Skip to content
1887

Abstract

(formerly genospecies 15 Tjernberg and Ursing) has been isolated from humans and animals and was proposed to be a novel species in 2015. A multidrug-resistant isolate, RYU24, was obtained in 2012 from an inpatient in Okinawa, Japan, with no record of overseas travel. The isolate was resistant to carbapenems, aminoglycosides and ciprofloxacin, with minimum inhibitory concentrations (MICs) of 32 µg ml for imipenem and meropenem; > 1024 µg ml for amikacin, arbekacin, gentamicin and tobramycin; and 8 µg ml for ciprofloxacin. The isolate was found to harbour a 68-kbp plasmid carrying , which encodes New Delhi metallo-β-lactamase-1 (NDM-1); , which encodes an OXA-58-like carbapenemase and; , which encodes ArmA 16S rRNA methylase conferring pan-aminoglycoside resistance. To our knowledge, this is the first report of a plasmid harbouring the three major drug-resistance genes, , and .

Funding
This study was supported by the:
  • the JU Research Fund (Keiko Yamazaki)
    • Principle Award Recipient: KoheiUechi
  • Japan Agency for Medical Research and Development (Award 20fk0108061h0303)
    • Principle Award Recipient: KoheiUechi
  • Japan Society for the Promotion of Science (Award 19KK0203)
    • Principle Award Recipient: TeruoKirikae
  • Japan Society for the Promotion of Science (Award 19K16652)
    • Principle Award Recipient: MariTohya
  • Japan Society for the Promotion of Science (Award 18K07121)
    • Principle Award Recipient: TeruoKirikae
  • Japan Society for the Promotion of Science (Award 18K07120)
    • Principle Award Recipient: TatsuyaTada
Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.001395
2021-08-25
2025-01-23
Loading full text...

Full text loading...

