Scholar]
  83. Guerrero-Preston R, Godoy-Vitorino F, Jedlicka A, Rodríguez-Hilario A, González H et al. 16S rRNA amplicon sequencing identifies microbiota associated with oral cancer, human papilloma virus infection and surgical treatment. Oncotarget 2016; 7:51320–51334 [View Article] [PubMed]
    [Google Scholar]
  84. Mukherjee PK, Wang H, Retuerto M, Zhang H, Burkey B et al. Bacteriome and mycobiome associations in oral tongue cancer. Oncotarget 2017; 8:97273–97289 [View Article] [PubMed]
    [Google Scholar]
  85. Saygun I, Kubar A, Ozdemir A, Yapar M, Slots J. Herpesviral-bacterial interrelationships in aggressive periodontitis. J Periodontal Res 2004; 39:207–212 [View Article] [PubMed]
    [Google Scholar]
  86. Contreras A, Slots J. Herpesviruses in human periodontal disease. J Periodontal Res 2000; 35:3–16 [View Article] [PubMed]
    [Google Scholar]
  87. Slots J. Herpesviruses, the missing link between gingivitis and periodontitis?. J Int Acad Periodontol 2004; 6:113–119 [PubMed]
    [Google Scholar]
  88. Slots J. Herpesviral-bacterial synergy in the pathogenesis of human periodontitis. Curr Opin Infect Dis 2007; 20:278–283 [View Article] [PubMed]
    [Google Scholar]
  89. Parthiban S, Ahmed N, Ramakrishnan T, Balakumar V, Raja M et al. Herpes simplex 1 and periopathogen role in peri-implantitis. J Contemp Dent Pract 2017; 18:399–404 [View Article] [PubMed]
    [Google Scholar]
  90. Canullo L, Pesce P, Botticelli D, Covani U, Jankovic S et al. What is the impact of epstein-barr virus in peri-implant infection?. Int J Oral Maxillofac Implants 2018; 33:58–63 [View Article] [PubMed]
    [Google Scholar]
  91. Verdugo F, Castillo A, Castillo F, Uribarri A. Epstein-Barr virus associated peri-implantitis: a split-mouth study. Clin Oral Investig 2015; 19:535–543 [View Article] [PubMed]
    [Google Scholar]
  92. Hanookai D, Nowzari H, Contreras A, Morrison JL, Slots J. Herpesviruses and periodontopathic bacteria in Trisomy 21 periodontitis. J Periodontol 2000; 71:376–384 [View Article] [PubMed]
    [Google Scholar]
  93. Verdugo F, Castillo A, Simonian K, Castillo F, Farez-Vidal E et al. Periodontopathogen and Epstein-Barr virus-associated periapical periodontitis may be the source of retrograde infectious peri-implantitis. Clin Implant Dent Relat Res 2015; 17:199–207 [View Article] [PubMed]
    [Google Scholar]
  94. Maya-Lucas O, Murugesan S, Nirmalkar K, Alcaraz LD, Hoyo-Vadillo C et al. The gut microbiome of Mexican children affected by obesity. Anaerobe 2019; 55:11–23 [View Article] [PubMed]
    [Google Scholar]
  95. Mehta SD, Pradhan AK, Green SJ, Naqib A, Odoyo-June E et al. Microbial diversity of genital ulcers of HSV-2 seropositive women. Sci Rep 2017; 7:15475 [View Article] [PubMed]
    [Google Scholar]
  96. Pisano TJ, Hakkinen I, Rybinnik I. Large vessel occlusion secondary to COVID-19 Hypercoagulability in a young patient: a case report and literature review. J Stroke Cerebrovasc Dis 2020; 29:105307 [View Article] [PubMed]
    [Google Scholar]
  97. Haraszthy VI, Zambon JJ, Trevisan M, Zeid M, Genco RJ. Identification of periodontal pathogens in atheromatous plaques. J Periodontol 2000; 71:1554–1560 [View Article] [PubMed]
    [Google Scholar]
  98. Pucar A, Milasin J, Lekovic V, Vukadinovic M, Ristic M et al. Correlation between atherosclerosis and periodontal putative pathogenic bacterial infections in coronary and internal mammary arteries. J Periodontol 2007; 78:677–682 [View Article] [PubMed]
