1887

Abstract

The nonpolar lipids present in cells are mainly triacylglycerols and steryl esters. When cells are provided with an abundance of nutrients, these storage lipids accumulate. As large quantities of nonpolar lipids cannot be integrated into membranes, they are isolated from the cytosolic environment in lipid droplets. As specialized, inducible cytoplasmic organelles, lipid droplets have functions beyond the regulation of lipid metabolism, in cell signalling and activation, membrane trafficking and control of inflammatory mediator synthesis and secretion. Pathogens, including fungi, viruses, parasites, or intracellular bacteria can induce and may benefit from lipid droplets in infected cells. Here we review biogenesis of lipid droplets as well as the role of lipid droplets in the pathogenesis of selected viruses, bacteria, protists and yeasts.

Funding
This study was supported by the:
  • National Department of Health (ZA) (Award 115566)
    • Principle Award Recipient: CarolinaH Pohl
Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.001383
2021-06-29
2021-07-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/70/6/jmm001383.html?itemId=/content/journal/jmm/10.1099/jmm.0.001383&mimeType=html&fmt=ahah

References

  1. Zhang C, Liu P. The lipid droplet: A conserved cellular organelle. Protein Cell 2017; 8:796–800 [View Article]
    [Google Scholar]
  2. Zweytick D, Athenstaedt K, Daum G. Intracellular lipid particles of eukaryotic cells. Biochim Biophys Acta - Rev Biomembr 2000; 1469:101–120 [View Article]
    [Google Scholar]
  3. Athenstaedt K, Daum G. Tgl4p and Tgl5p, two triacylglycerol lipases of the yeast Saccharomyces cerevisiae are localized to lipid particles. J Biol Chem 2005; 280:37301–37309 [View Article]
    [Google Scholar]
  4. Sharma SC. Implications of sterol structure for membrane lipid composition, fluidity and phospholipid asymmetry in Saccharomyces cerevisiae . FEMS Yeast Res 2006; 6:1047–1051 [View Article]
    [Google Scholar]
  5. Koch B, Schmidt C, Daum G. Storage lipids of yeasts: a survey of nonpolar lipid metabolism in Saccharomyces cerevisiae, Pichia pastoris, and Yarrowia lipolytica . FEMS Microbiol Rev 2014; 38:892–915 [View Article]
    [Google Scholar]
  6. Dvorak AM, Dvorak HF, Peters SP, Shulman ES, MacGlashan DW et al. Lipid bodies: cytoplasmic organelles important to arachidonate metabolism in macrophages and mast cells. J Immunol 1983; 131:2965–2976 [PubMed]
    [Google Scholar]
  7. Ozeki S, Cheng J, Tauchi-Sato K, Hatano N, Taniguchi H et al. RAB18 localizes to lipid droplets and induces their close apposition to the endoplasmic reticulum-derived membrane. J Cell Sci 2005; 118:2601–2611 [View Article]
    [Google Scholar]
  8. Binns D, Januszewski T, Chen Y, Hill J, Markin VS et al. An intimate collaboration between peroxisomes and lipid bodies. J Cell Biol 2006; 173:719–731 [View Article]
    [Google Scholar]
  9. Liu P, Bartz R, Zehmer JK, Zhu M et al. Rab-regulated interaction of early endosomes with lipid droplets. Biochim Biophys Acta 2007; 1773:784–793 [View Article]
    [Google Scholar]
  10. Saka HA, Valdivia R. Emerging roles for lipid droplets in immunity and host-pathogen interactions. Annu Rev Cell Dev Biol 2012; 28:411–437 [View Article]
    [Google Scholar]
  11. Cole NB, Murphy DD, Grider T, Rueter S, Brasaemle D et al. Lipid droplet binding and oligomerization properties of the Parkinson’s disease protein alpha-synuclein. J Biol Chem 2002; 277:6344–6352 [View Article]
    [Google Scholar]
  12. Meester I, Rosas-Taraco AG, Adrián Geovanni JM, Salinas-Carmona MC. Medicina Universitaria. Med Univ [Internet] 2011; 13:207–216
    [Google Scholar]
  13. Liberman E, Yen B. Foamy macrophages in acquired immunodeficiency syndrome cholangiopathy with Encephalitozoon intestinalis . Arch Pathol Lab Med 1997; 121:985–988 [PubMed]
    [Google Scholar]
  14. Sorgi CA, Secatto A, Fontanari C, Turato WM, Belangér C et al. Histoplasma capsulatum cell wall {beta}-glucan induces lipid body formation through CD18, TLR2, and dectin-1 receptors: correlation with leukotriene B4 generation and role in HIV-1 infection. J Immunol 2009; 182:4025–4035 [View Article]
    [Google Scholar]
  15. McLauchlan J. Lipid droplets and hepatitis C virus infection. Biochim Biophys Acta - Mol Cell Biol Lipids 2009; 1791:552–559 [View Article]
    [Google Scholar]
  16. Samsa MM, Mondotte JA, Iglesias NG, Assunção-Miranda I, Barbosa-Lima G et al. Dengue virus capsid protein usurps lipid droplets for viral particle formation. PLoS Pathog 2009; 5:1–14 [View Article]
    [Google Scholar]
  17. Cheung W, Gill M, Esposito A, Kaminski CF, Courousse N et al. Rotaviruses associate with cellular lipid droplet components to replicate in viroplasms, and compounds disrupting or blocking lipid droplets inhibit viroplasm formation and viral replication. J Virol 2010; 84:6782–6798 [View Article]
