1887

Abstract

To date, the axenic culture of remains a challenge in the field of microbiology despite countless attempts. Here, we conducted a comprehensive bibliographic analysis using several databases and search engines, namely Pubmed, Google scholar, Google, Web of Science and Scopus. Numerous unsuccessful empiric studies have been conducted and evaluated using as criteria dark-field microscopic observation of motile spiral shaped cells in the culture and virulence of the culture through rabbit infectivity. All of these studies failed to induce rabbit infectivity, even when deemed positive after microscopic observation leading to the misnomer of avirulent . In fact, this criterion was improperly chosen because not all spiral shaped cells are . However, these studies led to the formulation of culture media particularly favourable to the growth of several species of including Oral Microbiology and Immunology, Zürich medium (OMIZ), Oral Treponeme Enrichment Broth (OTEB) and T-Raoult, thus allowing the increase in the number of cultivable strains of . The predicted metabolic capacities of show limited metabolism, also exhibited by other non-cultured and pathogenic species, in contrast to cultured species. The advent of next generation sequencing represents a turning point in this field, as the knowledge inferred from the genome can finally lead to the axenic culture of .

Funding
This study was supported by the:
  • Agence Nationale de la Recherche (Award Méditerranée Infection 10-IAHU-03)
    • Principle Award Recipient: DidierRaoult
Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.001388
2021-07-30
2022-10-03
Loading full text...

Full text loading...

References

  1. Evans AS, Brachman PS. Bacterial Infections of Humans, 3rd ed. Now York, NY: USA Kluwer Academic/Plenum Publishers: Springer; 1998 [View Article]
    [Google Scholar]
  2. Schink B, MDP D, Falkow S, Rosenberg E, Schleifer KH et al. The Prokaryotes: Volume 7: Proteobacteria: Delta, Epsilon Subclass, 3rd. edn 2006
    [Google Scholar]
  3. Dupin N. Syphilis. La Revue de Médecine Interne 2016; 37:735–742 [View Article]
    [Google Scholar]
  4. Klingmüller G. Treponema pallidum or Spirochaeta pallida?. Hautarzt Z Dermatol Venerol Verwandte Geb 1983; 34:628–631
    [Google Scholar]
  5. Kohl PK, Winzer I. 100Jahre Entdeckung der Spirochaeta pallida. Hautarzt 2005; 56:112–115
    [Google Scholar]
  6. Hardy PH, Nell EE. Isolation and purification of Treponema pallidum from syphilitic lesions in rabbits. Infect Immun 1975; 11:1296–1299 [View Article] [PubMed]
    [Google Scholar]
  7. Ruczkowska J, Podolska E, Kurnatowska A. Protozoa of Trichomonadidae family in suspension of Treponema pallidum passaged in rabbit testis. Wiad Parazytol 1977; 23:535–539 [PubMed]
    [Google Scholar]
  8. Pereira LE, Katz SS, Sun Y, Mills P, Taylor W et al. n.d successful isolation of Treponema pallidum strains from patients’ cryopreserved ulcer exudate using the rabbit model. PLOS ONE [Internet] 15:
    [Google Scholar]
  9. Baseman JB, Nichols JC, Rumpp JW, Hayes NS. Purification of Treponema pallidum from infected rabbit tissue: Resolution into two treponemal populations. Infect Immun 1974; 10:1062–1067 [View Article] [PubMed]
    [Google Scholar]
  10. Strouhal M, Smajs D, Matejková P, Sodergren E, Amin AG et al. Genome differences between Treponema pallidum subsp. pallidum strain Nichols and T. paraluiscuniculi strain Cuniculi A. Infect Immun 2007; 75:5859–5866 [View Article] [PubMed]
    [Google Scholar]
  11. Norris SJ, Paster BJ, Smibert RM. Treponema. Bergeys Man Syst Archaea Bact 2015; 1–42:
    [Google Scholar]
  12. Edmondson DG, Hu B, Norris SJ. Long-term in vitro culture of the Syphilis spirochete treponema pallidum subsp. Pallidum. mBio 2018; 9:e01153–18 [View Article] [PubMed]
    [Google Scholar]
  13. Noguchi H. Cultivation of pathogenic Treponema pallidum. J Am Med Assoc 1911; 57:102
    [Google Scholar]