    [Google Scholar]
  99. Lu H, Zhu C, Li F, Xu W, Tao D et al. Putative periodontopathic bacteria and herpesviruses in pregnant women: a case-control study. Sci Rep 2016; 6:27796 [View Article] [PubMed]
    [Google Scholar]
  100. Jakovljevic A, Andric M, Knezevic A, Milicic B, Beljic-Ivanovic K et al. Herpesviral-bacterial co-infection in mandibular third molar pericoronitis. Clin Oral Investig 2017; 21:1639–1646 [View Article] [PubMed]
    [Google Scholar]
  101. Himi K, Takeichi O, Imai K, Hatori K, Tamura T et al. Epstein-barr virus reactivation by persistent apical periodontal pathogens. Int Endod J 2020; 53:492–505
    [Google Scholar]
  102. Ozcan E, Saygun NI, Serdar MA, Kubar A, Bengi VU. Porphyromonas gingivalis and epstein-barr virus are associated with increased levels of visfatin in gingival crevicular fluid. J Periodontol 2016; 87:443–451
    [Google Scholar]
  103. Aly AM, Adel A, El-Gendy AO, Essam TM, Aziz RK. Gut microbiome alterations in patients with stage 4 hepatitis C. Gut Pathog 2016; 8:42 [View Article]
    [Google Scholar]
  104. Wang Y, Pan CQ, Xing H. Advances in gut microbiota of viral hepatitis cirrhosis. Biomed Res Int 2019; 2019:9726786 [View Article]
    [Google Scholar]
  105. Huang X, Zhao Q, Xia L, Shi S. Letter to the Editor in response to the articles ‘Lianhuaqingwen exerts anti-viral and anti-inflammatory activities against novel coronavirus (SARS-CoV-2)’ and ‘Liu Shen capsule shows antiviral and anti-inflammatory abilities against novel coronavirus SARS-CoV-2 via suppression of NF-κB signaling pathway.’. Pharmacological Research 2021; 163:105289 [View Article]
    [Google Scholar]
  106. Dillon DG et al. Association of HIV and ART with cardiometabolic traits in sub-Saharan Africa: a systematic review and meta-analysis. Int J Epidemiol 2016; 45:2210–2211 [View Article] [PubMed]
    [Google Scholar]
  107. Liu CM, Prodger JL, Tobian AAR, Abraham AG, Kigozi G et al. Penile anaerobic dysbiosis as a risk factor for HIV Infection. mBio 2017; 8:e00996-17 [View Article]
    [Google Scholar]
  108. Noguera-Julian M, Rocafort M, Guillén Y, Rivera J, Casadellà M et al. Gut microbiota linked to sexual preference and HIV infection. EBioMedicine 2016; 5:135–146 [View Article] [PubMed]
    [Google Scholar]
  109. Lam KC, Vyshenska D, Hu J, Rodrigues RR, Nilsen A et al. Transkingdom network reveals bacterial players associated with cervical cancer gene expression program. PeerJ 2018; 6:e5590 [View Article] [PubMed]
    [Google Scholar]
  110. Chakraborty C, Sharma AR, Sharma G, Bhattacharya M, Lee SS. SARS-CoV-2 causing pneumonia-associated respiratory disorder (COVID-19): diagnostic and proposed therapeutic options. Eur Rev Med Pharmacol Sci 2020; 24:4016–4026 [View Article] [PubMed]
    [Google Scholar]
  111. Yashima A, Gomi K, Maeda N, Arai T. One-stage full-mouth versus partial-mouth scaling and root planing during the effective half-life of systemically administered azithromycin. J Periodontol 2009; 80:1406–1413 [View Article]
    [Google Scholar]
  112. Lai PC, Ho W, Jain N, Walters JD. Azithromycin concentrations in blood and gingival crevicular fluid after systemic administration. J Periodontol 2011; 82:1582–1586 [View Article] [PubMed]
    [Google Scholar]