    [Google Scholar]
  18. Dias SSG, Soares VC, Ferreira AC, Sacramento CQ, Fintelman-Rodrigues N et al. Lipid droplets fuel SARS-COV-2 replication and production of inflammatory mediators. PLoS Pathog 2020; 16:e1009127 [View Article]
    [Google Scholar]
  19. Pagliari F, Marafioti MG, Genard G, Candeloro P, Viglietto G et al. ssRNA Virus and Host Lipid Rearrangements: Is There a Role for Lipid Droplets in SARS-CoV-2 Infection?. Front Mol Biosci 2020; 7:578964 [View Article]
    [Google Scholar]
  20. Charron AJ, Sibley LD. Host cells: mobilizable lipid resources for the intracellular parasite Toxoplasma gondii . J Cell Sci 2002; 115:3049–3059 [View Article] [PubMed]
    [Google Scholar]
  21. Combs TP, Nagajyothi MS, Mukherjee S, de Almeida CJG, Jelicks LA et al. The adipocyte as an important target cell for Trypanosoma cruzi infection. J Biol Chem 2005; 280:24085–24094 [View Article]
    [Google Scholar]
  22. Rodríguez-Acosta A, Finol HJ, Pulido-Méndez M, Márquez A, Andrade G et al. Liver ultrastructural pathology in mice infected with Plasmodium berghei . J Submicrosc Cytol Pathol 1998; 30:299–307 [PubMed]
    [Google Scholar]
  23. Elamin AA, Stehr M, Singh M. Lipid droplets and Mycobacterium leprae infection. J Pathog 2012; 2012:1–10 [View Article]
    [Google Scholar]
  24. Peyron P, Vaubourgeix J, Poquet Y, Levillain F, Botanch C et al. Foamy macrophages from tuberculous patients’ granulomas constitute a nutrient-rich reservoir for M. tuberculosis persistence. PLoS Pathog 2008; 4:e1000204 [View Article]
    [Google Scholar]
  25. Nguyen LN, Hamari Z, Kadereit B, Trofa D, Agovino M et al. Candida parapsilosis fat storage-inducing transmembrane (FIT) protein 2 regulates lipid droplet formation and impacts virulence. Microbes Infect 2011; 13:663–672 [View Article]
    [Google Scholar]
  26. Pereira MG, Visbal G, Costa TFR, Frases S, de Souza W et al. Trypanosoma cruzi epimastigotes store cholesteryl esters in lipid droplets after cholesterol endocytosis. Mol Biochem Parasitol 2018; 224:6–16 [View Article]
    [Google Scholar]
  27. Pacheco P, Bozza FA, Gomes RN, Bozza M, Weller PF et al. Lipopolysaccharide-induced leukocyte lipid body formation in vivo: Innate immunity elicited intracellular loci involved in eicosanoid metabolism. J Immunol 2002; 169:6498–6506 [View Article]
    [Google Scholar]
  28. Pacheco P, Vieira-de-Abreu A, Gomes RN, Barbosa-Lima G, Wermelinger LB et al. Monocyte chemoattractant protein-1/CC chemokine ligand 2 controls microtubule-driven biogenesis and leukotriene B4-synthesizing function of macrophage lipid bodies elicited by innate immune response. J Immunol 2007; 179:8500–8508 [View Article]
    [Google Scholar]
  29. Melo RCN, D’Ávila H, Fabrino DL, Almeida PE, Bozza PT. Macrophage lipid body induction by Chagas disease in vivo: putative intracellular domains for eicosanoid formation during infection. Tissue Cell 2003; 35:59–67 [View Article]
    [Google Scholar]
  30. D’Avila H, Melo RCN, Parreira GG, Werneck-Barroso E, Castro-Faria-Neto HC et al. Mycobacterium bovis bacillus Calmette-Guérin induces TLR2-mediated formation of lipid bodies: intracellular domains for eicosanoid synthesis in vivo. J Immunol 2006; 176:3087–3097 [View Article]
    [Google Scholar]
  31. D’Avila H, Freire-de-Lima CG, Roque NR, Teixeira L, Barja-Fidalgo C et al. Host cell lipid bodies triggered by Trypanosoma cruzi infection and enhanced by the uptake of apoptotic cells are associated with prostaglandin E₂ generation and increased parasite growth. J Infect Dis 2011; 204:951–961 [View Article]
    [Google Scholar]
  32. Mattos KA, D’Avila H, Rodrigues LS, Oliveira VGC, Sarno EN et al. Lipid droplet formation in leprosy: Toll-like receptor-regulated organelles involved in eicosanoid formation and Mycobacterium leprae pathogenesis. J Leukoc Biol 2010; 87:371–384 [View Article]
    [Google Scholar]
  33. Araújo-Santos T, Rodríguez NE, Moura-Pontes S, Dixt UG, Abánades DR et al. Role of prostaglandin F2α production in lipid bodies from Leishmania infantum chagasi: insights on virulence. J Infect Dis 2014; 210:1951–1961 [View Article]
    [Google Scholar]
  34. Toledo DAM, D’Avila H, Melo RCN. Host lipid bodies as platforms for intracellular survival of protozoan parasites. Front Immunol 2016; 7:1–6 [View Article]
    [Google Scholar]
  35. Cocchiaro J, Kumar Y, Fischer ER, Hackstadt T, Valdivia RH. Cytoplasmic lipid droplets are translocated into the lumen of the Chlamydia trachomatis parasitophorous vacuole. Proc Natl Acad Sci U S A 2008; 105:9379–9384 [View Article]
    [Google Scholar]
  36. Melo RCN, Dvorak AM. Lipid body-phagosome interaction in macrophages during infectious diseases: host defense or pathogen survival strategy?. PLoS Pathog 2012; 8:1–13 [View Article]
    [Google Scholar]
  37. Vallochi AL, Teixeira L, Oliveira K da S, Maya-Monteiro CM, Bozza PT. Lipid droplet, a key player in host-parasite interactions. Front Immunol 2018; 9:1–18 [View Article]