  14. Rajković AD. Beef serum as a supplement to media for the cultivation of the Noguchi strain of Treponema pallidum. Z Für Med Mikrobiol Immunol 1966; 152:100–111
    [Google Scholar]
  15. Willcox R, Guthe T. Culture and survival of Treponema pallidum. WHO Chron 1967; 21:92
    [Google Scholar]
  16. Fieldsteel AH, Cox DL, Moeckli RA. Further-studies on replication of virulent Treponema pallidum in tissue-cultures of sflep cells. Infect Immun 1982; 35:449–455 [View Article] [PubMed]
    [Google Scholar]
  17. Fraser CM, Norris SJ, Weinstock GM, White O, Sutton GG et al. Complete genome sequence of Treponema pallidum, the syphilis spirochete. Science 1998; 281:375–388 [View Article] [PubMed]
    [Google Scholar]
  18. Izzat N, Smith E, Jackson S, Knox J. Immunological studies on treponemal antigens. II. Serological changes and resistance to infection in rabbits immunized with culture supernatant of avirulent Treponema pallidum. Br J Vener Dis 1971; 47:335
    [Google Scholar]
  19. Baeslack F. On the cultivation of the Treponema pallidum (Spirochaeta pallida. J Infect Dis 1913; 55–67:
    [Google Scholar]
  20. Newcomer VD, Haanes M. Observations on the growth of the nonpathogenic Nichols strain of Treponema pallidum in the embryonated chick egg under anaerobic conditions. Am J Syph Gonorrhea Vener Dis 1949; 33:318–322 [PubMed]
    [Google Scholar]
  21. Calkins E, London F, Mellinkoff S, Van Meter T, Turner T. Isolation of the Treponema pallidum from 3 patients with visceral syphilis by means of animal inoculation. Bull Johns Hopkins Hosp 1950; 87:61–73 [PubMed]
    [Google Scholar]
  22. Noguchi H. Method for the pure cultivation of pathogenic Treponema pallidum (Spirochaeta pallida. J Exp Med 1911; 14:99–108 [View Article] [PubMed]
    [Google Scholar]
  23. Noguchi H. The direct cultivation of Treponema pallidum pathogenic for the monkey. J Exp Med 1912; 15:90–100 [View Article] [PubMed]
    [Google Scholar]
  24. Noguchi H. A method for cultivating Treponema pallidum in fluid media. J Exp Med 1912; 16:211–215 [View Article] [PubMed]
    [Google Scholar]
  25. Rajković A, Rajković O. Cultivation of Noguchi’s Treponema in a medium of casein hydrolysate of domestic make. Med Arh 1965; 19:15–18
    [Google Scholar]
  26. Rajković AD. Cultivation of the Noguchi strain of Treponema pallidum in a lipid medium in the absence of serum. Z Für Med Mikrobiol Immunol 1967; 153:297–312
    [Google Scholar]
  27. Fitzgerald TJ, Miller JN, Sykes JA. Treponema pallidum (Nichols strain) in tissue cultures: cellular attachment, entry, and survival. Infect Immun 1975; 11:1133–1140 [View Article] [PubMed]
    [Google Scholar]
  28. Noguchi H. Cultural studies on mouth spirochætæ (Treponema microdentium and macrodentium. J Exp Med 1912; 15:81–89 [View Article] [PubMed]
    [Google Scholar]
  29. Noguchi H. Cultivation of Treponema calligyrum (new species) from condylomata of man. J Exp Med 1913; 17:89–98 [View Article] [PubMed]
    [Google Scholar]
  30. Hard S. Investigations into the possibility of cultivating virulent Treponema pallidum in culture media containing phytogenic growth factors. Acta Derm Venereol 1952; 32:381–385 [PubMed]
    [Google Scholar]
  31. Metzger M, Smogór W. Study of the effect of pH and Eh values of the Nelson-Diesendruck medium on the survival of virulent Treponema pallidum. Arch Immunol Ther Exp (Warsz) 1966; 14:445–453 [PubMed]
    [Google Scholar]
  32. Jones RH, Finn MA, Thomas JJ, Folger C. Growth and subculture of pathogenic T. pallidum (Nichols strain) in BHK-21 cultured tissue cells. Br J Vener Dis 1976; 52:18–23 [View Article] [PubMed]
    [Google Scholar]
  33. Chalmers W, Taylor-Robinson D. The effect of reducing and other agents on the motility of Treponema pallidum in an acellular culture medium. Microbiology 1979; 114:443–447
    [Google Scholar]
  34. Zinsser H. Notes on the cultivation of Treponema pallidum. J Exp Med 1915; 21:213–220 [View Article] [PubMed]
    [Google Scholar]