  113. Diana G, Strollo R, Diana D, Strollo M, Galassi AR et al. Cardiac safety and potential efficacy: two reasons for considering minocycline in place of azithromycin in COVID-19 management. Eur Heart J Cardiovasc Pharmacother 2021; 7:e53–e54 [View Article]
    [Google Scholar]
  114. Solé G, Salort-Campana E, Pereon Y, Stojkovic T, Wahbi K et al. Guidance for the care of neuromuscular patients during the COVID-19 pandemic outbreak from the French Rare Health Care for Neuromuscular Diseases Network. Rev Neurol (Paris) 2020; 176:507–515 [View Article] [PubMed]
    [Google Scholar]
  115. Hinks TSC, Barber VS, Black J, Dutton SJ, Jabeen M et al. A multi-centre open-label two-arm randomised superiority clinical trial of azithromycin versus usual care in ambulatory COVID-19: study protocol for the ATOMIC2 trial. Trials 2020; 21:718 [View Article] [PubMed]
    [Google Scholar]
  116. Gheysarzadeh A, Sadeghifard N, Safari M, Balavandi F, Falahi S et al. Report of five nurses infected with severe acute respiratory syndrome coronavirus 2 during patient care: case series. New Microbes New Infect 2020; 36:100694 [View Article]
    [Google Scholar]
  117. Ohe M, Shida H, Jodo S, Kusunoki Y, Seki M et al. Macrolide treatment for COVID-19: Will this be the way forward?. Biosci Trends 2020; 14:159–160 [View Article]
    [Google Scholar]
  118. Wang D, Hu B, Hu C, Zhu F, Liu X et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020; 323:1061–1069 [View Article]
    [Google Scholar]
  119. Płusa T. Options for controlling new Corona virus infection - 2019-nCoV. Pol Merkur Lekarski 2020; 48:112–119
    [Google Scholar]
  120. Ali I, Alharbi OML. COVID-19: Disease, management, treatment, and social impact. Sci Total Environ 2020; 728:138861 [View Article]
    [Google Scholar]
  121. Jahan Y, Rahman S, Rahman A. COVID-19: A case report from Bangladesh perspective. Respir Med Case Rep 2020; 30:101068 [View Article] [PubMed]
    [Google Scholar]
  122. Louhaichi S, Allouche A, Baili H, Jrad S, Radhouani A et al. Features of patients with 2019 novel coronavirus admitted in a pneumology department: The first retrospective Tunisian case series. Tunis Med 2020; 98:261–265 [PubMed]
    [Google Scholar]
  123. Kelleni MT. Nitazoxanide/azithromycin combination for COVID-19: A suggested new protocol for early management. Pharmacol Res 2020; 157:104874 [View Article] [PubMed]
    [Google Scholar]
  124. Lin L, Xu Y-J, He D-P, Han Y, Tang G-H et al. A retrospective study on clinical features of and treatment methods for 77 severe cases of SARS. Am J Chin Med 2003; 31:821–839 [View Article] [PubMed]
    [Google Scholar]
  125. Kamel AM, Monem MSA, Sharaf NA, Magdy N, Farid SF. Efficacy and safety of azithromycin in Covid-19 patients: A systematic review and meta-analysis of randomized clinical trials. Rev Med Virol 2022; 32:e2258 [View Article] [PubMed]
    [Google Scholar]
  126. Zarogoulidis P, Papanas N, Kioumis I, Chatzaki E, Maltezos E et al. Macrolides: from in vitro anti-inflammatory and immunomodulatory properties to clinical practice in respiratory diseases. Eur J Clin Pharmacol 2012; 68:479–503 [View Article] [PubMed]
    [Google Scholar]
  127. Malavolta M, Giacconi R, Brunetti D, Provinciali M, Maggi F. Exploring the relevance of senotherapeutics for the current SARS-CoV-2 emergency and similar future global health threats. Cells 2020; 9:E909 [View Article] [PubMed]
