1887

Abstract

Coagulase-negative staphylococci have been recognized both as emerging pathogens and contaminants of clinical samples. High-resolution genomic investigation may provide insights into their clinical significance.

To review the literature regarding coagulase-negative staphylococcal infection and the utility of genomic methods to aid diagnosis and management, and to identify promising areas for future research.

We searched Google Scholar with the terms () AND (sequencing OR (infection)). We prioritized papers that addressed coagulase-negative staphylococci, genomic analysis, or infection.

A number of studies have investigated specimen-related, phenotypic and genetic factors associated with colonization, infection and virulence, but diagnosis remains problematic.

Genomic investigation provides insights into the genetic diversity and natural history of colonization and infection. Such information allows the development of new methodologies to identify and compare relatedness and predict antimicrobial resistance. Future clinical studies that employ suitable sampling frames coupled with the application of high-resolution whole-genome sequencing may aid the development of more discriminatory diagnostic approaches to coagulase-staphylococcal infection.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.001337
2021-03-11
2021-10-17
Loading full text...

Full text loading...

References

  1. Ogston A. Micrococcus poisoning. J Anat Physiol 1882; 17:24–58
    [Google Scholar]
  2. Rosenbach FJ, Rosenbach AJF. Mikro-organismen bei den Wund-infections-krankheiten des Menschen. Verlag von 18841–120
    [Google Scholar]
  3. Welch WH. Conditions underlying the infection of wounds. Am J Med Sci 1891; 102:439464 [View Article]
    [Google Scholar]
  4. Fairbrother RW. Coagulase production as a criterion for the classification of the staphylococci. J Pathol Bacteriol 1940; 50:83–88 [View Article]
    [Google Scholar]
  5. Huebner J, Goldmann DA. Coagulase-Negative staphylococci: role as pathogens. Annu Rev Med 1999; 50:223–236 [View Article][PubMed]
    [Google Scholar]
  6. MacFadyen AC, Drigo I, Harrison EM, Parkhill J, Holmes MA et al. Staphylococcus caeli sp. nov., isolated from air sampling in an industrial rabbit holding. Int J Syst Evol Microbiol 2019; 69:82–86 [View Article][PubMed]
    [Google Scholar]
  7. Naushad S, Kanevets U, Nobrega D, Carson D, Dufour S et al. Staphylococcus debuckii sp. nov., a coagulase-negative species from bovine milk. Int J Syst Evol Microbiol 2019; 69:2239–2249 [View Article][PubMed]
    [Google Scholar]
  8. Euzeby JP LSPN 1997; List of prokaryotic names with standing in nomenclature. http://www.bacterio.net. Available from: http://www.bacterio.net
  9. Kuroda M, Yamashita A, Hirakawa H, Kumano M, Morikawa K et al. Whole genome sequence of Staphylococcus saprophyticus reveals the pathogenesis of uncomplicated urinary tract infection. Proc Natl Acad Sci U S A 2005; 102:13272–13277 [View Article][PubMed]
    [Google Scholar]
  10. Rupp ME, Soper DE, Archer GL. Colonization of the female genital tract with Staphylococcus saprophyticus. colonization of the female genital tract with Staphylococcus saprophyticus. J Clin Microbiol 1992; 30:2975–2979
    [Google Scholar]
  11. Tseng S-P, Lin Y-T, Tsai J-C, Hung W-C, Chen H-J et al. Genotypes and phenotypes of Staphylococcus lugdunensis isolates recovered from bacteremia. J Microbiol Immunol Infect 2015; 48:397–405 [View Article]
    [Google Scholar]
  12. Heilbronner S, Holden MTG, van Tonder A, Geoghegan JA, Foster TJ et al. Genome sequence of Staphylococcus lugdunensis N920143 allows identification of putative colonization and virulence factors. FEMS Microbiol Lett 2011; 322:60–67 [View Article]