  35. Zinsser H, Hopkins J, McBurney M. Studies on Treponema pallidum and syphilis: v. Further studies on the relation of culture pallida to virulent pallida and on reinfection phenomena. J Exp Med 1916; 24:561–581 [View Article] [PubMed]
    [Google Scholar]
  36. Bessemans A, de Meirsman E. Tentatives de culture de Treponema pallidum sur la membrane chorio-allantoidienne de l’embryon de poulet vivant. CR Soc BiolParis 1938; 127:847
    [Google Scholar]
  37. Rathlev T. Investigations on in vitro survival and virulence of T. pallidum under aerobiosis. Br J Vener Dis 1975; 51:296–300 [View Article] [PubMed]
    [Google Scholar]
  38. Fitzgerald T. In vitro cultivation of Treponema pallidum: a review. Bull World Health Organ 1981; 59:787–101787 [PubMed]
    [Google Scholar]
  39. Riley BS, Cox DL. Cultivation of cottontail rabbit epidermal (Sf1Ep) cells on microcarrier beads and their use for suspension cultivation of Treponema pallidum subsp. pallidum Appl Env Microbiol 1988; 54:2862–2865
    [Google Scholar]
  40. Akatsu S. The influence of carbohydrates on the cultivation of spirochetes. J Exp Med 1917; 25:375–380 [View Article] [PubMed]
    [Google Scholar]
  41. Steinhardt E. A preliminary note on Spirochaeta pallida and living tissue-cells in vitro. J Am Med Assoc 1913; 61:1810
    [Google Scholar]
  42. Culture of T. pallidum in vitro: III. Bull World Health Organ 1966; 35 Suppl:60–66 [PubMed]
    [Google Scholar]
  43. Rice F, Nelson RA. The isolation from beef serum of a survival factor for Treponema pallidum. J Biol Chem 1951; 191:35–41 [View Article] [PubMed]
    [Google Scholar]
  44. Nevin TA, Guest WJ, Geller RC. Response of Treponema pallidum to certain nutrilites. Br J Vener Dis 1968; 44:274–276 [View Article] [PubMed]
    [Google Scholar]
  45. Boak RA, Fawcett ML, Carpenter C. Studies on the cultivation of Treponema pallidum. Am J Syph 1949; 33:409–415
    [Google Scholar]
  46. Sandok PL, Jenkin HM. Radiolabeling of Treponema pallidum (Nichols Virulent strain) in vitro with precursors for protein and RNA biosynthesis. Infect Immun 1978; 22:22–28 [View Article] [PubMed]
    [Google Scholar]
  47. Johnson RC, Eggebraten LM. Fatty Acid Requirements of the Kazan 5 and Reiter Strains of Treponema pallidum 1971
    [Google Scholar]
  48. Hungate RE. Chapter iv a roll tube method for cultivation of strict anaerobes. Norris J, Ribbons D. eds In Methods in Microbiology Academic Press; 1969 pp 117–132 http://www.sciencedirect.com/science/article/pii/S0580951708705038
    [Google Scholar]
  49. Thompson KW, Price RT, Prodell RC, Sipsey MM. Culture and Diagnostic Method for Treponema Pallidum Organisms 1970
    [Google Scholar]
  50. Rajkovic A. Cultivation of the Noguchi strain of Treponema pallidum, effect of successive additions of lipids to a basal medium culture in the absence of serum. Mikrobiologiya 1970; 7:1–9
    [Google Scholar]
  51. Abramson IJ, Smibert RM. Inhibition of growth of treponemes by antimicrobial agents. Sex Transm Infect 1971; 47:407–412
    [Google Scholar]
  52. Cannefax GR. A temperature-gradient bar and its applications to the study of temperature effects on the growth of Reiter’s treponeme. J Bacteriol 1962; 83:708–710 [View Article] [PubMed]
    [Google Scholar]
  53. Bedford JM. Human spermatozoa and temperature: The elephant in the room. Biol REPROD (internet; 2015 https://academic.oup.com/biolreprod/article/2434272/Human
  54. Weiss C, Wilkes-Weiss D. Study of cultural requirements of Spirochaeta pallida. J Infect Dis 1924; 34:212–222 [View Article]
    [Google Scholar]
  55. Wyss C. Fatty acids synthesized by oral treponemes in chemically defined media. FEMS Microbiol Lett 2007; 269:70–76 [View Article] [PubMed]
    [Google Scholar]
  56. Riviere GR, Smith KS, Willis SG, Riviere KH. Phenotypic and genotypic heterogeneity among cultivable pathogen-related oral Spirochetes and Treponema vincentii. J Clin Microbiol 1999; 37:3676–3680 [View Article] [PubMed]
    [Google Scholar]
