1887

Abstract

Pigeon droppings are among the major environmental sources of AFLP1/VNI from where the organism infects susceptible humans and animals resulting in cryptococcosis. Until now, AFLP1B/VNII was the only molecular type reported in Nigeria. Effective clinical treatment of this infection has occasionally been stymied by the emergence of antifungal non-susceptible, and resistant strains of AFLP1/VNI.

Pigeon droppings harbour and HIV/AIDS patients are among the susceptible population to develop cryptococcal infection. Epidemiological data on cryptococcal prevalence is limited in Nigeria.

To investigate the environmental prevalence of in South-eastern Nigeria and compare the isolates with other lineages by using molecular and microbiological tools.

A total of 500 pigeon droppings and 300 blood samples of HIV/AIDS patients were collected, respectively, from five market squares and three tertiary healthcare centres within the Nsukka area of South-eastern Nigeria. The antifungal susceptibility of the isolates to amphotericin B, fluconazole, 5-fluorocytosine, itraconazole, voriconazole, posaconazole, and isavuconazole was investigated based on the CLSI M27-A3 protocol. Yeasts were identified by MALDI-TOF MS, thereafter MLST was performed according to the International Society for Human and Animal Mycology (ISHAM) consensus scheme.

was recovered from 6 (1.2 %) pigeon droppings and 6 (2 %) blood cultures of HIV/AIDS patients. Molecular analyses indicated that all cryptococcal isolates belong to serotype A and the AFLP1/VNI molecular type with sequence type (ST)32. Infection with was independent of sex and age of the patients investigated. All isolates were susceptible to the seven antifungal agents.

This is the first report on the prevalence of AFLP1/VNI (ST32) in environmental and clinical samples from Nigeria. The antifungal susceptibility indicates that antifungal resistance by is yet a rare occurrence in Nigeria.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.001440
2021-10-19
2024-04-19
Loading full text...

Full text loading...