    [Google Scholar]
  128. Lamb R, Ozsvari B, Lisanti CL, Tanowitz HB, Howell A et al. Antibiotics that target mitochondria effectively eradicate cancer stem cells, across multiple tumor types: treating cancer like an infectious disease. Oncotarget 2015; 6:4569–4584 [View Article] [PubMed]
    [Google Scholar]
  129. Ozsvari B, Nuttall JR, Sotgia F, Lisanti MP. Azithromycin and Roxithromycin define a new family of “senolytic” drugs that target senescent human fibroblasts. Aging (Albany NY) 2018; 10:3294–3307 [View Article]
    [Google Scholar]
  130. Mizunoe S, Kadota J-I, Tokimatsu I, Kishi K, Nagai H et al. Clarithromycin and azithromycin induce apoptosis of activated lymphocytes via down-regulation of Bcl-xL. Int Immunopharmacol 2004; 4:1201–1207 [View Article] [PubMed]
    [Google Scholar]
  131. Adeoye AO, Oso BJ, Olaoye IF, Tijjani H, Adebayo AI. Repurposing of chloroquine and some clinically approved antiviral drugs as effective therapeutics to prevent cellular entry and replication of coronavirus. J Biomol Struct Dyn 2021; 39:3469–3479 [View Article] [PubMed]
    [Google Scholar]
  132. Ulrich H, Pillat MM. CD147 as a target for COVID-19 treatment: suggested effects of azithromycin and stem cell engagement. Stem Cell Rev Rep 2020; 16:434–440 [View Article] [PubMed]
    [Google Scholar]
  133. Cramer CL, Patterson A, Alchakaki A, Soubani AO. Immunomodulatory indications of azithromycin in respiratory disease: a concise review for the clinician. Postgrad Med 2017; 129:493–499 [View Article] [PubMed]
    [Google Scholar]
  134. Doan T, Hinterwirth A, Arzika AM, Worden L, Chen C et al. Reduction of coronavirus burden with mass azithromycin distribution. Clin Infect Dis 2020; 71:2282–2284 [View Article] [PubMed]
    [Google Scholar]
  135. Damle B, Vourvahis M, Wang E, Leaney J, Corrigan B. Clinical pharmacology perspectives on the antiviral activity of azithromycin and use in COVID-19. Clin Pharmacol Ther 2020; 108:201–211 [View Article] [PubMed]
    [Google Scholar]
  136. Porter JD, Watson J, Roberts LR, Gill SK, Groves H et al. Identification of novel macrolides with antibacterial, anti-inflammatory and type I and III IFN-augmenting activity in airway epithelium. J Antimicrob Chemother 2016; 71:2767–2781 [View Article] [PubMed]
    [Google Scholar]
  137. Yashima A, Morozumi T, Yoshie H, Hokari T, Izumi Y et al. Biological responses following one-stage full-mouth scaling and root planing with and without azithromycin: Multicenter randomized trial. J Periodontal Res 2019; 54:709–719 [View Article] [PubMed]
    [Google Scholar]
  138. Morozumi T, Kubota T, Abe D, Shimizu T, Komatsu Y et al. Effects of irrigation with an antiseptic and oral administration of azithromycin on bacteremia caused by scaling and root planing. J Periodontol 2010; 81:1555–1563 [View Article] [PubMed]
    [Google Scholar]
  139. Choi EY, Jin JY, Choi JI, Choi IS, Kim SJ. Effect of azithromycin on Prevotella intermedia lipopolysaccharide-induced production of interleukin-6 in murine macrophages. Eur J Pharmacol 2014; 729:10–16 [View Article] [PubMed]
    [Google Scholar]
  140. Inoue K, Kumakura S-I, Uchida M, Tsutsui T. Effects of eight antibacterial agents on cell survival and expression of epithelial-cell- or cell-adhesion-related genes in human gingival epithelial cells. J Periodontal Res 2004; 39:50–58 [View Article] [PubMed]
    [Google Scholar]