  57. Wyss C, Moter A, Choi BK, Dewhirst FE, Xue Y et al. Treponema putidum sp. nov., a medium-sized proteolytic spirochaete isolated from lesions of human periodontitis and acute necrotizing ulcerative gingivitis. Int J Syst Evol Microbiol 2004; 54:1117–1122 [View Article] [PubMed]
    [Google Scholar]
  58. Wyss C, Choi BK, Schüpbach P, Guggenheim B, Göbel UB. Treponema maltophilum sp. nov., a small oral spirochete isolated from human periodontal lesions. Int J Syst Bacteriol 1996; 46:745–752 [View Article] [PubMed]
    [Google Scholar]
  59. Wyss C, Dewhirst FE, Gmür R, Thurnheer T, Xue Y et al. Treponema parvum sp. nov., a small, glucoronic or galacturonic acid-dependent oral spirochaete from lesions of human periodontitis and acute necrotizing ulcerative gingivitis. Int J Syst Evol Microbiol 2001; 51:955–962 [View Article] [PubMed]
    [Google Scholar]
  60. Nordhoff M, Taras D, Macha M, Tedin K, Busse HJ et al. Treponema berlinense sp. nov. and Treponema porcinum sp. nov., novel spirochaetes isolated from porcine faeces. Int J Syst Evol Microbiol 2005; 55:1675–1680 [View Article] [PubMed]
    [Google Scholar]
  61. Wyss C, Choi BK, Schupbach P, Guggenheim B, Gobel UB. Treponema amylovorum sp. nov., a Saccharolytic Spirochete of Medium Size Isolated from an Advanced Human Periodontal Lesion. Int J Syst Bacteriol 1997; 47:842–845 [View Article] [PubMed]
    [Google Scholar]
  62. Lucey KS, Leadbetter JR. Catechol 2,3-dioxygenase and other meta -cleavage catabolic pathway genes in the ‘anaerobic’ termite gut spirochete Treponema primitia. Mol Ecol 2014; 23:1531–1543 [View Article] [PubMed]
    [Google Scholar]
  63. Wyss C. Growth of Porphyromonas gingivalis, Treponema denticola, T. pectinovorum, T. socranskii, and T. vincentii in a chemically defined medium. J Clin Microbiol 1992; 30:2225–2229
    [Google Scholar]
  64. Belkacemi S, Boukhalil J, Ominami Y, Hisada A, Fontanini A et al. Passive filtration, rapid scanning electron microscopy and MALDI-TOF MS for Treponema culture and identification from the oral cavity. J Clin Microbiol [Internet
    [Google Scholar]
  65. Pringle M, Backhans A, Otman F, Sjölund M, Fellström C. Isolation of spirochetes of genus Treponema from pigs with ear necrosis. Vet Microbiol 2009; 139:279–283 [View Article]
    [Google Scholar]
  66. Kuhnert P, Brodard I, Alsaaod M, Steiner A, Stoffel MH et al. Treponema phagedenis (ex Noguchi 1912) Brumpt 1922 sp. nov., nom. rev., isolated from bovine digital dermatitis. Int J Syst Evol Microbiol 2020; 70:2115–2123 [View Article] [PubMed]
    [Google Scholar]
  67. Clegg SR, Sullivan LE, Bell J, Blowey RW, Carter SD et al. Detection and isolation of digital dermatitis treponemes from skin and tail lesions in pigs. Res Vet Sci 2016; 104:64–70 [View Article] [PubMed]
    [Google Scholar]
  68. Newbrook K, Staton GJ, Clegg SR, Birtles RJ, Carter SD et al. Treponema ruminis sp. nov., a spirochaete isolated from the bovine rumen. Int J Syst Evol Microbiol 2017; 67:1349–1354 [View Article] [PubMed]
    [Google Scholar]
  69. Evans NJ, Brown JM, Demirkan I, Murray RD, Birtles RJ et al. Treponema pedis sp. nov., a spirochaete isolated from bovine digital dermatitis lesions. Int J Syst Evol Microbiol 2009; 59:987–991 [View Article] [PubMed]
    [Google Scholar]
  70. Evans NJ, Brown JM, Murray RD, Getty B, Birtles RJ et al. Characterization of novel bovine gastrointestinal tract treponema isolates and comparison with bovine digital dermatitis treponemes. Appl Environ Microbiol 2011; 77:138–147 [View Article] [PubMed]
    [Google Scholar]
  71. Döpfer D, Anklam K, Mikheil D, Ladell P. Growth curves and morphology of three Treponema subtypes isolated from digital dermatitis in cattle. Vet J 2012; 193:685–693 [View Article] [PubMed]
    [Google Scholar]
  72. Clegg SR, Crosby-Durrani HE, Bell J, Blundell R, Blowey RW et al. Detection and isolation of digital dermatitis treponemes from bovine pressure sores. J Comp Pathol 2016; 154:273–282 [View Article] [PubMed]