    [Google Scholar]
  38. Nolan SJ, Fu MS, Coppens I, Casadevall A. Lipids Affect the Cryptococcus neoformans-Macrophage Interaction and Promote Nonlytic Exocytosis. Infect Immun 2017; 85:e00564–17 [View Article]
    [Google Scholar]
  39. Yu J, Li P. The size matters: regulation of lipid storage by lipid droplet dynamics. Sci China Life Sci 2017; 60:46–56 [View Article]
    [Google Scholar]
  40. Walther TC, Farese RV. The life of lipid droplets. Biochim Biophys Acta - Mol Cell Biol Lipids 2009; 1791:459–466 [View Article]
    [Google Scholar]
  41. Bozza PT, Bakker-Abreu I, Navarro-Xavier RA, Bandeira-Melo C. Lipid body function in eicosanoid synthesis: an update. Prostaglandins, Leukot Essent Fat Acids 2011; 85:205–213 [View Article]
    [Google Scholar]
  42. Eisenberg-Bord M, Mari M, Weill U, Rosenfeld-Gur E, Moldavski O et al. Identification of seipin-linked factors that act as determinants of a lipid droplet subpopulation. J Cell Biol 2018; 217:269–282 [View Article]
    [Google Scholar]
  43. McGookey DJ, Anderson RGW. Morphological characterization of the cholesteryl ester cycle in cultured mouse macrophage foam cells. J Cell Biol 1983; 97:1156–1168 [View Article]
    [Google Scholar]
  44. Yu W, Bozza PT, Tzizik DM, Gray JP, Cassara J et al. Co-compartmentalization of MAP kinases and cytosolic phospholipase A2 at cytoplasmic arachidonate-rich lipid bodies. Am J Pathol 1998; 152:759–769 [PubMed]
    [Google Scholar]
  45. Brasaemle DL, Dolios G, Shapiro L, Wang R. Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes. J Biol Chem 2004; 279:46835–46842 [View Article]
    [Google Scholar]
  46. Fujimoto Y, Itabe H, Sakai J, Makita M, Noda J et al. Identification of major proteins in the lipid droplet-enriched fraction isolated from the human hepatocyte cell line huh7. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2004; 1644:47–59 [View Article]
    [Google Scholar]
  47. Liu P, Ying Y, Zhao Y, Mundy DI, Zhu M et al. Chinese hamster ovary K2 cell lipid droplets appear to be metabolic organelles involved in membrane traffic. J Biol Chem 2004; 279:3787–3792 [View Article]
    [Google Scholar]
  48. Umlauf E, Csaszar E, Moertelmaier M, Schuetz GJ, Parton RG et al. Association of stomatin with lipid bodies. J Biol Chem 2004; 279:23699–23709 [View Article]
    [Google Scholar]
  49. Wan HC, Melo RCN, Jin Z, Dvorak AM, Weller PF. Roles and origins of leukocyte lipid bodies: Proteomic and ultrastructural studies. FASEB J 2007; 21:167–178 [View Article]
    [Google Scholar]
  50. Grillitsch K, Connerth M, Köfeler H, Arrey TN, Rietschel B et al. Lipid particles/droplets of the yeast Saccharomyces cerevisiae revisited: lipidome meets proteome. Biochim Biophys Acta - Mol Cell Biol Lipids 2011; 1811:1165–1175 [View Article]
    [Google Scholar]
  51. Kohlwein SD, Veenhuis M, van der Klei IJ. Lipid droplets and peroxisomes: key players in cellular lipid homeostasis or a matter of fat-store’em up or burn’ em down. Genetics 2013; 193:1–50 [View Article]
    [Google Scholar]
  52. Wang CW. Lipid droplet dynamics in budding yeast. Cell Mol Life Sci 2015; 72:2677–2695 [View Article]
    [Google Scholar]
  53. Jarc E, Petan T. Lipid droplets and the management of cellular stress. J Biol Med 2019435–452
    [Google Scholar]
  54. Fei W, Zhong L, MT T, Shui G, Wenk MR et al. The size and phospholipid composition of lipid droplets can influence their proteome. Biochem Biophys Res Commun 2011; 415:455–462 [View Article]
    [Google Scholar]
  55. Radulovic M, Knittelfelder O, Cristobal-Sarramian A, Kolb D, Wolinski H et al. The emergence of lipid droplets in yeast: current status and experimental approaches. Curr Genet 2013; 59:231–242 [View Article]
    [Google Scholar]
  56. Wilfling F, Haas JT, Walther TC, RV FJr. Lipid droplet biogenesis. Curr Opin Cell Biol 2014; 29:39–45 [View Article]
    [Google Scholar]
  57. Pol A, Gross SP, Parton RG. Biogenesis of the multifunctional lipid droplet: lipids, proteins, and sites. J Cell Biol 2014; 204:635–646 [View Article]
    [Google Scholar]
  58. Welte MA, Gould AP. Lipid droplet functions beyond energy storage. Biochim Biophys Acta - Mol Cell Biol Lipids 2017; 1862:1260–1272 [View Article]
    [Google Scholar]
  59. Zechner R, Zimmermann R, Eichmann TO, Kohlwein SD, Haemmerle G et al. Fat signals - lipases and lipolysis in lipid metabolism and signaling. Cell Metab 2012; 15:279–291 [View Article]
    [Google Scholar]
  60. Kerner J, Hoppel C. Fatty acid import into mitochondria. Biochim Biophys Acta - Mol Cell Biol Lipids 2000; 1486:1–17 [View Article]
    [Google Scholar]
  61. Eaton S. Control of mitochondrial β-oxidation flux. Prog Lipid Res 2002; 41:197–239 [View Article]
    [Google Scholar]
  62. Farese RV, Walther TC. Lipid droplets finally get a little R-E-S-P-E-C-T. Cell 2009; 139:855–860 [View Article]