  141. Loogman MCM, de Jong N, Platteel TN, Bouma M, Verheij TJM et al. Respiratory complaints in the time of COVID-19. Ned Tijdschr Geneeskd 2020; 164:D4999
    [Google Scholar]
  142. Yin J, M P, Wang S, Liao S-X, Peng X et al. Different dynamic patterns of β-lactams, quinolones, glycopeptides and macrolides on mouse gut microbial diversity. PLoS One 2015; 10:e0126712 [View Article]
    [Google Scholar]
  143. Bolz J, Dosa E, Schubert J, Eckert AW. Bacterial colonization of microbial biofilms in oral squamous cell carcinoma. Clin Oral Investig 2014; 18:409–414 [View Article]
    [Google Scholar]
  144. Kuznetsov EA, Dmitrieva LA, Tsarev VN, Kalinin AI. The prospects for using the new macrolide antibiotic azithromycin (Sumamed) in the combined treatment of periodontitis. Stomatologiia (Mosk) 1995; 74:12–15
    [Google Scholar]
  145. Andrada AC, Azuma MM, Furusho H, Hirai K, Xu S et al. Immunomodulation mediated by azithromycin in experimental periapical inflammation. J Endod 2020; 46:1648–1654
    [Google Scholar]
  146. Irshad M, Alam MK, Alawneh A, Alhadi MA, Alhadi AA et al. Characterization and antimicrobial susceptibility of pathogens associated with periodontal abscess. Antibiotics (Basel) 2020; 9:E654 [View Article] [PubMed]
    [Google Scholar]
  147. Jaramillo A, Arce RM, Herrera D, Betancourth M, Botero JE et al. Clinical and microbiological characterization of periodontal abscesses. J Clin Periodontol 2005; 32:1213–1218 [View Article] [PubMed]
    [Google Scholar]
  148. Khosravi-Samani M, Dehshiri K, Kazemi S, Shiran M, Mohgadamnia AA. The HPLC assay of concentration of azithromycin from two different manufacturers in gingival crevicular fluid (GCF). Caspian J Intern Med 2016; 7:260–266 [PubMed]
    [Google Scholar]
  149. Mättö J, Asikainen S, Väisänen ML, Von Troil-Lindén B, Könönen E et al. Beta-lactamase production in Prevotella intermedia, Prevotella nigrescens, and Prevotella pallens genotypes and in vitro susceptibilities to selected antimicrobial agents. Antimicrob Agents Chemother 1999; 43:2383–2388 [View Article] [PubMed]
    [Google Scholar]
  150. Sousa ELR, Gomes BPFA, Jacinto RC, Zaia AA, Ferraz CCR. Microbiological profile and antimicrobial susceptibility pattern of infected root canals associated with periapical abscesses. Eur J Clin Microbiol Infect Dis 2013; 32:573–580 [View Article] [PubMed]
    [Google Scholar]
  151. Veloo ACM, Seme K, Raangs E, Rurenga P, Singadji Z et al. Antibiotic susceptibility profiles of oral pathogens. Int J Antimicrob Agents 2012; 40:450–454 [View Article] [PubMed]
    [Google Scholar]
  152. Stein GE, Schooley S, Tyrrell KL, Citron DM, Goldstein EJC. Human serum activity of telithromycin, azithromycin and amoxicillin/clavulanate against common aerobic and anaerobic respiratory pathogens. Int J Antimicrob Agents 2007; 29:39–43 [View Article] [PubMed]
    [Google Scholar]
  153. Merriam CV, Citron DM, Tyrrell KL, Warren YA, Goldstein EJC. In vitro activity of azithromycin and nine comparator agents against 296 strains of oral anaerobes and 31 strains of Eikenella corrodens. Int J Antimicrob Agents 2006; 28:244–248 [View Article] [PubMed]
    [Google Scholar]
  154. Goldstein EJ, Citron DM, Merriam CV, Warren Y, Tyrrell K. Activities of telithromycin (HMR 3647, RU 66647) compared to those of erythromycin, azithromycin, clarithromycin, roxithromycin, and other antimicrobial agents against unusual anaerobes. Antimicrob Agents Chemother 1999; 43:2801–2805 [View Article] [PubMed]