    [Google Scholar]
  73. Clegg SR, Mansfield KG, Newbrook K, Sullivan LE, Blowey RW et al. Isolation of digital dermatitis Treponemes from hoof lesions in wild north american elk (Cervus elaphus) in Washington State, USA. J Clin Microbiol 2015; 53:88–94 [View Article] [PubMed]
    [Google Scholar]
  74. Clegg SR, Bell J, Ainsworth S, Blowey RW, Bell NJ et al. Isolation of digital dermatitis treponemes from cattle hock skin lesions. Vet Dermatol 2016; 27:106–e30 [View Article] [PubMed]
    [Google Scholar]
  75. Evans NJ, Brown JM, Demirkan I, Murray RD, Vink WD et al. Three unique groups of spirochetes isolated from digital dermatitis lesions in UK cattle. Vet Microbiol 2008; 130:141–150 [View Article] [PubMed]
    [Google Scholar]
  76. Clegg SR, Carter SD, Birtles RJ, Brown JM, Hart CA et al. Multilocus sequence typing of pathogenic treponemes isolated from cloven-hoofed animals and comparison to Treponemes isolated from humans. Appl Environ Microbiol 2016; 82:4523–4536 [View Article] [PubMed]
    [Google Scholar]
  77. Staton GJ, Newbrook K, Clegg SR, Birtles RJ, Evans NJ et al. Treponema rectale sp. nov., a spirochete isolated from the bovine rectum. Int J Syst Evol Microbiol 2017; 67:2470–2475 [View Article] [PubMed]
    [Google Scholar]
  78. Demirkan I, Erdoğan M, D, Bozkurt F, Altındiş M et al. Isolation and identification of Treponema pedis and Treponema phagedenis-like organisms from bovine digital dermatitis lesions found in dairy cattle in Turkey. J Dairy Sci 2018; 101:10317–10326 [View Article]
    [Google Scholar]
  79. Koseki T, Benno Y, Zhang-Koseki YJ, Umeda M, Ishikawa I. Detection frequencies and the colony-forming unit recovery of oral treponemes by different cultivation methods. Oral Microbiol Immunol 1996; 11:203–208 [View Article] [PubMed]
    [Google Scholar]
  80. Stamm LV, Gherardini FC, Parrish EA, Moomaw CR. Heat shock response of spirochetes. Infect Immun 1991; 59:1572–1575 [View Article] [PubMed]
    [Google Scholar]
  81. Stamm LV, Bergen HL, Walker RL. Molecular typing of papillomatous digital dermatitis-associated Treponema isolates based on analysis of 16S-23S ribosomal DNA intergenic spacer regions. J Clin Microbiol 2002; 40:3463–3469 [View Article] [PubMed]
    [Google Scholar]
  82. Yano T, Moe KK, Chuma T, Misawa N. Antimicrobial susceptibility of Treponema phagedenis-like spirochetes isolated from dairy cattle with papillomatous digital dermatitis lesions in Japan. J Vet Med Sci 2010; 72:379–382 [View Article] [PubMed]
    [Google Scholar]
  83. Yano T, Yamagami R, Misumi K, Kubota C, Moe KK et al. Genetic heterogeneity among strains of Treponema phagedenis-like spirochetes isolated from dairy cattle with Papillomatous digital dermatitis in Japan. J Clin Microbiol 2009; 47:727–733 [View Article] [PubMed]
    [Google Scholar]
  84. Hougen KH, Birch-Andersen A. Electron microscopy of endoflagella and microtubules in treponema reiter. Acta Pathol Microbiol Scand [B] Microbiol Immunol 2009; 79B:37–50
    [Google Scholar]
  85. Masuda K, Kawata T. Isolation and characterization of cytoplasmic fibrils from treponemes. Microbiol Immunol 1989; 33:619–630 [View Article] [PubMed]
    [Google Scholar]
  86. Hougen KH, Birch-Andersen A. Electron microscopy of endoflagella and microtubules in Ttreponema reiter acta pathol microbiol scand. microbiol immunol 2009; 79B:37–50
    [Google Scholar]
  87. Hougen KH. The ultrastructure of cultivable treponemes: 3. Treponema genitalis. Acta Pathol Microbiol Scand [B 2009; 83B:91–99
    [Google Scholar]
  88. Huo YB, Chan Y, Lacap-Bugler DC, Mo S, PCY W. Multilocus sequence analysis of Phylogroup 1 and 2 Oral Treponeme strains. McBain A. eds In Applied and Environmental Microbiology Vol 83 2017 pp e02499–16
    [Google Scholar]
  89. Asai Y, Ohyama Y, Taiji Y, Makimura Y, Tamai R et al. Treponema medium Glycoconjugate inhibits activation of human gingival fibroblasts stimulated with phenol-water extracts of periodontopathic bacteria. J Dent Res 2005; 84:456–461 [View Article] [PubMed]