    [Google Scholar]
  63. Kuerschner L, Moessinger C, Thiele C. Imaging of lipid biosynthesis: how a neutral lipid enters lipid droplets. Traffic 2008; 9:338–352 [View Article]
    [Google Scholar]
  64. Stone SJ, Levin MC, Farese RV. Membrane topology and identification of key functional amino acid residues of murine acyl-CoA:diacylglycerol acyltransferase-2. J Biol Chem 2006; 281:40273–40282 [View Article]
    [Google Scholar]
  65. Fujimoto T, Ohsaki Y, Cheng J, Suzuki M, Shinohara Y. Lipid droplets: a classic organelle with new outfits. Histochem Cell Biol 2008; 130:263–279 [View Article]
    [Google Scholar]
  66. Bozza PT, Yu W, Penrose JF, Morgan ES, Dvorak AM et al. Eosinophil lipid bodies: specific, inducible intracellular sites for enhanced eicosanoid formation. J Exp Med 1997; 186:909–920 [View Article]
    [Google Scholar]
  67. Robenek H, Robenek MJ, Troyer D. PAT family proteins pervade lipid droplet cores. J Lipid Res 2005; 46:1331–1338 [View Article]
    [Google Scholar]
  68. Glenney JR, Soppet D. Sequence and expression of caveolin, a protein component of caveolae plasma membrane domains phosphorylated on tyrosine in Rous sarcoma virus-transformed fibroblasts. Proc Natl Acad Sci 1992; 89:10517–10521 [View Article]
    [Google Scholar]
  69. Ostermeyer AG, Ramcharan LT, Zeng Y, Lublin DM, Brown DA. Role of the hydrophobic domain in targeting caveolin-1 to lipid droplets. J Cell Biol 2004; 164:69–78 [View Article]
    [Google Scholar]
  70. Ingelmo-Torres M, González-Moreno E, Kassan A, Manzal-Bayer M, Tebar F et al. Hydrophobic and basic domains target proteins to lipid droplets. Traffic 2009; 10:1785–1801 [View Article]
    [Google Scholar]
  71. Rowe ER, Mimmack ML, Barbosa AD, Haider A, Isaac I et al. Conserved amphipathic helices mediate lipid droplet targeting of perilipins 1–3. J Biol Chem 2016; 291:6664–6678 [View Article] [PubMed]
    [Google Scholar]
  72. Mirheydari M, Rathnayake SS, Frederick H, Arhar T, Mann EK et al. Insertion of perilipin 3 into a glycero(phospho)lipid monolayer depends on lipid headgroup and acyl chain species. J Lipid Res 2016; 57:1465–1476 [View Article]
    [Google Scholar]
  73. Armstrong RM, Carter DC, Atkinson SN, Terhune SS, Zahrt TC. Association of Mycobacterium proteins with lipid droplets. J Bacteriol 2018; 200:e00240–18 [View Article]
    [Google Scholar]
  74. Bosch M, Sánchez-Álvarez M, Fajardo A, Kapetanovic R, Steiner B et al. Mammalian lipid droplets are innate immune hubs integrating cell metabolism and host defense. Science 2020; 370:309 [View Article]
    [Google Scholar]
  75. Bozza PT, D’Avila H, Almeida PE, Magalhaes K, Maya-Monteiro C et al. Lipid droplets in host – pathogen interactions. Clin Lipidol 2009; 4:791–807 [View Article]
    [Google Scholar]
  76. Melo RCN, Fabrino DL, Dias FF, Parreira GG. Lipid bodies: structural markers of inflammatory macrophages in innate immunity. Inflamm Res 2006; 55:342–348 [View Article]
    [Google Scholar]
  77. Almeida PE, Silva AR, Maya-Monteiro CM, Töröcsik D, D’Avila H et al. Mycobacterium bovis bacillus Calmette-Guerin infection induces TLR2-dependent peroxisome proliferator-activated receptor expression and activation: functions in inflammation, lipid metabolism, and pathogenesis. J Immunol 2009; 183:1337–1345 [View Article]
    [Google Scholar]
  78. Cao F, Castrillo A, Tontonoz P, Re F, Byrne GI. Chlamydia pneumoniae-induced macrophage foam cell formation is mediated by toll-like receptor 2. Infect Immun 2007; 75:753–759 [View Article]
    [Google Scholar]
  79. Almeida PE, Roque NR, Magalhães KG, Mattos KA, Teixeira L et al. Differential TLR2 downstream signaling regulates lipid metabolism and cytokine production triggered by mycobacterium bovis BCG infection. Biochim Biophys Acta 2014; 1841:97–107 [View Article]
    [Google Scholar]
  80. Knight M, Braverman J, Asfaha K, Gronert K, Stanley S. Lipid droplet formation in Mycobacterium tuberculosis infected macrophages requires IFN-γ/HIF-1α signaling and supports host defense. PLoS Pathog 2018; 14:e1006874 [View Article]
    [Google Scholar]
  81. Bott E, Carneiro AB, Gimenez G, Lopez MG, Lammel EM et al. Lipids from Trypanosoma cruzi amastigotes of RA and K98 strains generate a pro-inflammatory response via TLR2/6. Front Cell Infect Microbiol 2018; 8:151 [View Article]
    [Google Scholar]
  82. Mattos KA, Lara FA, Oliveira VGC, Rodrigues LS, D’Avila H et al. Modulation of lipid droplets by Mycobacterium leprae in Schwann cells: a putative mechanism for host lipid acquisition and bacterial survival in phagosomes. Cell Microbiol 2011; 13:259–273 [View Article]
    [Google Scholar]
  83. Mattos KA, Oliveira VGC, D’Avila H, Rodrigues LS, Pinheiro RO et al. TLR6-driven lipid droplets in Mycobacterium leprae-infected Schwann cells: immunoinflammatory platforms associated with bacterial persistence. J Immunol 2011; 187:2548–2558 [View Article]