References

  1. Cogliati M. Global molecular epidemiology of Cryptococcus neoformans and Cryptococcus gattii: An atlas of the molecular types. Scientifica (Cairo 2013; 2013:675213 [View Article]
    [Google Scholar]
  2. Hagen F, Khayhan K, Theelen B, Kolecka A, Polacheck I et al. Recognition of seven species in the Cryptococcus gattii/Cryptococcus neoformans species complex. Fungal Genet Biol 2015; 78:16–48 [View Article]
    [Google Scholar]
  3. Ellabib MS, Aboshkiwa MA, Husien WM, D’Amicis R, Cogliati M. Isolation, identification and molecular typing of Cryptococcus neoformans from pigeon droppings and other environmental sources in Tripoli, Libya. Mycopathologia 2016; 181:603–608 [View Article]
    [Google Scholar]
  4. Nweze EI, Kechia FA, Dibua UE, Eze C, Onoja US. Isolation of Cryptococcus neoformans from environmental samples collected in South-eastern Nigeria. Rev Inst Med Trop Sao Paulo 2015; 57:295–298 [View Article]
    [Google Scholar]
  5. Velagapudi R, Hsueh YP, Geunes-Boyer S, Wright JR, Heitman J. Spores as infectious propagules of Cryptococcus neoformans. Infect Immun 2009; 77:4345–4355 [View Article]
    [Google Scholar]
  6. Lin YY, Shiau S, Fang CT. Risk factors for invasive Cryptococcus neoformans diseases: a case-control study. PLoS One 2015; 10:e0119090 [View Article]
    [Google Scholar]
  7. Rajasingham R, Smith RM, Park BJ, Jarvis JN, Govender NP et al. Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis. Lancet Infect Dis 2017; 17:873–881 [View Article]
    [Google Scholar]
  8. Brienze VMS, André JC, Liso E, Louis V-S. Cryptococcal immune reconstitution inflammatory syndrome: From blood and cerebrospinal fluid biomarkers to treatment approaches. Life 2021; 11:
    [Google Scholar]
  9. Kharsany AB, Karim QA. HIV infection and AIDS in Sub-Saharan Africa: Current status, challenges and opportunities. Open AIDS J 2016; 10:34–48 [View Article]
    [Google Scholar]
  10. Florek M, Król J, Woźniak-Biel A. Atypical URA5 gene restriction fragment length polymorphism banding profile in Cryptococcus neoformans strains. Folia Microbiol (Praha) 2019; 64:857–860 [View Article]
    [Google Scholar]
  11. Wongsuk T, Homkaew A, Faksri K, Thongnak C. Multi-locus sequence typing and whole henome sequence analysis of Cryptococcus neoformans isolated from clinical specimens in Vajira Hospital, Bangkok, Thailand. Mycopathologia 2020; 185:503–514 [View Article]
    [Google Scholar]
  12. Illnait-Zaragozi MT, Martínez-Machín GF, Fernández-Andreu CM, Boekhout T, Meis JF et al. Microsatellite typing of clinical and environmental Cryptococcus neoformans var. grubii isolates from Cuba shows multiple genetic lineages. PLoS One 2010; 5:e9124 [View Article]
    [Google Scholar]
  13. Pinto A, Halliday C, Zahra M, van Hal S, Olma T et al. Matrix-assisted laser desorption ionization-time of flight mass spectrometry identification of yeasts is contingent on robust reference spectra. PLoS ONE 2011; 6:e25712 [View Article]
    [Google Scholar]
  14. Posteraro B, Vella A, Cogliati M, De Carolis E, Florio AR et al. Matrix-assisted laser desorption ionization-time of flight mass spectrometry-based method for discrimination between molecular types of Cryptococcus neoformans and Cryptococcus gattii. J Clin Microbiol 2012; 50:2472–2476 [View Article]
    [Google Scholar]
  15. Firacative C, Trilles L, Meyer W. MALDI – TOF MS enables the rapid identification of the major molecular types within the Cryptococcus neoformans/gattii species complex. PLoS ONE 2012; 7:e37566 [View Article]
    [Google Scholar]
  16. Meyer W, Aanensen DM, Boekhout T, Cogliati M, Diaz MR et al. Consensus multi-locus sequence typing scheme for Cryptococcus neoformans and Cryptococcus gattii. Med Mycol 2009; 47:561–570 [View Article]
    [Google Scholar]
  17. Harrison TS. The burden of HIV-associated cryptococcal disease. AIDS 2009; 23:531–532 [View Article]
    [Google Scholar]
  18. Kassi FK, Bellet V, Drakulovski P, Krasteva D, Roger F et al. Comparative typing analyses of clinical and environmental strains of the Cryptococcus neoformans/C Cryptococcus gattii species complex from Ivory Coast. J Med Microbiol 2018; 67:87–96 [View Article]
    [Google Scholar]