    [Google Scholar]
  90. Chan Y, Huo YB, Yu X, Zeng H, Leung WK et al. Complete genome sequence of human oral phylogroup 1 Treponema sp. strain OMZ 804 (ATCC 700766), originally isolated from periodontitis dental plaque. Microbiol Resour Announc 2020; 9:e00532–20 [View Article]
    [Google Scholar]
  91. Tamai R, Asai Y, Kawabata A, Akisaka T, Ogawa T. Possible requirement of intercellular adhesion molecule-1 for invasion of gingival epithelial cells by Treponema medium. Can J Microbiol 2007; 53:1232–1238 [View Article] [PubMed]
    [Google Scholar]
  92. Syed SA, Mäkinen PL, Mäkinen PL, Chen CY, Muhammad Z. Proteolytic and oxidoreductase activity of Treponema denticola ATCC 35405 grown in an aerobic and anaerobic gaseous environment. Res Microbiol 1993; 144:317–326 [View Article]
    [Google Scholar]
  93. Hashimoto M, Asai Y, Jinno T, Adachi S, Kusumoto S et al. Structural elucidation of polysaccharide part of glycoconjugate from Treponema medium ATCC 700293. Eur J Biochem 2003; 270:2671–2679 [View Article] [PubMed]
    [Google Scholar]
  94. Umemoto T, Yoshimura F, Kureshiro H, Hayashi J, Noguchi T et al. Fimbria-mediated coaggregation between human oral anaerobes Treponema medium and Porphyromonas gingivalis. Microbiol Immunol 1999; 43:837–845 [View Article] [PubMed]
    [Google Scholar]
  95. Sato T, Kuramitsu HK. Restriction fragment-length polymorphism analysis of 16S ribosomal RNA genes amplified by polymerase chain reaction for rapid identification of cultivable oral treponemes: Identification of oral treponemes by 16S rRNA gene PCR-RFLP. Oral Microbiol Immunol 1999; 14:117–121 [View Article] [PubMed]
    [Google Scholar]
  96. Nakazawa F, Hoshino E, Fukunaga M, Jinno T, Asai Y et al. Amended biochemical characteristics and phylogenetic position of Treponema medium: Amended characteristics of Treponema medium. Oral Microbiol Immunol 2003; 18:127–130 [View Article] [PubMed]
    [Google Scholar]
  97. Umemoto T, Nakazawa F, Hoshino E, Okada K, Fukunaga M et al. Treponema medium sp. nov., isolated from human subgingival dental plaque. Int J Syst Bacteriol 1997; 47:67–72 [View Article] [PubMed]
    [Google Scholar]
  98. Blakemore RP, Canale-Parola E. Arginine catabolism by Treponema denticola. J Bacteriol 1976; 128:616–622 [View Article] [PubMed]
    [Google Scholar]
  99. Lai Y, Chu L. Novel mechanism for conditional aerobic growth of the anaerobic bacterium Treponema denticola. Appl Environ Microbiol 2008; 74:73–79 [View Article] [PubMed]
    [Google Scholar]
  100. Weinberg A, Holt SC. Interaction of Treponema denticola TD-4, GM-1, and MS25 with human gingival fibroblasts. Infect Immun 1990; 58:1720–1729 [View Article] [PubMed]
    [Google Scholar]
  101. Chu L, Dong Z, Xu X, Cochran DL, Ebersole JL. Role of glutathione metabolism of Treponema denticola in bacterial growth and virulence expression. Infect Immun 2002; 70:1113–1120 [View Article] [PubMed]
    [Google Scholar]
  102. Rosewarne CP, Cheung JL, Smith WJM, Evans PN, Tomkins NW et al. Draft genome sequence of Treponema sp. strain JC4, a novel Spirochete isolated from the Bovine rumen. J Bacteriol 2012; 194:4130 [View Article] [PubMed]
    [Google Scholar]
  103. Frederick JR, Rogers EA, Marconi RT. Analysis of a growth-phase-regulated two-component regulatory system in the periodontal pathogen Treponema denticola. J Bacteriol 2008; 190:6162–6169 [View Article] [PubMed]
    [Google Scholar]
  104. Sela MN, Kornman KS, Ebersole JL, Holt SC. Characterization of treponemes isolated from human and non-human primate periodontal pockets. Oral Microbiol Immunol 1987; 2:21–29 [View Article] [PubMed]
    [Google Scholar]
  105. Koseki T, Benno Y, Zhang-Koseki YJ, Umeda M, Ishikawa I. Detection frequencies and the colony-forming unit recovery of oral treponemes by different cultivation methods. Oral Microbiol Immunol 1996; 11:203–208 [View Article] [PubMed]
    [Google Scholar]