    [Google Scholar]
  84. Romero-Brey I, Merz A, Chiramel A, Lee JY, Chlanda P et al. Three-dimensional architecture and biogenesis of membrane structures associated with Hepatitis C virus replication. PLoS Pathog 2012; 8:e1003056 [View Article] [PubMed]
    [Google Scholar]
  85. Herker E, Ott M. Emerging role of lipid droplets in host/pathogen interactions. J Biol Chem 2012; 287:2280–2287 [View Article]
    [Google Scholar]
  86. Miyanari Y, Atsuzawa K, Usuda N, Watashi K, Hishiki T et al. The lipid droplet is an important organelle for hepatitis C virus production. Nat Cell Biol 2007; 9:1089–1097 [View Article]
    [Google Scholar]
  87. Riva L, Spriet C, Barois N, Popescu CI, Dubuisson J et al. Comparative analysis of Hepatitis C virus NS5A dynamics and localization in assembly-deficient mutants. Pathogens 2021; 10:172 [View Article]
    [Google Scholar]
  88. Parashar UD, Gibson CJ, Bresee JS, Glass RI. Rotavirus and severe childhood diarrhea. Emerg Infect Dis 2006; 12:304–306 [View Article]
    [Google Scholar]
  89. Parr RD, Storey SM, Mitchell DM, McIntosh AL, Zhou M et al. The rotavirus enterotoxin NSP4 directly interacts with the caveolar structural protein caveolin-1. J Virol 2006; 80:2842–2854 [View Article]
    [Google Scholar]
  90. Cohen AW, Razani B, Schubert W, Williams TM, Wang XB et al. Role of caveolin-1 in the modulation of lipolysis and lipid droplet formation. Diabetes 2004; 53:1261–1270 [View Article]
    [Google Scholar]
  91. Schwarz B, Sharma L, Roberts L, Peng X, Bermejo S et al. Cutting edge: Severe SARS-CoV-2 infection in humans is defined by a shift in the serum lipidome, resulting in dysregulation of eicosanoid immune mediators. J Immunol 2021; 206:329–334 [View Article]
    [Google Scholar]
  92. Shen B, Yi X, Sun Y, Bi X, Du J et al. Proteomic and mtabolomic characterization of COVID-19 patient sera. Cell 2020; 182:59–72 [View Article]
    [Google Scholar]
  93. Sander WJ, O’Neill HG, Pohl CH. Prostaglandin E2 as a modulator of viral infections. Front Physiol 2017; 8:89 [View Article]
    [Google Scholar]
  94. Singh V, Jamwal S, Jain R, Verma P, Gokhale R et al. Mycobacterium tuberculosis-driven targeted recalibration of macrophage lipid homeostasis promotes the foamy phenotype. Cell Host Microbe 2012; 12:681–669 [View Article]
    [Google Scholar]
  95. Mehrotra P, Jamwal SV, Saquib N, Sinha N, Siddiqui Z et al. Pathogenicity of Mycobacterium tuberculosis is expressed by regulating metabolic thresholds of the host macrophage. PLoS Pathog 2014; 10:e1004265 [View Article]
    [Google Scholar]
  96. Roingeard P, Melo RCN. Lipid droplet hijacking by intracellular pathogens. Cell Microbiol 2017; 19:1–8 [View Article]
    [Google Scholar]
  97. Daniel J, Maamar H, Deb C, Sirakova TD, Kolattukudy PE. Mycobacterium tuberculosis uses host triacylglycerol to accumulate lipid droplets and acquires a dormancy-like phenotype in lipid-loaded macrophages. PLoS Pathog 2011; 7:e1002093 [View Article]
    [Google Scholar]
  98. Barisch C, Paschke P, Hagedorn M, Maniak M, Soldati T. Lipid droplet dynamics at early stages of Mycobacterium marinum infection in Dictyostelium. Cell Microbiol 2015; 17:1332–1349 [View Article]
    [Google Scholar]
  99. Barisch C, Soldati T. Mycobacterium marinum degrades both triacylglycerols and phospholipids from its Dictyostelium host to synthesise its own triacylglycerols and generate lipid inclusions. PLoS Pathog 2017; 13:e1006095 [View Article]
    [Google Scholar]
  100. Menon D, Singh K, Pinto SM, Nandy A, Jaisinghani N et al. Quantitative lipid droplet proteomics reveals Mycobacterium tuberculosis induced alterations in macrophage response to infection. ACS Infect Dis 2019; 5:559–569 [View Article]
    [Google Scholar]
  101. Armstrong JA, Hart PD. Response of cultured macrophages to Mycobacterium tuberculosis, with observations on fusion of lysosomes with phagosomes. J Exp Med 1971; 134:713–740 [View Article]
    [Google Scholar]
  102. Baltierra-Uribe SL, García-Vásquez M de J, Castrejón-Jiménez NS, Estrella-Piñón MP, Luna-Herrera J et al. Mycobacteria entry and trafficking into endothelial cells. Can J Microbiol 2014; 60:569–577 [View Article]
    [Google Scholar]
  103. Callaghan J, Nixon S, Bucci C, Toh BH, Stenmark H. Direct interaction of EEA1 with Rab5b. Eur J Biochem 1999; 265:361–366 [View Article]
    [Google Scholar]
  104. Desjardins M, Huber LA, Parton RG, Griffiths G. Biogenesis of phagolysosomes proceeds through a sequential series of interactions with the endocytic apparatus. J Cell Biol 1994; 124:677–688 [View Article]
    [Google Scholar]
  105. Desjardins M. Biogenesis of phagolysosomes: the ‘kiss and run’ hypothesis. Trends Cell Biol 1995; 5:183–186 [View Article]
    [Google Scholar]
  106. Rink J, Ghigo E, Kalaidzidis Y, Zerial M. Rab conversion as a mechanism of progression from early to late endosomes. Cell 2005; 122:735–749 [View Article]
