1887

Abstract

Non-tuberculosis mycobacterium infections are increasing worldwide, including those caused by rapidly growing mycobacteria (RGM).

The identification of the aetiological agent in the context of infections is essential for the adoption of an adequate therapeutic approach. However, the methods for the rapid distinction of different RGM species are less than optimal.

To develop a nucleic acid chromatography kit to identify clinically common RGM.

We tried to develop a nucleic acid chromatography kit designed to detect four RGM species (including three subspecies) i.e. subsp. , subsp. (detected as ) subsp. , , and . The amplified target genes for each species/subspecies using multiplex PCR were analysed using a nucleic acid chromatography assay.

Among the 159 mycobacterial type strains and 70 RGM clinical isolates tested, the developed assay correctly identified all relevant RGM without any cross-reactivity or false-negatives. The limits of detection for each species were approximately 0.2 pg µl.

The rapid and simple nucleic acid chromatography method developed here, which does not involve heat denaturation, may contribute to the rapid identification and treatment of RGM infections.

Funding
This study was supported by the:
  • Japan Agency for Medical Research and Development (Award 19fk0108043h0403)
    • Principle Award Recipient: SatoshiMitarai
Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.001464
2021-12-08
2024-04-19
Loading full text...

Full text loading...

References

  1. Simons S, van Ingen J, Hsueh P-R, Van Hung N, Dekhuijzen PNR et al. Nontuberculous mycobacteria in respiratory tract infections, Eastern Asia. Emerg Infect Dis 2011; 17:343–349 [View Article] [PubMed]
    [Google Scholar]
  2. Henkle E, Hedberg K, Schafer S, Novosad S, Winthrop KL. Population-based incidence of pulmonary nontuberculous mycobacterial disease in Oregon 2007 to 2012. Ann Am Thorac Soc 2015; 12: 642–647 [View Article] [PubMed]
    [Google Scholar]
  3. Wentworth AB, Drage LA, Wengenack NL, Wilson JW, Lohse CM. Increased incidence of cutaneous nontuberculous mycobacterial infection, 1980 to 2009: A population-based study. Mayo Clin Proc 2013; 88:38–45 [View Article] [PubMed]
    [Google Scholar]
  4. Marras TK, Mendelson D, Marchand-Austin A, May K, Jamieson FB. Pulmonary nontuberculous mycobacterial disease, Ontario, Canada, 1998-2010. Emerg Infect Dis 2013; 19:1889–1891 [View Article] [PubMed]
    [Google Scholar]
  5. Alcaide F, Peña MJ, Pérez-Risco D, Camprubi D, Gonzalez-Luquero L et al. Increasing isolation of rapidly growing mycobacteria in a low-incidence setting of environmental mycobacteria, 1994-2015. Eur J Clin Microbiol Infect Dis 2017; 36:1425–1432 [View Article] [PubMed]
    [Google Scholar]
  6. Hoefsloot W, van Ingen J, Andrejak C, Angeby K, Bauriaud R et al. The geographic diversity of nontuberculous mycobacteria isolated from pulmonary samples: An NTM-NET collaborative study. Eur Respir J 2013; 42:1604–1613 [View Article] [PubMed]
    [Google Scholar]
  7. Jarand J, Levin A, Zhang L, Huitt G, Mitchell JD et al. Clinical and microbiologic outcomes in patients receiving treatment for Mycobacterium abscessus pulmonary disease. Clin Infect Dis 2011; 52: 565–571 [View Article] [PubMed]
    [Google Scholar]
  8. Daley CL, Iaccarino JM, Lange C, Cambau E, Wallace RJ Jr et al. Treatment of nontuberculous mycobacterial pulmonary disease: An official ats/ers/escmid/idsa clinical practice guideline. Clin Infect Dis 2020; 71:E1–E36 [View Article] [PubMed]
    [Google Scholar]
  9. Tortoli E, Kohl TA, Brown-Elliott BA, Trovato A, Leão SC et al. Emended description of Mycobacterium abscessus, Mycobacterium abscessus subsp. abscessus and Mycobacteriumabscessus subsp. bolletii and designation of Mycobacteriumabscessus subsp. massiliense comb. nov. Int J Syst Evol Microbiol 2016; 66:4471–4479 [View Article] [PubMed]