    [Google Scholar]
  13. Argemi X, Martin V, Loux V, Dahyot S, Lebeurre J. Whole-Genome sequencing of seven strains of Staphylococcus lugdunensis allows identification of mobile genetic elements. Genome Biol Evol 2017; 9:1183–1189
    [Google Scholar]
  14. Argemi X, Matelska D, Ginalski K, Riegel P, Hansmann Y et al. Comparative genomic analysis of Staphylococcus lugdunensis shows a closed pan-genome and multiple barriers to horizontal gene transfer. BMC Genomics 2018; 19:1–16 [View Article]
    [Google Scholar]
  15. Argemi X, Hansmann Y, Riegel P, Prévost G. Is Staphylococcus lugdunensis significant in clinical samples?. J Clin Microbiol 2017; 55:3167–3174 [View Article]
    [Google Scholar]
  16. Raz R, Colodner R, Kunin CM. Who Are You--Staphylococcus saprophyticus?. Clin Infect Dis 2005; 40:896–898 [View Article]
    [Google Scholar]
  17. Roth RR, James WD. Microbial ecology of the skin. Annu Rev Microbiol 1988; 42:441–464 [View Article]
    [Google Scholar]
  18. Rogers KL, Fey PD, Rupp ME. Coagulase-Negative staphylococcal infections. Infect Dis Clin North Am 2009; 23:73–98 [View Article][PubMed]
    [Google Scholar]
  19. Otto M. Staphylococcus epidermidis—the’accidental’ pathogen. Nat Rev Microbiol 2009; 7:555–567 [View Article]
    [Google Scholar]
  20. Rupp ME, Archer GL. Coagulase-Negative staphylococci: pathogens associated with medical progress. Clinical Infectious Diseases 1994; 19:231–245 [View Article]
    [Google Scholar]
  21. Kloos WE, Bannerman TL. Update on clinical significance of coagulase-negative staphylococci. Clin Microbiol Rev 1994; 7:117–140 [View Article][PubMed]
    [Google Scholar]
  22. Pfaller MA, Herwaldt LA. Laboratory, clinical, and epidemiological aspects of coagulase-negative staphylococci. Clin Microbiol Rev 1988; 1:281–299 [View Article]
    [Google Scholar]
  23. Shin JH, Kim SH, Jeong HS, Oh SH, Kim HR et al. Identification of coagulase-negative staphylococci isolated from continuous ambulatory peritoneal dialysis fluid using 16S ribosomal RNA, tuf, and soda gene sequencing. Perit Dial Int 2011; 31:340–346 [View Article][PubMed]
    [Google Scholar]
  24. Piette A, Verschraegen G. Role of coagulase-negative staphylococci in human disease. Vet Microbiol 2009; 134:45–54 [View Article]
    [Google Scholar]
  25. Panda S, Singh DV. Whole-Genome Sequences of Staphylococcus haemolyticus Isolated from Infected Eyes and Healthy Conjunctiva in Bhubaneswar, India. Genome Announc 2016; 4:1–2 [View Article]
    [Google Scholar]
  26. von Eiff C, Peters G, Heilmann C. Pathogenesis of infections due to coagulasenegative staphylococci. Lancet Infect Dis 2002; 2:677–685 [View Article]
    [Google Scholar]
  27. Deplano A, Vandendriessche S, Nonhoff C, Dodémont M, Roisin S et al. National surveillance of Staphylococcus epidermidis recovered from bloodstream infections in Belgian hospitals. J Antimicrob Chemother 2016; 71:1815–1819 [View Article][PubMed]
    [Google Scholar]
  28. Malhas AM, Lawton R, Reidy M, Nathwani D, Clift BA. Causative organisms in revision total hip & knee arthroplasty for infection: Increasing multi-antibiotic resistance in coagulase-negative Staphylococcus and the implications for antibiotic prophylaxis. The Surgeon 2015; 13:250–255 [View Article]
    [Google Scholar]
  29. Frebourg Noëlle Barbier, Lefebvre S, Baert Stéphanie, Lemeland Jean-François, Frebourg NB, Baert S, Lemeland JF. Pcr-Based assay for discrimination between invasive and contaminating Staphylococcus epidermidisStrains. J Clin Microbiol 2000; 38:877–880 [View Article]
    [Google Scholar]