    [Google Scholar]
  155. Ednie LM, Spangler SK, Jacobs MR, Appelbaum PC. Antianaerobic activity of the ketolide RU 64004 compared to activities of four macrolides, five beta-lactams, clindamycin, and metronidazole. Antimicrob Agents Chemother 1997; 41:1037–1041 [View Article] [PubMed]
    [Google Scholar]
  156. Weintraub A, Rashid MU, Nord CE. In-vitro activity of solithromycin against anaerobic bacteria from the normal intestinal microbiota. Anaerobe 2016; 42:119–122 [View Article] [PubMed]
    [Google Scholar]
  157. Goldstein EJC, Citron DM, Merriam CV. Comparative in vitro activities of amoxicillin-clavulanate against aerobic and anaerobic bacteria isolated from antral puncture specimens from patients with sinusitis. Antimicrob Agents Chemother 1999; 43:705–707 [View Article]
    [Google Scholar]
  158. Maestre JR, Bascones A, Sánchez P, Matesanz P, Aguilar L et al. Odontogenic bacteria in periodontal disease and resistance patterns to common antibiotics used as treatment and prophylaxis in odontology in Spain. Rev Esp Quimioter 2007; 20:61–67
    [Google Scholar]
  159. Bhat KG, Ingalagi P, Patil S, Patil S, Pattar G. Antimicrobial susceptibility pattern of oral gram negative anaerobes from Indian subjects. Anaerobe 2021; 70:102367 [View Article]
    [Google Scholar]
  160. Jepsen K, Falk W, Brune F, Fimmers R, Jepsen S et al. Prevalence and antibiotic susceptibility trends of periodontal pathogens in the subgingival microbiota of German periodontitis patients: A retrospective surveillance study. J Clinic Periodontology 2021; 48:1216–1227 [View Article]
    [Google Scholar]
  161. van Winkelhoff AJ, Herrera D, Oteo A, Sanz M. Antimicrobial profiles of periodontal pathogens isolated from periodontitis patients in The Netherlands and Spain. J Clin Periodontol 2005; 32:893–898 [View Article] [PubMed]
    [Google Scholar]
  162. Doan T, Hinterwirth A, Worden L, Arzika AM, Maliki R et al. Gut microbiome alteration in MORDOR I: a community-randomized trial of mass azithromycin distribution. Nat Med 2019; 25:1370–1376 [View Article] [PubMed]
    [Google Scholar]
  163. Lamoureux C, Guilloux C-A, Courteboeuf E, Gouriou S, Beauruelle C et al. Prevotella melaninogenica, a sentinel species of antibiotic resistance in cystic fibrosis respiratory niche?. Microorganisms 2021; 9:1275 [View Article] [PubMed]
    [Google Scholar]
  164. Brook I, Yocum P, Shah K, Feldman B, Epstein S. Increased antimicrobial resistance in organisms recovered from otitis media with effusion. J Laryngol Otol 2003; 117:449–453 [View Article] [PubMed]
    [Google Scholar]
  165. Goldstein EJ, Citron DM, Merriam CV, Warren Y, Tyrrell K. Comparative in vitro activities of ABT-773 against aerobic and anaerobic pathogens isolated from skin and soft-tissue animal and human bite wound infections. Antimicrob Agents Chemother 2000; 44:2525–2529 [View Article] [PubMed]
    [Google Scholar]
  166. Serrano C, Torres N, Valdivieso C, Castano C, Barrera M et al. Antibiotic resistance of periodontal pathogens obtained from frequent antibiotic users. Acta Odontol Latinoam 2009; 22:99–104
    [Google Scholar]
  167. Arredondo A, Blanc V, Mor C, Nart J, Leon R. Azithromycin and erythromycin susceptibility and macrolide resistance genes in prevotella from patients with periodontal disease. Oral Dis 2019; 25:860–867