    [Google Scholar]
  107. Jordens I, Fernandez-Borja M, Marsman M, Dusseljee S, Janssen L et al. The Rab7 effector protein RILP controls lysosomal transport by inducing the recruitment of dynein-dynactin motors. Curr Biol 2001; 11:1680–1685 [View Article]
    [Google Scholar]
  108. Vieira OV, Bucci C, Harrison RE, Trimble WS, Lanzetti L et al. Modulation of Rab5 and Rab7 recruitment to phagosomes by phosphatidylinositol 3-kinase. Mol Cell Biol 2003; 23:2501–2514 [View Article]
    [Google Scholar]
  109. Via LE, Deretic D, Ulmer RJ, Hibler NS, Huber LA et al. Arrest of mycobacterial phagosome maturation is caused by a block in vesicle fusion between stages controlled by Rab5 and Rab7. J Biol Chem 1997; 272:13326–13331 [View Article]
    [Google Scholar]
  110. Fratti RA, Backer JM, Gruenberg J, Corvera S, Deretic V. Role of phosphatidylinositol 3-kinase and Rab5 effectors in phagosomal biogenesis and mycobacterial phagosome maturation arrest. J Cell Biol 2001; 154:631–644 [View Article]
    [Google Scholar]
  111. Cantalupo G, Alifano P, Roberti V, Bruni CB, Bucci C. Rab-interacting lysosomal protein (RILP): the Rab7 effector required for transport to lysosomes. EMBO J 2001; 20:683–693 [View Article]
    [Google Scholar]
  112. Harrison RE, Bucci C, Vieira OV, Schroer TA, Grinstein S. Phagosomes fuse with late endosomes and/or lysosomes by extension of membrane protrusions along microtubules: role of Rab7 and RILP. Mol Cell Biol 2003; 23:6494–6506 [View Article]
    [Google Scholar]
  113. Roque NR, Lage SL, Navarro R, Fazolini N, Maya-Monteiro CM et al. Rab7 controls lipid droplet-phagosome association during mycobacterial infection. Biochim Biophys Acta - Mol Cell Biol Lipids 2020; 1865:158703 [View Article]
    [Google Scholar]
  114. Mahajan S, Dkhar HK, Chandra V, Dave S, Nanduri R et al. Mycobacterium tuberculosis modulates macrophage lipid-sensing nuclear receptors ppar-γ and tr4 for survival. J Immunol 2012; 188:5603–5593 [View Article]
    [Google Scholar]
  115. Holla S, Prakhar P, Singh V, Karnam A, Mukherjee T et al. MUSASHI-mediated expression of JMJD3, a H3K27me3 demethylase, is involved in foamy macrophage generation during mycobacterial infection. PLoS Pathog 2016; 12:e1005814 [View Article]
    [Google Scholar]
  116. Moreno JR, Garcia E, de la Luz Garcia Hernandez M, Aguilar Leon D, Marquez R et al. The role of prostaglandin e2 in the immunopathogenesis of experimental pulmonary tuberculosis. Immunology 2002; 106:257–266 [View Article]
    [Google Scholar]
  117. Agarwal P, Combes TW, Shojaee-Moradie F, Fielding B, Gordon S et al. Foam cells control Mycobacterium tuberculosis infection. Front Microbiol 2020; 11:1394 [View Article]
    [Google Scholar]
  118. Greenwood DJ, Dos Santos MS, Huang S, Russell MRG, Collinson LM et al. Subcellular antibiotic visualization reveals a dynamic drug reservoir in infected macrophages. Science 2009; 364:1279–1282 [View Article]
    [Google Scholar]
  119. Fearns A, Greenwood DJ, Rodgers A, Jiang H, Gutierrez MG. Correlative light electron ion microscopy reveals in vivo localisation of bedaquiline in Mycobacterium tuberculosis-infected lungs. PLoS Biol 2020; 18:e3000879 [View Article]
    [Google Scholar]
  120. Fields KA, Hackstadt T. The chlamydial inclusion: escape from the endocytic pathway. Annu Rev Cell Dev Biol 2002; 18:221–245 [View Article]
    [Google Scholar]
  121. Hackstadt T, Rockey DD, Heinzen RA, Scidmore MA. Chlamydia trachomatis interrupts an exocytic pathway to acquire endogenously synthesized sphingomyelin in transit from the golgi apparatus to the plasma membrane. EMBO J 1996; 15:964–977 [View Article]
    [Google Scholar]
  122. Carabeo RA, Mead DJ, Hackstadt T. Golgi-dependent transport of cholesterol to the Chlamydia trachomatis inclusion. Proc Natl Acad Sci U S A 2003; 100:6771–6776 [View Article]
    [Google Scholar]
  123. Kumar Y, Cocchiaro J, Valdivia RH. The obligate intracellular pathogen Chlamydia trachomatis targets host lipid droplets. Curr Biol 2006; 16:1646–1651 [View Article]
    [Google Scholar]
  124. Recuero-Checa MA, Sharma M, Lau C, Watkins PA, Gaydos CA et al. Chlamydia trachomatis growth and development requires the activity of host long-chain acyl-CoA synthetases (ACSLs. Sci Rep 2016; 6:23148 [View Article]
    [Google Scholar]
  125. Saka HA, Thompson JW, Chen YS, Dubois LG, Haas JT et al. Chlamydia trachomatis infection leads to defined alterations to the lipid droplet proteome in epithelial cells. PLoS One 2015; 10:1–27 [View Article]
    [Google Scholar]
  126. Sharma M, Recuero-Checa MA, Fan FY, Dean D. Chlamydia trachomatis regulates growth and development in response to host cell fatty acid availability in the absence of lipid droplets. Cell Microbiol 2018; 20:e12801 [View Article]
    [Google Scholar]