  30. Lalani T, Federspiel JJ, Boucher HW, Rude TH, Bae I-G et al. Associations between the genotypes of Staphylococcus aureus bloodstream isolates and clinical characteristics and outcomes of bacteremic patients. J Clin Microbiol 2008; 46:2890–2896 [View Article]
    [Google Scholar]
  31. Enright MC, Day NPJ, Davies CE, Peacock SJ, Spratt BG. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones ofStaphylococcus aureus. J Clin Microbiol 2000; 38:1008–1015 [View Article]
    [Google Scholar]
  32. May L, Klein EY, Rothman RE, Laxminarayan R. Trends in antibiotic resistance in coagulase-negative staphylococci in the United States, 1999 to 2012. Antimicrob Agents Chemother 2014; 58:1404–1409 [View Article]
    [Google Scholar]
  33. Otto M. Virulence factors of the coagulase-negative staphylococci. Front Biosci 2004; 9:841–863 [View Article][PubMed]
    [Google Scholar]
  34. Argemi X, Hansmann Y, Prola K, Prévost G. Coagulase-Negative staphylococci Pathogenomics. Int J Mol Sci 2019; 20:1215–1219 [View Article]
    [Google Scholar]
  35. Becker K, Heilmann C, Peters G. Coagulase-Negative staphylococci. Clin Microbiol Rev 2014; 27:870–926 [View Article]
    [Google Scholar]
  36. Tolo I, Thomas JC, Fischer RSB, Brown EL, Gray BM et al. Do Staphylococcus epidermidis genetic clusters predict isolation sources?. J Clin Microbiol 2016; 54:1711–1719 [View Article][PubMed]
    [Google Scholar]
  37. Götz F. Staphylococcus and biofilms. Mol Microbiol 2002; 43:1367–1378 [View Article]
    [Google Scholar]
  38. Hanssen A-M, Ericson Sollid JU. SCC mec in staphylococci: genes on the move. FEMS Immunol Med Microbiol 2006; 46:8–20 [View Article]
    [Google Scholar]
  39. Otto M. Staphylococcal biofilms. Curr Top Microbiol Immunol 2008; 322:207–208
    [Google Scholar]
  40. Szczuka E, Telega K, Kaznowski A. Biofilm formation by Staphylococcus hominis strains isolated from human clinical specimens. Folia Microbiol 2015; 60:1–5 [View Article]
    [Google Scholar]
  41. Cherifi S, Byl B, Deplano A, Nagant C, Nonhoff C et al. Genetic characteristics and antimicrobial resistance of Staphylococcus epidermidis isolates from patients with catheter-related bloodstream infections and from colonized healthcare workers in a Belgian Hospital. Ann Clin Microbiol Antimicrob 2014; 13:20 [View Article]
    [Google Scholar]
  42. Rohde H, Kalitzky M, Kröger N, Scherpe S, Horstkotte MA et al. Detection of virulence-associated genes not useful for discriminating between invasive and commensal Staphylococcus epidermidis strains from a bone marrow transplant unit. J Clin Microbiol 2004; 42:5614–5619 [View Article]
    [Google Scholar]
  43. Gu J, Li H, Li M, Vuong C, Otto M et al. Bacterial insertion sequence IS256 as a potential molecular marker to discriminate invasive strains from commensal strains of Staphylococcus epidermidis. J Hosp Infect 2005; 61:342–348 [View Article][PubMed]
    [Google Scholar]
  44. Yao Y, Sturdevant DE, Villaruz A, Xu L, Gao Q. Factors characterizing Staphylococcus epidermidis invasiveness determined by comparative genomics factors characterizing Staphylococcus epidermidis invasiveness determined by comparative genomics. Infect Immun 2005; 73:1856–1860
    [Google Scholar]
  45. Hellmark B, Söderquist B, Unemo M, Nilsdotter-Augustinsson Åsa, Å N-A. Comparison of Staphylococcus epidermidis isolated from prosthetic joint infections and commensal isolates in regard to antibiotic susceptibility, agr type, biofilm production, and epidemiology. Int J Med Microbiol 2013; 303:32–39 [View Article][PubMed]
    [Google Scholar]