    [Google Scholar]
  10. Kim H-Y, Kim BJ, Kook Y, Yun Y-J, Shin JH et al. Mycobacterium massiliense is differentiated from Mycobacterium abscessus and Mycobacterium bolletii by erythromycin ribosome methyltransferase gene (erm) and clarithromycin susceptibility patterns. Microbiol Immunol 2010; 54: 347–353 [View Article] [PubMed]
    [Google Scholar]
  11. Koh W-J, Jeon K, Lee NY, Kim B-J, Kook Y-H et al. Clinical significance of differentiation of Mycobacterium massiliense from Mycobacterium abscessus. Am J Respir Crit Care Med 2011; 183: 405–410 [View Article] [PubMed]
    [Google Scholar]
  12. Morimoto K, Nakagawa T, Asami T, Morino E, Fujiwara H et al. Clinico-microbiological analysis of 121 patients with pulmonary Mycobacteroides abscessus complex disease in Japan - An NTM-JRC study with RIT. Respir Med 2018; 145:14–20 [View Article] [PubMed]
    [Google Scholar]
  13. Adékambi T, Berger P, Raoult D, Drancourt M. rpoB gene sequence-based characterization of emerging non-tuberculous mycobacteria with descriptions of Mycobacterium bolletii sp. nov., Mycobacterium phocaicum sp. nov. and Mycobacterium aubagnense sp. nov. Int J Syst Evol Microbiol 2006; 56: [View Article]
    [Google Scholar]
  14. Kim B-J, Lee S-H, Lyu M-A, Kim S-J, Bai G-H et al. Identification of mycobacterial Species by comparative sequence analysis of the RNA Polymerase Gene (rpoB). J Clin Microbiol 1999; 37:1714–1720 [View Article]
    [Google Scholar]
  15. Nakanaga K, Sekizuka T, Fukano H, Sakakibara Y, Takeuchi F et al. Discrimination of Mycobacterium abscessus subsp. massiliense from Mycobacterium abscessus subsp. abscessus in clinical isolates by multiplex PCR. J Clin Microbiol 2014; 52: 251–259 [View Article] [PubMed]
    [Google Scholar]
  16. Nagai S, Miyamoto S, Ino K, Tajimi S, Nishi H et al. Easy detection of multiple Alexandrium species using DNA chromatography chip. Harmful Algae 2016; 51:97–106 [View Article] [PubMed]
    [Google Scholar]
  17. Yoshida M, Sano S, Chien J-Y, Fukano H, Suzuki M et al. A novel DNA chromatography method to discriminate Mycobacterium abscessus subspecies and macrolide susceptibility. EBioMedicine 2021; 64:103187 [View Article] [PubMed]
    [Google Scholar]
  18. Morimoto K, Hasegawa N, Izumi K, Namkoong H, Uchimura K et al. A laboratory-based analysis of nontuberculous mycobacterial lung disease in Japan from 2012 to 2013. Ann Am Thorac Soc 2017; 14:49–56 [View Article] [PubMed]
    [Google Scholar]
  19. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article] [PubMed]
    [Google Scholar]
  20. Springer B, Stockman L, Teschner K, Roberts GD, Böttger EC. Two-laboratory collaborative study on identification of mycobacteria: Molecular versus phenotypic methods. J Clin Microbiol 1996; 34:296–303 [View Article] [PubMed]
    [Google Scholar]
  21. Chen KH, Sheu MM, Lin SR. Rapid identification of mycobacteria to the species level by polymerase chain reaction and restriction enzyme analysis--a case report of corneal ulcer. Kaohsiung J Med Sci 1997; 13:583–588 [View Article] [PubMed]
    [Google Scholar]
  22. Huh HJ, Kim S-Y, Shim HJ, Kim DH, Yoo IY et al. GenoType NTM-DR performance evaluation for identification of Mycobacterium avium complex and Mycobacterium abscessus and determination of clarithromycin and amikacin resistance. J Clin Microbiol 2019; 57:e00516-19. [View Article] [PubMed]
    [Google Scholar]
  23. Kehrmann J, Kurt N, Rueger K, Bange FC, Buer J. GenoType NTM-DR for identifying Mycobacterium abscessus subspecies and determining molecular resistance. J Clin Microbiol 2016; 54:1653–1655 [View Article] [PubMed]
    [Google Scholar]
  24. Richter E, Rüsch-Gerdes S, Hillemann D. Evaluation of the genotype mycobacterium assay for identification of mycobacterial species from cultures. J Clin Microbiol 2006; 44: 1769–1775 [View Article] [PubMed]