  19. Kassi FK, Drakulovski P, Bellet V, Krasteva D, Gatchitch F et al. Molecular epidemiology reveals genetic diversity among 363 isolates of the Cryptococcus neoformans and Cryptococcus gattii species complex in 61 Ivorian HIV-positive patients. Mycoses 2016; 59:811–817 [View Article]
    [Google Scholar]
  20. Irokanulo EO, Makinde AA, Akuesgi CO, Ekwonu M. Cryptococcus neoformans var. neoformans isolated from droppings of captive birds in Nigeria. J Wildl Dis 1997; 33:343–345 [View Article]
    [Google Scholar]
  21. Nnadi NE, Giosa D, Ayanbimpe GM, D’Alessandro E, Aiese Cigliano R et al. Whole-genome sequencing of an uncommon Cryptococcus neoformans MLST43 genotype isolated in Nigeria. Mycopathologia 2019; 184:555–557 [View Article]
    [Google Scholar]
  22. Taniwaki M, Yamasaki M, Ishikawa N, Kawamoto K, Hattori N. Standard antifungal therapy for pulmonary cryptococcosis to improve prognosis - Authors’ reply. Lancet Infect Dis 2019; 19:1281 [View Article]
    [Google Scholar]
  23. Cheesbrough M. Medical Laboratory Manual for Tropical Countries London: ELBS; 2007
    [Google Scholar]
  24. Tomazin R, Matos T, Meis JF, Hagen F. Molecular characterization and antifungal susceptibility testing of sequentially obtained clinical Cryptococcus deneoformans and Cryptococcus neoformans isolates from Ljubljana, Slovenia. Mycopathologia 2018; 183:371–380 [View Article]
    [Google Scholar]
  25. Hagen F, Colom MF, Swinne D, Tintelnot K, Iatta R et al. Autochthonous and dormant Cryptococcus gattii infections in Europe. Emerg Infect Dis 2012; 18:1618–1624 [View Article]
    [Google Scholar]
  26. Cogliati M, Desnos-Ollivier M, McCormick-Smith I, Rickerts V, Ferreira-Paim K et al. Genotypes and population genetics of Cryptococcus neoformans and Cryptococcus gattii species complexes in Europe and the Mediterranean area. Fungal Genet Biol 2019; 129:16–29 [View Article]
    [Google Scholar]
  27. Beale MA, Sabiiti W, Robertson EJ, Fuentes-Cabrejo KM, O’Hanlon SJ et al. Genotypic diversity is associated with clinical outcome and phenotype in cryptococcal meningitis across southern Africa. PLoS Negl Trop Dis 2015; 9:e0003847 [View Article]
    [Google Scholar]
  28. Litvintseva AP, Carbone I, Rossouw J, Thakur R, Govender NP et al. Evidence that the human pathogenic fungus Cryptococcus neoformans var. grubii may have evolved in Africa. PLoS One 2011; 6:e19688 [View Article]
    [Google Scholar]
  29. Litvintseva AP, Thakur R, Vilgalys R, Mitchell TG. Multilocus sequence typing reveals three genetic subpopulations of Cryptococcus neoformans var. grubii (Serotype A), including a unique population in Botswana. Genetics 2006; 172:2223–2238 [View Article]
    [Google Scholar]
  30. Van Wyk M, Govender NP, Mitchell TG, Litvintseva AP, GERMS SA. Multilocus sequence typing of serially collected isolates of Cryptococcus from hiv-infected patients in South Africa. J Clin Microbiol 2014; 52:1921–1931 [View Article]
    [Google Scholar]
  31. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article]
    [Google Scholar]
  32. Nascimento M, Sousa A, Ramirez M, Francisco AP, Carriço JA et al. PHYLOVIZ 2.0: Providing scalable data integration and visualization for multiple phylogenetic inference methods. Bioinformatics 2017; 33:128–129 [View Article]
    [Google Scholar]
  33. Clinical and Laboratory Standards Institute Reference method for broth dilution antifungal susceptibility testing of yeast. Approved standard. In MEN - a3 Wayne, PA: Clinical Laboratory Standards Institute; 2008
    [Google Scholar]
  34. Oladele RO, Akanmu AS, Nwosu AO, Ogunsola FT, Richardson MD et al. Cryptococcal antigenemia in nigerian patients with advanced human immunodeficiency virus: Influence of antiretroviral therapy adherence. Open Forum Infect Dis 2016; 3:ofw055 [View Article]
    [Google Scholar]
  35. Osazuwa F, Dirisu JO, Okuonghae PE, Ugbebor O. Screening for cryptococcal antigenemia in anti-retroviral naïve AIDS patients in benin city, Nigeria. Oman Med J 2012; 27:228–231 [View Article] [PubMed]
    [Google Scholar]
  36. Vidal JE, Boulware DR. Lateral flow assay for cryptococcal antigen: An important advance to improve the continuum of hiv care and reduce cryptococcal meningitis-related mortality. Rev Inst Med Trop Sao Paulo 2015; 57 Suppl 19:38–45 [View Article]
    [Google Scholar]