References

  1. Munoz-Price LS, Weinstein RA. Acinetobacter infection. N Engl J Med 2008; 358:1271–1281 [View Article]
    [Google Scholar]
  2. Potron A, Poirel L, Nordmann P. Emerging broad-spectrum resistance in Pseudomonas aeruginosa and Acinetobacter baumannii: Mechanisms and epidemiology. Int J Antimicrob Agents 45:568–585 [View Article]
    [Google Scholar]
  3. Al Atrouni A, Joly-Guillou ML, Hamze M, Kempf M. Reservoirs of non-baumannii Acinetobacter species. Front Microbiol 2016; 7:49 [View Article]
    [Google Scholar]
  4. Krizova L, McGinnis J, Maixnerova M, Nemec M, Poirel L et al. Acinetobacter variabilis sp. nov. (formerly DNA group 15 sensu Tjernberg & Ursing), isolated from humans and animals. Int J Syst Evol Microbiol 2015; 65:857–863 [View Article]
    [Google Scholar]
  5. Poirel L, Berçot B, Millemann Y, Bonnin RA, Pannaux G et al. Carbapenemase-producing Acinetobacter spp. in cattle, France. Emerg Infect Dis 2012; 18:523–525 [View Article]
    [Google Scholar]
  6. Guardabassi L, Dalsgaard A, Olsen JE. Phenotypic characterization and antibiotic resistance of Acinetobacter spp. isolated from aquatic sources. J Appl Microbiol 1999; 87:659–667 [View Article] [PubMed]
    [Google Scholar]
  7. Yong D, Toleman MA, Giske CG, Cho HS, Sundman K et al. Characterization of a new metallo-β-lactamase gene, blaNDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother 2009; 53:5046–5054 [View Article]
    [Google Scholar]
  8. Zmarlicka MT, Nailor MD, Nicolau DP. Impact of the New Delhi metallo-beta-lactamase on beta-lactam antibiotics. Infect Drug Resist 2015; 8:297–309 [View Article]
    [Google Scholar]
  9. Johnson AP, Woodford N. Global spread of antibiotic resistance: the example of New Delhi metallo-β-lactamase (NDM)-mediated carbapenem resistance. J Med Microbiol 2013; 62:499–513 [View Article]
    [Google Scholar]
  10. Chihara S, Okuzumi K, Yamamoto Y, Oikawa S, Hishinuma A. First case of New Delhi metallo-β-lactamase 1-producing Escherichia coli infection in Japan. Clin Infect Dis 2011; 5:153–154 [View Article]
    [Google Scholar]
  11. Mizuno Y, Yamaguchi T, Matsumoto T. A first case of New Delhi metallo-β-lactamase-7 in an Escherichia coli ST648 isolate in Japan. J Infect Chemother 2014; 20:814–816 [View Article]
    [Google Scholar]
  12. Nakano R, Nakano A, Hikosaka K, Kawakami S, Matsunaga N et al. First report of metallo-β-lactamase NDM-5-producing Escherichia coli in Japan. Antimicrob Agents Chemother 2014; 58:7611–7612 [View Article]
    [Google Scholar]
  13. Takayama Y, Sekizuka T, Matsui H, Adachi Y, Eda R et al. Characterization of the IncFII-IncFIB (pB171) plasmid carrying blaNDM-5 in Escherichia coli ST405 clinical isolate in Japan. Infect Drug Resist 2020; 13:561–565 [View Article]
    [Google Scholar]
  14. Takeuchi D, Akeda Y, Yoshida H, Hagiya H, Yamamoto N et al. Genomic reorganization by IS26 in a blaNDM-5-bearing FII plasmid of Klebsiella pneumoniae isolated from a patient in Japan. J Med Microbiol 2018; 67:1221–1224 [View Article]
    [Google Scholar]
  15. Uchida H, Tada T, Sugahara Y, Kato A, Miyairi I et al. A clinical isolate of Escherichia coli co-harbouring mcr-1 and blaNDM-5 in Japan. J Med Microbiol 2018; 67:1047–1049 [View Article]
    [Google Scholar]
  16. Nukui Y, Ayibieke A, Taniguchi M, Aiso Y, Shibuya Y et al. Whole-genome analysis of EC129, an NDM-5-, CTX-M-14-, OXA-10- and MCR-1-co-producing Escherichia coli ST167 strain isolated from Japan. J Glob Antimicrob Resist 2019; 18:148–150 [View Article]
    [Google Scholar]
  17. Nakazawa Y, Li R, Tamura T, Hoshina T, Tamura K et al. A case of NDM-1-producing Acinetobacter baumannii transferred from India to Japan. J infect Chemother 2013; 19:330–332 [View Article]
    [Google Scholar]
  18. Funaki T, Yasuhara T, Sekiguchi A, Yamazaki Y, Sugano E et al. Molecular epidemiology of carbapenem-resistant Acinetobacter baumannii isolated at Showa University Hospital 2011-2016. Rinsho Byori 2017; 65:1073–1081
    [Google Scholar]
  19. Wachino JI, Doi Y, Arakawa Y. Aminoglycoside resistance: Updates with a focus on acquired 16S ribosomal RNA methyltransferases. Infect Dis Clin North Am 2020; 34:887–902 [View Article]
    [Google Scholar]
  20. Galimand M, Courvalin P, Lambert T. Plasmid-mediated high-level resistance to aminoglycosides in Enterobacteriaceae due to 16S rRNA methylation. Antimicrob Agents Chemother 2003; 47:2565–2571 [View Article]
    [Google Scholar]
  21. Yokoyama K, Doi Y, Yamane K, Kurokawa H, Shibata N et al. Acquisition of 16S rRNA methylase gene in Pseudomonas aeruginosa. Lancet 2003; 362:1888–1893 [View Article]
    [Google Scholar]
  22. Tada T, Miyoshi-Akiyama T, Kato Y, Ohmagari N, Takeshita N et al. Emergence of 16S rRNA methylase-producing Acinetobacter baumannii and Pseudomonas aeruginosa isolates in hospitals in Vietnam. BMC Infect Dis 2013; 13:251 [View Article]
    [Google Scholar]
  23. Yamane K, Wachino J-i, Suzuki S, Shibata N, Kato H et al. 16S rRNA methylase-producing, gram-negative pathogens, Japan. Emerg Infect Dis 2007; 13:642–646 [View Article]
    [Google Scholar]
  24. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012; 18:268–281 [View Article]
    [Google Scholar]
  25. Uechi K, Tada T, Shimada K, Kuwahara-Arai K, Arakaki M et al. A modified carbapenem inactivation method, CIMTris, for carbapenemase production in Acinetobacter and Pseudomonas species. J Clin Microbiol 2017; 55:3405–3410 [View Article]
    [Google Scholar]
  26. Uechi K, Tada T, Kuwahara-Arai K, Sekiguchi JI, Yanagisawa I et al. An improved carbapenem inactivation method, CIMTrisII, for carbapenemase production by Gram-negative pathogens. J Med Microbiol 2019; 68:124–131 [View Article]
    [Google Scholar]
  27. Tada T, Sekiguchi JI, Watanabe S, Kuwahara-Arai K, Mizutani N et al. Assessment of newly developed immunochromatographic assay for NDM-type metallo-β-lactamase producing Gram-negative pathogens in Myanmar. BMC Infect Dis 2019; 19:565 [View Article]
    [Google Scholar]
  28. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article]
    [Google Scholar]
  29. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article]
    [Google Scholar]
  30. Sullivan MJ, Petty NK, Beatson SA. Easyfig: a genome comparison visualizer. Bioinformatics 2011; 27:1009–1010 [View Article]
    [Google Scholar]
  31. Leungtongkam U, Thummeepak R, Tasanapak K, Sitthisak S. Acquisition and transfer of antibiotic resistance genes in association with conjugative plasmid or class 1 integrons of Acinetobacter baumannii. PLoS One 2018; 13:e0208468 [View Article]
    [Google Scholar]
  32. Bertini A, Poirel L, Mugnier PD, Villa L, Nordmann P et al. Characterization and PCR-based replicon typing of resistance plasmids in Acinetobacter baumannii. Antimicrob Agents Chemother 2010; 54:4168–4177 [View Article]
    [Google Scholar]
  33. Vijayakumar S, Wattal C, Oberoi JK, Bhattacharya S, Vasudevan K et al. Insights into the complete genomes of carbapenem-resistant Acinetobacter baumannii harbouring blaOXA-23,blaOXA-420 and blaNDM-1 genes using a hybrid-assembly approach. Access Microbiol 2020; 2:acmi000140 [View Article] [PubMed]
    [Google Scholar]
  34. Zou D, Huang Y, Liu W, Yang Z, Dong D et al. Complete sequences of two novel blaNDM-1-harbouring plasmids from two Acinetobacter towneri isolates in China associated with the acquisition of Tn125. Sci Rep 2017; 7:9045 [View Article]
    [Google Scholar]
  35. Nemec A, Dijkshoorn L, Jezek P. Recognition of two novel phenons of the genus Acinetobacter among non-glucose-acidifying isolates from human specimens. J Clin Microbiol 2000; 38:3937–3941 [View Article] [PubMed]
    [Google Scholar]
  36. van den Broek PJ, van der Reijden TJK, van Strijen E, Helmig-Schurter AV, Bernards AT et al. Endemic and epidemic Acinetobacter species in a university hospital: An 8-year survey. J Clin Microbiol 2009; 47:3593–3599 [View Article]
    [Google Scholar]
/content/journal/jmm/10.1099/jmm.0.001395
Loading
/content/journal/jmm/10.1099/jmm.0.001395
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error