  127. Van Ooij C, Kalman L, Van Ijzendoorn S, Nishijima M, Hanada K et al. Host cell-derived sphingolipids are required for the intracellular growth of Chlamydia trachomatis . Cell Microbiol 2000; 2:627–637 [View Article]
    [Google Scholar]
  128. Wang H, Wen X, Yan M, Chang M, Zhang G et al. The role of perilipin 2 in Pseudomonas aeruginosa pulmonary infection. Resp Physiol Neurobiol 2020; 281:103497 [View Article]
    [Google Scholar]
  129. Baker LY, Hobby CR, Siv AW, Bible WC, Glennon MS et al. Pseudomonas aeruginosa responds to exogenous polyunsaturated fatty acids (PUFAs) by modifying phospholipid composition, membrane permeability, and phenotypes associated with virulence. BMC Microbiol 2018; 18:117 [View Article]
    [Google Scholar]
  130. Phillips RM, Six DA, Dennis EA, Ghosh P. In vivo phospholipase activity of the Pseudomonas aeruginosa cytotoxin ExoU and protection of mammalian cells with phospholipase A2 inhibitors. J Biol Chem 2003; 278:41326–41332 [View Article]
    [Google Scholar]
  131. Saliba AM, Nascimento DO, Silva MCA, Assis MC, Gayer CRM et al. Eicosanoid-mediated pro-inflammatory activity of Pseudomonas aeruginosa ExoU. Cell Microbiol 2005; 7:1811–1822 [View Article]
    [Google Scholar]
  132. Plotkowski MC, Brandão BA, de Assis MC, Feliciano LFP, Raymond B et al. Lipid body mobilization in the ExoU-induced release of inflammatory mediators by airway epithelial cells. Microb Pathog 2008; 45:30–37 [View Article]
    [Google Scholar]
  133. Brener Z. Biology of Trypanosoma cruzi . Annu Rev Microbiol 1973; 27:347–382 [View Article]
    [Google Scholar]
  134. Epting CL, Coates BM, Engman DM. Molecular mechanisms of host cell invasion by Trypanosoma cruzi . . Exp Parasitol 2010; 126:283–291 [View Article]
    [Google Scholar]
  135. Cardoso MS, Reis-Cunha JL, Bartholomeu DC. Evasion of the immune response by Trypanosoma cruzi during acute infection. Front Immunol 2016; 6:1–15 [View Article]
    [Google Scholar]
  136. De Pablos LM, Osuna A. Multigene families in Trypanosoma cruzi and their role in infectivity. Infect Immun 2012; 80:2258–2264 [View Article]
    [Google Scholar]
  137. Bartholomeu DC, de Paiva RMC, Mendes TAO, DaRocha WD, Teixeira SMR. Unveiling the intracellular survival gene kit of Trypanosomatid parasites . PLoS Pathog 2014; 10:e1004399 [View Article]
    [Google Scholar]
  138. Piacenza L, Peluffo G, Alvarez MN, Kelly JM, Wilkinson SR et al. Peroxiredoxins play a major role in protecting Trypanosoma cruzi against macrophage- and endogenously-derived peroxynitrite. Biochem J 2008; 410:359–368 [View Article]
    [Google Scholar]
  139. Brener Z, Gazzinelli RT. Immunological control of Trypanosoma cruzi infection and pathogenesis of Chagas’ disease. Int Arch Allergy Immunol 1997; 114:103–110 [View Article]
    [Google Scholar]
  140. Toledo DAM, Roque NR, Teixeira L, Milán-Garcés EA, Carneiro AB et al. Lipid body organelles within the parasite Trypanosoma cruzi: a role for intracellular arachidonic acid metabolism. PLoS One 2016; 11:1–22 [View Article]
    [Google Scholar]
  141. De Almeida PE, Toledo DAM, Rodrigues GSC, D’Avila H. Lipid bodies as sites of prostaglandin E2 synthesis during Chagas disease: impact in the parasite escape mechanism. Front Microbiol 2018; 9:1–8 [View Article]
    [Google Scholar]
  142. Freire-De-Lima CG, Nascimento DO, Soares MBP, Bozza PT, Castro-Faria-Neto HC et al. Uptake of apoptotic cells drives the growth of a pathogenic trypanosome in macrophages. Nature 2000; 403:199–203 [View Article]
    [Google Scholar]
  143. Miao Q, Ndao M. Trypanosoma cruzi infection and host lipid metabolism. Mediators Inflamm 2014; 2014:1–10 [View Article]
    [Google Scholar]
  144. Borges MM, Kloetzel JK, Andrade HF, Tadokoro CE, Pinge-Filho P et al. Prostaglandin and nitric oxide regulate TNF-α production during Trypanosoma cruzi infection. Immunol Lett 1998; 63:1–8 [View Article]
    [Google Scholar]
  145. Harris SG, Padilla J, Koumas L, Ray D, Phipps RP. Prostaglandins as modulators of immunity. Trends Immunol 2002; 23:144–150 [View Article]
    [Google Scholar]
  146. Ramirez-Yañez GO, Hamlet S, Jonarta A, Seymour GJ, Symons AL. Prostaglandin E2 enhances transforming growth factor-beta 1 and TGF-beta receptors synthesis: an in vivo and in vitro study. Prostaglandins Leukot Essent Fat Acids 2006; 74:183–192 [View Article]
    [Google Scholar]
  147. D’Avila H, Toledo DAM, Melo RCN. Lipid bodies: inflammatory organelles implicated in host- Trypanosoma cruzi interplay during innate immune responses. Mediators Inflamm 2012; 2012:1–11 [View Article]
    [Google Scholar]
  148. Palacpac NMQ, Hiramine Y, Mi-Ichi F, Torii M, Kita K et al. Developmental-stage-specific triacylglycerol biosynthesis, degradation and trafficking as lipid bodies in Plasmodium falciparum-infected erythrocytes. J Cell Sci 2004; 117:1469–1480 [View Article]
    [Google Scholar]
  149. Murphy DJ. The dynamic roles of intracellular lipid droplets: from archaea to mammals. Protoplasma 2012; 249:541–585 [View Article]