  37. Ford N, Shubber Z, Jarvis JN, Chiller T, Greene G et al. CD4 cell count threshold for cryptococcal antigen screening of hiv-infected individuals: A systematic review and meta-analysis. Clin Infect Dis 2018; 66:S152–S159 [View Article]
    [Google Scholar]
  38. Gaskell KM, Rothe C, Gnanadurai R, Goodson P, Jassi C et al. A prospective study of mortality from cryptococcal meningitis following treatment induction with 1200 mg oral fluconazole in Blantyre, Malawi. PLoS One 2014; 9:e110285 [View Article]
    [Google Scholar]
  39. Derbie A, Ayalew W, Mekonnen D, Alemu M, Mulugeta Y. Magnitude of cryptococcal antigenemia among HIV infected patients at a referral hospital, Northwest Ethiopia. Ethiop J Health Sci 2018; 28:369–374 [View Article]
    [Google Scholar]
  40. Skiest DJ, Hester JL, Hardy DR. Cryptococcal immune reconstitution inflammatory syndrome: Report of four cases in three patients and review of the literature. J Infect 2005; 51:297 [View Article]
    [Google Scholar]
  41. Fang L-f, Zhang P-p, Wang J, Yang Q, Qu T-t. Clinical and microbiological characteristics of cryptococcosis at an university hospital in China from 2013 to 2017. Braz J Infect Dis 2020; 24:7–12 [View Article]
    [Google Scholar]
  42. Nnadi NE, Enweani IB, Cogliati M, Ayanbimpe GM, Okolo MO et al. Molecular characterization of environmental Cryptococcus neoformans VNII isolates in Jos, Plateau state, Nigeria. J Mycol Med 2016; 26:306–311 [View Article]
    [Google Scholar]
  43. Illnait-Zaragozi MT, Martínez-Machín GF, Fernández-Andreu CM, Perurena-Lancha MR, Hagen F et al.. Cryptococcus and cryptococcosis in Cuba. A minireview. Mycoses 2014; 57:707–717 [View Article]
    [Google Scholar]
  44. Day JN, Hoang TN, Duong AV, Hong CTT, Diep PT et al. Most cases of cryptococcal meningitis in hiv-uninfected patients in Vietnam are due to a distinct amplified fragment length polymorphism-defined cluster of Cryptococcus neoformans var. grubii VN1. J Clin Microbiol 2011; 49:658–664 [View Article]
    [Google Scholar]
  45. Chowdhary A, Randhawa HS, Sundar G, Kathuria S, Prakash A et al. In vitro antifungal susceptibility profiles and genotypes of 308 clinical and environmental isolates of Cryptococcus neoformans var. grubii and Cryptococcus gattii serotype B from north-western India. J Med Microbiol 2011; 60:961–967 [View Article]
    [Google Scholar]
  46. Souza LKH, Souza Junior AH, Costa CR, Faganello J, Vainstein MH et al. Molecular typing and antifungal susceptibility of clinical and environmental Cryptococcus neoformans species complex isolates in Goiania, Brazil. Mycoses 2010; 53:62–67 [View Article]
    [Google Scholar]
  47. Abassi M, Boulware DR, Rhein J. Cryptococcal meningitis: Diagnosis and management update. Curr Trop Med Rep 2015; 2:90–99 [View Article]
    [Google Scholar]
  48. Coelho C, Casadevall A. Cryptococcal therapies and drug targets: The old, the new and the promising. Cell Microbiol 2016; 18:792–799 [View Article]
    [Google Scholar]
  49. Andrade-Silva L, Ferreira-Paim K, Mora DJ, Da Silva PR, Andrade AA et al. Susceptibility profile of clinical and environmental isolates of Cryptococcus neoformans and Cryptococcus gattii in Uberaba. Minas Gerais, Brazil Med Mycol 2013; 51:635–640 [View Article]
    [Google Scholar]
  50. Thompson GR 3rd, Wiederhold NP, Fothergill AW, Vallor AC, Wickes BL et al. Antifungal susceptibilities among different serotypes of Cryptococcus gattii and Cryptococcus neoformans. Antimicrob Agents Chemother 2009; 53:309–311 [View Article]
    [Google Scholar]
  51. Thompson G 3rd, Wiederhold NP. Isavuconazole: A comprehensive review of spectrum of activity of a new triazole. Mycopathologia 2010; 170:291–313 [View Article]
    [Google Scholar]
  52. Gutch RS, Nawange SR, Singh SM, Yadu R, Tiwari A et al. Antifungal susceptibility of clinical and environmental Cryptococcus neoformans and Cryptococcus gattii isolates in Jabalpur, a city of Madhya Pradesh in central India. Braz J Microbiol 2015; 46:1125–1133 [View Article]
    [Google Scholar]
  53. Litvintseva AP, Mitchell TG. Most environmental isolates of Cryptococcus neoformans var. grubii (Serotype A) are not lethal for mice. Infect Immun 2009; 77:3188–3195 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.001440
Loading
/content/journal/jmm/10.1099/jmm.0.001440
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error