  46. Conlan S, Mijares LA, Becker J, Blakesley RW, Bouffard GG et al. Staphylococcus epidermidis pan-genome sequence analysis reveals diversity of skin commensal and hospital infection-associated isolates. Genome Biol 2012; 13:R64 [View Article]
    [Google Scholar]
  47. Conlon KM, Humphreys H, O'Gara JP, O’Gara JP. icaR encodes a transcriptional repressor involved in environmental regulation of ICA operon expression and biofilm formation in Staphylococcus epidermidis. J Bacteriol 2002; 184:4400–4408 [View Article]
    [Google Scholar]
  48. Schoenfelder SMK, Lange C, Eckart M, Hennig S, Kozytska S et al. Success through diversity – how Staphylococcus epidermidis establishes as a nosocomial pathogen. Int J Med Microbiol 2010; 300:380–386 [View Article]
    [Google Scholar]
  49. Chokr A, Watier D, Eleaume H, Pangon B, Ghnassia J-C et al. Correlation between biofilm formation and production of polysaccharide intercellular adhesin in clinical isolates of coagulase-negative staphylococci. Int J Med Microbiol 2006; 296:381–388 [View Article]
    [Google Scholar]
  50. Mertens A, Ghebremedhin B. Genetic determinants and biofilm formation of clinical Staphylococcus epidermidis isolates from blood cultures and indwelling devises. European Journal of Microbiology and Immunology 2013; 3:111–119 [View Article]
    [Google Scholar]
  51. Rohde H, Burandt EC, Siemssen N, Frommelt L, Burdelski C et al. Polysaccharide intercellular adhesin or protein factors in biofilm accumulation of Staphylococcus epidermidis and Staphylococcus aureus isolated from prosthetic hip and knee joint infections. Biomaterials 2007; 28:1711–1720 [View Article]
    [Google Scholar]
  52. Büttner H, Mack D, Rohde H. Structural basis of Staphylococcus epidermidis biofilm formation: mechanisms and molecular interactions. Front Cell Infect Microbiol 2015; 5:1–15
    [Google Scholar]
  53. Rohde H, Burdelski C, Bartscht K, Hussain M, Buck F et al. Induction of Staphylococcus epidermidis biofilm formation via proteolytic processing of the accumulation-associated protein by staphylococcal and host proteases. Mol Microbiol 2005; 55:1883–1895 [View Article]
    [Google Scholar]
  54. T, Knecht E, Götz F, Lasa I, Penadés JR. Bap-dependent biofilm formation by pathogenic species of Staphylococcus: evidence of horizontal gene transfer?. Microbiology 2005; 151:2465–2475
    [Google Scholar]
  55. Post V, Harris LG, Morgenstern M, Mageiros L, Hitchings MD et al. Comparative genomics study of Staphylococcus epidermidis isolates from Orthopedic-Device-Related infections correlated with patient outcome. J Clin Microbiol 2017; 55:3089–3103 [View Article]
    [Google Scholar]
  56. Granslo HN, Klingenberg C, Fredheim EGA, Rønnestad A, Mollnes TE et al. Arginine catabolic mobile element is associated with low antibiotic resistance and low pathogenicity in Staphylococcus epidermidis from neonates. Pediatr Res 2010; 68:237–241 [View Article]
    [Google Scholar]
  57. Cherifi S, Byl B, Deplano A, Nonhoff C, Denis O et al. Comparative epidemiology of Staphylococcus epidermidis isolates from patients with catheter-related bacteremia and from healthy volunteers. J Clin Microbiol 2013; 51:1541–1547 [View Article]
    [Google Scholar]
  58. Cavanagh JP, Hjerde E, Holden MTG, Kahlke T, Klingenberg C et al. Whole-Genome sequencing reveals clonal expansion of multiresistant Staphylococcus haemolyticus in European hospitals. J Antimicrob Chemother 2014; 69:2920–2927 [View Article]
    [Google Scholar]
  59. Méric G, Miragaia M, de Been M, Yahara K, Pascoe B et al. Ecological overlap and horizontal gene transfer in Staphylococcus aureus and Staphylococcus epidermidis . Genome Biol Evol 2015; 7:1313–1328 [View Article]
    [Google Scholar]