  106. Kokeguchi S, Miyamoto M, Kato K, Tanimoto I, Kurihara H et al. Isolation and characterization of a 53 kDa major cell envelope protein antigen from Treponema denticola ATCC 35405. J Periodontal Res 1994; 29:70–78 [View Article] [PubMed]
    [Google Scholar]
  107. Frederick JR, Rogers EA, Marconi RT. Analysis of a growth-phase-regulated two-component regulatory system in the periodontal pathogen Treponema denticola. J Bacteriol 2008; 190:6162–6169 [View Article] [PubMed]
    [Google Scholar]
  108. Stamm LV, Gherardini FC, Parrish EA, Moomaw CR. Heat shock response of spirochetes. Infect Immun 1991; 59:1572–1575 [View Article] [PubMed]
    [Google Scholar]
  109. Stamm LV, Bergen HL, Walker RL. Molecular typing of papillomatous digital dermatitis-associated treponema isolates based on analysis of 16S-23S ribosomal DNA intergenic spacer regions. J Clin Microbiol 2002; 40:3463–3469 [View Article] [PubMed]
    [Google Scholar]
  110. Chan EC, Siboo R, Keng T, Psarra N, Hurley R et al. Treponema denticola (ex Brumpt 1925) sp. nov., nom. rev., and identification of new Spirochete isolates from periodontal pockets. Int J Syst Bacteriol 1993; 43:196–203 [View Article] [PubMed]
    [Google Scholar]
  111. Umemoto T, Nakazawa F, Hoshino E, Okada K, Fukunaga M et al. Treponema medium sp. nov., isolated from human subgingival dental laque. Int J Syst Bacteriol 1997; 47:67–72 [View Article] [PubMed]
    [Google Scholar]
  112. Paster BJ, Dewhirst FE, Coleman BC, Lau CN, Ericson RL. Phylogenetic analysis of cultivable oral treponemes from the Smibert collection. Int J Syst Bacteriol 1998; 48:713–722 [View Article]
    [Google Scholar]
  113. Koseki T. Isolation and characterization of oral treponemes. J Stomatol Soc 1993; 60:149–168
    [Google Scholar]
  114. Clark DT, Soory M. The influence of cholesterol, progesterone, 4-androstenedione and testosterone on the growth of Treponema denticola ATCC 33520 in batch cultures. Anaerobe 2006; 12:267–273 [View Article] [PubMed]
    [Google Scholar]
  115. Walker SG, Ebersole JL, Holt SC. Identification, isolation, and characterization of the 42-kilodalton major outer membrane protein (MompA) from Treponema pectinovorum ATCC 33768. J Bacteriol 1997; 179:6441–6447 [View Article] [PubMed]
    [Google Scholar]
  116. Monis PT, Andrews RH, Saint CP. Molecular biology techniques in parasite ecology. Int J Parasitol 2002; 32:551–562 [View Article] [PubMed]
    [Google Scholar]
  117. Sayers EW, Cavanaugh M, Clark K, Ostell J, Pruitt KD et al. GenBank. Nucleic Acids Res 2019; 47:D94–9 [View Article] [PubMed]
    [Google Scholar]
  118. Norris SJ, Cox DL, Weinstock GM. Biology of Treponema pallidum: Correlation of functional activities with genome sequence data. J Mol Microbiol Biotechnol 2001; 3:37–62 [PubMed]
    [Google Scholar]
  119. Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 2007; 35:W182–5 [View Article] [PubMed]
    [Google Scholar]
  120. Singh S, Eldin C, Kowalczewska M, Raoult D. Axenic culture of fastidious and intracellular bacteria. Trends Microbiol 2013; 21:92–99 [View Article] [PubMed]
    [Google Scholar]
  121. Ogata H, Claverie JM. Metagrowth: A new resource for the building of metabolic hypotheses in microbiology. Nucleic Acids Res 2005; 33:D321–4 [View Article] [PubMed]
    [Google Scholar]
  122. Norris SJ, Edmondson DG. Factors affecting the multiplication and subculture of Treponema pallidum subsp. pallidum in a tissue culture system. Infect Immun 1986; 53:534–539 [View Article] [PubMed]
    [Google Scholar]
  123. Fieldsteel AH, Becker FA, Stout JG. Prolonged survival of virulent Treponema pallidum (Nichols strain) in cell-free and tissue culture systems. Infect Immun 1977; 18:173–182 [View Article] [PubMed]
    [Google Scholar]
  124. Fitzgerald TJ, Repesh LA, Oakes SG. Morphological destruction of cultured cells by the attachment of Treponema pallidum. Br J Vener Dis 1982; 58:1–11 [View Article] [PubMed]
    [Google Scholar]