    [Google Scholar]
  168. Kuriyama T, Williams DW, Yanagisawa M, Iwahara K, Shimizu C et al. Antimicrobial susceptibility of 800 anaerobic isolates from patients with dentoalveolar infection to 13 oral antibiotics. Oral Microbiol Immunol 2007; 22:285–288 [View Article]
    [Google Scholar]
  169. Taniyama D, Abe Y, Sakai T, Kikuchi T, Takahashi T. Human case of bacteremia caused by Streptococcus canis sequence type 9 harboring the scm gene. IDCases 2017; 7:48–52 [View Article]
    [Google Scholar]
  170. Sherrard LJ, Schaible B, Graham KA, McGrath SJ, McIlreavey L et al. Mechanisms of reduced susceptibility and genotypic prediction of antibiotic resistance in prevotella isolated from cystic fibrosis (CF) and non-CF patients. J Antimicrob Chemother 2014; 69:2690–2698 [View Article]
    [Google Scholar]
  171. Mikamo H, Iwasaku K, Yamagishi Y, Matsumizu M, Nagashima M. Efficacy and safety of intravenous azithromycin followed by oral azithromycin for the treatment of acute pelvic inflammatory disease and perihepatitis in Japanese women. J Infect Chemother 2014; 20:429–435 [View Article] [PubMed]
    [Google Scholar]
  172. Lopes Dos Santos Santiago G, Brusselle G, Dauwe K, Deschaght P, Verhofstede C et al. Influence of chronic azithromycin treatment on the composition of the oropharyngeal microbial community in patients with severe asthma. BMC Microbiol 2017; 17:109 [View Article] [PubMed]
    [Google Scholar]
  173. Cabral DJ, Wurster JI, Flokas ME, Alevizakos M, Zabat M et al. The salivary microbiome is consistent between subjects and resistant to impacts of short-term hospitalization. Sci Rep 2017; 7:11040 [View Article] [PubMed]
    [Google Scholar]
  174. Belibasakis GN, Thurnheer T. Validation of antibiotic efficacy on in vitro subgingival biofilms. J Periodontol 2014; 85:343–348 [View Article] [PubMed]
    [Google Scholar]
  175. Sherrard LJ, Graham KA, McGrath SJ, McIlreavey L, Hatch J et al. Antibiotic resistance in Prevotella species isolated from patients with cystic fibrosis. J Antimicrob Chemother 2013; 68:2369–2374 [View Article] [PubMed]
    [Google Scholar]
  176. Emingil G, Han B, Ozdemir G, Tervahartiala T, Vural C et al. Effect of azithromycin, as an adjunct to nonsurgical periodontal treatment, on microbiological parameters and gingival crevicular fluid biomarkers in generalized aggressive periodontitis. J Periodontal Res 2012; 47:729–739 [View Article]
    [Google Scholar]
  177. Han B, Emingil G, Ozdemir G, Tervahartiala T, Vural C et al. Azithromycin as an adjunctive treatment of generalized severe chronic periodontitis: clinical, microbiologic, and biochemical parameters. J Periodontol 2012; 83:1480–1491
    [Google Scholar]
  178. Haas AN, Silva-Boghossian CM, Colombo AP, Susin C, Albandar JM et al. Adjunctive azithromycin in the treatment of aggressive periodontitis: microbiological findings of a 12-month randomized clinical trial. J Dent 2012; 40:556–563
    [Google Scholar]
  179. Latif SA, Vandana KL, Thimmashetty J, Dalvi PJ. Azithromycin buccal patch in treatment of chronic periodontitis. Indian J Pharmacol 2016; 48:208–213
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.001520
Loading
/content/journal/jmm/10.1099/jmm.0.001520
Loading

Data & Media loading...

Supplements

Supplementary material 1

EXCEL

Most cited Most Cited RSS feed