  60. Hurdle JG, O'Neill AJ, Mody L, Chopra I, Bradley SF. In vivo transfer of high-level mupirocin resistance from Staphylococcus epidermidis to methicillin-resistant Staphylococcus aureus associated with failure of mupirocin prophylaxis. J Antimicrob Chemother 2005; 56:1166–1168 [View Article]
    [Google Scholar]
  61. Forbes BA, Schaberg DR. Transfer of resistance plasmids from Staphylococcus epidermidis to Staphylococcus aureus: evidence for conjugative exchange of resistance. J Bacteriol 1983; 153:627–634 [View Article][PubMed]
    [Google Scholar]
  62. Grohmann E, Muth Günther, Espinosa M. Conjugative plasmid transfer in Gram-positive bacteria. Microbiol Mol Biol Rev 2003; 67:277–301 [View Article]
    [Google Scholar]
  63. Naidoo J. Interspecific co-transfer of antibiotic resistance plasmids in staphylococci in vivo . J. Hyg. 1984; 93:59–66 [View Article]
    [Google Scholar]
  64. Rolo J, Worning P, Nielsen JB, Bowden R, Bouchami O et al. Evolutionary origin of the staphylococcal cassette chromosome mec (SCCmec). Antimicrob Agents Chemother 2017; 61:e02302–02316 [View Article]
    [Google Scholar]
  65. Chen X-P, Li W-G, Zheng H, Du H-Y, Zhang L, W-G L et al. Extreme diversity and multiple SCCmec elements in coagulase-negative Staphylococcus found in the clinic and community in Beijing, China. Ann Clin Microbiol Antimicrob 2017; 16:57 [View Article][PubMed]
    [Google Scholar]
  66. García-Álvarez L, Holden MTG, Lindsay H, Webb CR, Brown DFJ et al. Meticillin-Resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: a descriptive study. Lancet Infect Dis 2011; 11:595–603 [View Article]
    [Google Scholar]
  67. Schwendener S, Cotting K, Perreten V. Novel methicillin resistance gene mecD in clinical Macrococcus caseolyticus strains from bovine and canine sources. Nat Publ Gr 2016; 2017:1–11
    [Google Scholar]
  68. Baba T, Kuwahara-arai K, Uchiyama I, Takeuchi F, Ito T. Complete genome sequence of Macrococcus caseolyticus strain JSCS5402. Reflecting the Ancestral Genome of the Human-Pathogenic Staphylococci 2009; 191:1180–1190
    [Google Scholar]
  69. Pantůček R, Sedláček I, Indráková A, Vrbovská V, Mašlaňová I et al. Staphylococcus edaphicus sp. nov., isolated in Antarctica, harbors the mecC gene and genomic islands with a suspected role in adaptation to extreme environments. Appl Environ Microbiol 2018; 84:1–13 [View Article]
    [Google Scholar]
  70. Ito T, Hiramatsu K, Tomasz A, de Lencastre H, Perreten V et al. Guidelines for Reporting Novel mecA Gene Homologues. Antimicrob Agents Chemother 2012; 56:4997–4999 [View Article]
    [Google Scholar]
  71. Kutscha-Lissberg F, Hebler U, Muhr G, Köller M. Linezolid penetration into bone and joint tissues infected with methicillin-resistant staphylococci. Antimicrob Agents Chemother 2003; 47:3964–3966 [View Article]
    [Google Scholar]
  72. Livermore DM. Linezolid in vitro: mechanism and antibacterial spectrum. J Antimicrob Chemother 2003; 51:9ii–16 [View Article]
    [Google Scholar]
  73. Bender J, Strommenger B, Steglich M, Zimmermann O, Fenner I et al. Linezolid resistance in clinical isolates of Staphylococcus epidermidis from German hospitals and characterization of two cfr-carrying plasmids. J Antimicrob Chemother 2015; 70:1630–1638 [View Article][PubMed]
    [Google Scholar]
  74. Bozdogan B, Appelbaum PC. Oxazolidinones: activity, mode of action, and mechanism of resistance. Int J Antimicrob Agents 2004; 23:113–119 [View Article]
    [Google Scholar]
  75. Hong T, Li X, Wang J, Sloan C, Cicogna C. Sequential linezolid-resistant Staphylococcus epidermidis isolates with G2576T mutation. J Clin Microbiol 2007; 45:3277–3280 [View Article]