  125. Fieldsteel AH, Cox DL, Moeckli RA. Replication of Virulent Treponema Pallidum in Tissue Culture 1984
    [Google Scholar]
  126. Norris SJ, Edmondson DG. Serum requirement for the multiplication of Treponema pallidum in a tissue-culture system: association of growth-promoting activity with the protein fraction. Sex Transm Dis 1986; 13:207–213 [View Article] [PubMed]
    [Google Scholar]
  127. Norris SJ, Edmondson DG. In vitro culture system to determine MICs and MBCs of antimicrobial agents against Treponema pallidum subsp. pallidum (Nichols strain. Antimicrob Agents Chemother 1988; 32:68–74 [View Article] [PubMed]
    [Google Scholar]
  128. Levy JA. Confirmation of the successful cultivation of Treponema pallidum in tissue-culture. Microbiologica 1984; 7:367–370 [PubMed]
    [Google Scholar]
  129. Cox DL, Riley B, Chang P, Sayahtaheri S, Tassell S et al. Effects of molecular oxygen, oxidation-reduction potential and antioxidants upon in vitro replication of Treponema pallidum subsp pallidum. Appl Env Micribiol 1990; 56:10
    [Google Scholar]
  130. Steiner BM, Sell S, Schell RF. Treponema pallidum attachment to surface and matrix proteins of cultured rabbit epithelial-cells. J Infect Dis 1987; 155:742–748 [View Article] [PubMed]
    [Google Scholar]
  131. Fieldsteel AH, Stout JG, Becker FA. Comparative behavior of virulent-strains of Treponema pallidum and Treponema pertenue in gradient cultures of various mammalian-cells. Infect Immun 1979; 24:337–345 [View Article] [PubMed]
    [Google Scholar]
  132. Fieldsteel AH, Cox DL, Moeckli RA. Cultivation of virulent Treponema pallidum in tissue culture. Infect Immun 1981; 32:908–915 [View Article] [PubMed]
    [Google Scholar]
  133. Sandok P, Jenkin H, Graves S, Knight S. Retention of motility of Treponema pallidum (Nichols virulent strain) in an anaerobic cell culture system and in a cell-free system. J Clin Microbiol 1976; 3:72–74 [View Article] [PubMed]
    [Google Scholar]
  134. Sandok P, Knight S, Jenkin H. Examination of various cell culture techniques for co-incubation of virulent Treponema pallidum (Nichols I strain) under anaerobic conditions. J Clin Microbiol 1976; 4:360–371 [View Article] [PubMed]
    [Google Scholar]
  135. Riley BS. The Suspension Cultivation Of, and the Use of Alternative Cell Lines for the in Vitro Cultivation Of, Treponema Pallidum Subspecies Pallidum 1990
    [Google Scholar]
  136. Wong GH, Steiner B, Faine S, Graves S. Effect of serum concentration and metabolic inhibitors on the attachment of Treponema pallidum to rabbit cells. J Med Microbiol 1983; 16:281–293 [View Article] [PubMed]
    [Google Scholar]
  137. Wong GHW, Steiner BM, Graves S. Inhibition of macromolecular synthesis in cultured rabbit cells by Treponema pallidum (Nichols. Infect Immun 1983; 41:636–643 [View Article] [PubMed]
    [Google Scholar]
  138. Wong GH, Steiner B, Graves S. Effect of four serum components on survival of Treponema pallidum and its attachment to rabbit cells in vitro. Genitourin Med 1986; 62:1–3 [View Article] [PubMed]
    [Google Scholar]
  139. Akatsu S, Noguchi H. The drug-fastness of spirochetes to arsenic, mercurial, and iodide compounds in vitro. J Exp Med 1917; 25:349–362 [View Article]
    [Google Scholar]
  140. Metzger M, Rudnicka I. Attempted culture of pathogenic Treponema pallidum in the presence of various bacteria and in their culture filtrates. Arch Immun Ther Exp 1970; 18:630–634
    [Google Scholar]
  141. Norris SJ. In vitro cultivation of Treponema pallidum: independent confirmation. Infect Immun 1982; 36:437–439 [View Article] [PubMed]
    [Google Scholar]
  142. Prpic JK, Trewartha F, Graves SR. Enhanced retention of motility and virulence of Treponema pallidum (Nichols strain) invitro by the addition of gelatin to anaerobic medium. Sex Transm Dis 1981; 8:1–4 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.001388
Loading
/content/journal/jmm/10.1099/jmm.0.001388
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error