    [Google Scholar]
  150. Rosenthal PJ, Meshnick SR. Hemoglobin catabolism and iron utilization by malaria parasites. Mol Biochem Parasitol 1996; 83:131–139 [View Article]
    [Google Scholar]
  151. Yayon A, Timberg R, Friedman S, Ginsburg H. Effects of chloroquine on the feeding mechanism of the intraerythrocytic human malarial parasite Plasmodium falciparum . J Protozool 1984; 31:367–372 [View Article]
    [Google Scholar]
  152. Slomianny C. Three-dimensional reconstruction of the feeding process of the malaria parasite. Blood Cells 1990; 16:369–378 [PubMed]
    [Google Scholar]
  153. Loria P, Miller S, Foley M, Tilley L. Inhibition of the peroxidative degradation of haem as the basis of action of chloroquine and other quinoline antimalarials. Biochem J 1999; 339:363–370 [View Article]
    [Google Scholar]
  154. Campanale N, Nickel C, Daubenberger CA, Wehlan DA, Gorman JJ et al. Identification and characterization of heme-interacting proteins in the malaria parasite, Plasmodium falciparum . J Biol Chem 2003; 278:27354–27361 [View Article]
    [Google Scholar]
  155. Rosenthal PJ, Tilley L, Loria P, Foley M. Chloroquine and other quinoline antimalarials. Antimalar Chemother 2003; 87–121: [View Article]
    [Google Scholar]
  156. Jackson KE, Klonis N, Ferguson DJP, Adisa A, Dogovski C et al. Food vacuole-associated lipid bodies and heterogeneous lipid environments in the malaria parasite, Plasmodium falciparum . Mol Microbiol 2004; 54:109–122 [View Article]
    [Google Scholar]
  157. Trofa D, Gácser A, Nosanchuk JD. Candida parapsilosis, an emerging fungal pathogen. Clin Microbiol Rev 2008; 21:606–625 [View Article]
    [Google Scholar]
  158. Kadereit B, Kumar P, Wang WJ, Miranda D, Snapp EL et al. Evolutionarily conserved gene family important for fat storage. Proc Natl Acad Sci U S A 2008; 105:94–99 [View Article]
    [Google Scholar]
  159. Oelkers P, Cromley D, Padamsee M, Billheimer JT, Sturley SL. The DGA1 gene determines a second triglyceride synthetic pathway in yeast. J Biol Chem 2002; 277:8877–8881 [View Article]
    [Google Scholar]
  160. Chang W, Zhang M, Zheng S, Li Y, Li X et al. Trapping toxins within lipid droplets is a resistance mechanism in fungi. Sci Rep 2015; 5:1–11 [View Article]
    [Google Scholar]
  161. Nguyen LN, Gacser A, Nosanchuk JD. The stearoyl-coenzyme a desaturase 1 is essential for virulence and membrane stress in Candida parapsilosis through unsaturated fatty acid production. Infect Immun 2011; 79:136–145 [View Article]
    [Google Scholar]
  162. Schneiter R, Tatzer V, Gogg G, Leitner E, Kohlwein SD. Elo1p-dependent carboxy-terminal elongation of C14:1Δ9 to C16:1Δ11 fatty acids in Saccharomyces cerevisiae . J Bacteriol 2000; 182:3655–3660 [View Article]
    [Google Scholar]
  163. Xu D, Sillaots S, Davison J, Hu W, Jiang B et al. Chemical genetic profiling and charecterization of small-molecular compounds that affect the biosynthesis of unsaturated fatty acids in Candida albicans . J Biol Chem 2009; 284:19754–19764 [View Article]
    [Google Scholar]
  164. Nguyen LN, Nosanchuk JD. Lipid droplet formation protects against gluco/lipotoxicity in Candida parapsilosis: an essential role of fatty acid desaturase Ole1. Cell Cycle 2011; 10:3159–3167 [View Article]
    [Google Scholar]
  165. Mohammad K, Dakik P, Medkour Y, McAuley M, Mitrofanova D et al. Yeast cells exposed to exogenous palmitoleic acid either adapt to stress and survive or commit to regulated liponecrosis and die. Oxid Med Cell Longev 2018; 2018:1–11 [View Article]
    [Google Scholar]
  166. Richard VR, Beach A, Piano A, Leono A, Feldman R et al. Mechanism of liponecrosis, a distinct mode of programmed cell death. Cell Cycle 2014; 13:3707–3726 [View Article]
    [Google Scholar]
  167. Arlia-Ciommo A, Svistkova V, Mohtashami S, Titorenko VI. A novel approach to the discovery of anti-tumor pharmaceuticals: searching for activators of liponecrosis. Oncotarget 2016; 7:5204–5225 [View Article]
    [Google Scholar]
  168. Sheibani S, Richard VR, Beach A, Leonov A, Feldman R et al. Macromitophagy, neutral lipids synthesis, and peroxisomal fatty acid oxidation protect yeast from “liponecrosis”, a previously unknown form of programmed cell death. Cell Cycle 2014; 13:138–147 [View Article]
    [Google Scholar]
  169. Listenberger LL, Han X, Lewis SE, Cases S, Farese RV et al. Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc Natl Acad Sci U S A 2003; 100:3077–3082 [View Article]
    [Google Scholar]
  170. Petschnigg J, Wolinski H, Kolb D, Zelling G, Kurat CF et al. Good fat, essential cellular requirements for triacylglycerol synthesis to maintain membrane homeostasis in yeast. J Biol Chem 2009; 284:30981–30993 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.001383
Loading
/content/journal/jmm/10.1099/jmm.0.001383
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error