    [Google Scholar]
  25. Russo C, Tortoli E, Menichella D. Evaluation of the new GenoType Mycobacterium assay for identification of mycobacterial species. J Clin Microbiol 2006; 44: 334–339 [View Article] [PubMed]
    [Google Scholar]
  26. Kehrmann J, Wessel S, Murali R, Hampel A, Bange F-C et al. Principal component analysis of MALDI TOF MS mass spectra separates M. abscessus (sensu stricto) from M. massiliense isolates. BMC Microbiol 2016; 16:24. [View Article] [PubMed]
    [Google Scholar]
  27. Suzuki H, Yoshida S, Yoshida A, Okuzumi K, Fukusima A et al. A novel cluster of Mycobacterium abscessus complex revealed by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS). Diagn Microbiol Infect Dis 2015; 83: [View Article] [PubMed]
    [Google Scholar]
  28. Roux A-L, Catherinot E, Ripoll F, Soismier N, Macheras E et al. Multicenter study of prevalence of nontuberculous mycobacteria in patients with cystic fibrosis in France. J Clin Microbiol 2009; 47: 4124–4128 [View Article] [PubMed]
    [Google Scholar]
  29. van Ingen J, de Zwaan R, Dekhuijzen RPN, Boeree MJ, van Soolingen D. Clinical relevance of Mycobacterium chelonae-abscessus group isolation in 95 patients. J Infect 2009; 59: 324–331 [View Article] [PubMed]
    [Google Scholar]
  30. Zelazny AM, Root JM, Shea YR, Colombo RE, Shamputa IC et al. Cohort study of molecular identification and typing of Mycobacterium abscessus, Mycobacterium massiliense, and Mycobacterium bolletii. J Clin Microbiol 2009; 47: [View Article]
    [Google Scholar]
  31. Kim H-Y, Kook Y, Yun Y-J, Park CG, Lee NY et al. Proportions of Mycobacterium massiliense and Mycobacterium bolletii strains among Korean Mycobacterium chelonae-Mycobacterium abscessus group isolates. J Clin Microbiol 2008; 46: 3384–3390 [View Article] [PubMed]
    [Google Scholar]
  32. Yoshida S, Tsuyuguchi K, Suzuki K, Tomita M, Okada M et al. Further isolation of Mycobacterium abscessus subsp. abscessus and subsp. bolletii in different regions of Japan and susceptibility of these isolates to antimicrobial agents. Int J Antimicrob Agents 2013; 42: [View Article] [PubMed]
    [Google Scholar]
  33. O’Driscoll C, Konjek J, Heym B, Fitzgibbon MM, Plant BJ et al. Molecular epidemiology of Mycobacterium abscessus complex isolates in Ireland. J Cyst Fibros 2016; 15: [View Article] [PubMed]
    [Google Scholar]
  34. Rubio M, March F, Garrigó M, Moreno C, Español M et al. Inducible and acquired clarithromycin resistance in the mycobacterium abscessus complex. PLoS One 2015; 10:e0140166 [View Article] [PubMed]
    [Google Scholar]
  35. Nash KA, Brown-Elliott BA, Wallace RJ Jr. A Novel gene, erm(41), confers inducible macrolide resistance to clinical isolates of Mycobacterium abscessus but is absent from Mycobacterium chelonae. Antimicrob Agents Chemother 2009; 53: 1367–1376 [View Article] [PubMed]
    [Google Scholar]
  36. Luo RF, Curry C, Taylor N, Budvytiene I, Banaei N. Rapid detection of acquired and inducible clarithromycin resistance in Mycobacterium abscessus group by a simple real-time PCR assay. J Clin Microbiol 2015; 53: 2337–2339 [View Article] [PubMed]
    [Google Scholar]
  37. Aono A, Morimoto K, Chikamatsu K, Yamada H, Igarashi Y et al. Antimicrobial susceptibility testing of Mycobacteroides (Mycobacterium) abscessus complex, Mycolicibacterium (Mycobacterium) fortuitum, and Mycobacteroides (Mycobacterium) chelonae. J Infect Chemother 2019; 25:117–123 [View Article] [PubMed]
    [Google Scholar]
  38. Chikamatsu K, Aono A, Kato T, Takaki A, Yamada H et al. COBAS® TaqMan® MTB, smear positivity grade and MGIT culture; correlation analyses of three methods for bacillary quantification. Journal of Infection and Chemotherapy 2016; 22:19–23 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.001464
Loading
/content/journal/jmm/10.1099/jmm.0.001464
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error