    [Google Scholar]
  76. Long KS, Vester B. Resistance to linezolid caused by modifications at its binding site on the ribosome. Antimicrob Agents Chemother 2012; 56:603–612 [View Article]
    [Google Scholar]
  77. Lee JYH, Monk IR, Gonçalves da Silva A, Seemann T, Chua KYL et al. Global spread of three multidrug-resistant lineages of Staphylococcus epidermidis . Nat Microbiol 2018; 3:1175–1185 [View Article][PubMed]
    [Google Scholar]
  78. Mendes RE, Deshpande LM, Costello AJ, Farrell DJ. Molecular epidemiology of Staphylococcus epidermidis clinical isolates from U.S. hospitals. Antimicrob Agents Chemother 2012; 56:4656–4661 [View Article][PubMed]
    [Google Scholar]
  79. Baos E, Candel FJ, Merino P, Pena I, Picazo JJ. Characterization and monitoring of linezolid-resistant clinical isolates of Staphylococcus epidermidis in an intensive care unit 4 years after an outbreak of infection by cfr-mediated linezolid-resistant Staphylococcus aureus . Diagn Microbiol Infect Dis 2013; 76:325–329 [View Article]
    [Google Scholar]
  80. Bonilla H, Huband MD, Seidel J, Schmidt H, Lescoe M et al. Multicity outbreak of linezolid-resistant Staphylococcus epidermidis associated with clonal spread of a cfr-containing strain. Clin Infect Dis 2010; 51:796–900 [View Article][PubMed]
    [Google Scholar]
  81. Yang X-J, Chen Y, Yang Q, Qu T-T, Liu L-L et al. Emergence of cfr-harbouring coagulase-negative staphylococci among patients receiving linezolid therapy in two hospitals in China. J Med Microbiol 2013; 62:845–850 [View Article]
    [Google Scholar]
  82. Srinivasan A, Dick JD, Perl TM et al. Vancomycin resistance in staphylococci. Clin Microbiol Rev 2002; 15:430–438 [View Article]
    [Google Scholar]
  83. Biavasco F, Vignaroli C, Varaldo PE. Glycopeptide resistance in coagulase-negative staphylococci. Eur J Clin Microbiol Infect Dis 2000; 19:403–417 [View Article]
    [Google Scholar]
  84. Cremniter J, Slassi A, Quincampoix JC, Sivadon-Tardy V, Bauer T et al. Decreased susceptibility to teicoplanin and vancomycin in coagulase-negative staphylococci isolated from orthopedic-device-associated infections. J Clin Microbiol 2010; 48:1428–1431 [View Article]
    [Google Scholar]
  85. Gazzola S, Cocconcelli PS. Vancomycin heteroresistance and biofilm formation in Staphylococcus epidermidis from food. Microbiology 2008; 154:3224–3231 [View Article]
    [Google Scholar]
  86. Cremniter J, Sivadon-Tardy V, Caulliez C, Bauer T, Porcher R et al. Genetic analysis of glycopeptide-resistant Staphylococcus epidermidis strains from bone and joint infections. J Clin Microbiol 2013; 51:1014–1019 [View Article][PubMed]
    [Google Scholar]
  87. McCann MT, Gilmore BF, Gorman SP. <I>Staphylococcus epidermidis</I> device-related infections: pathogenesis and clinical management. j pharm pharmacol 2008; 60:1551–1571 [View Article]
    [Google Scholar]
  88. Boyle DL, Takemoto L, Brady JP, Wawrousek EF. Characterization of coagulase negative staphylococcal isolates from blood with reduced susceptibility to glycopeptides and therapeutic options. BMC Infect Dis 2009; 9:1–10
    [Google Scholar]
  89. Biavasco F, Vignaroli C, Lazzarini R, Varaldo PE. Glycopeptide susceptibility profiles of Staphylococcus haemolyticus bloodstream isolates. Antimicrob Agents Chemother 2000; 44:3122–3126 [View Article]
    [Google Scholar]
  90. Wassenaar T, Ussery D, Nielsen L, Ingmer H. Review and phylogenetic analysis of qac genes that reduce susceptibility to quaternary ammonium compounds in Staphylococcus species. Eur J Microbiol Immunol 2015; 5:44–61 [View Article]
    [Google Scholar]
  91. Sidhu MS, Heir E, Sørum H, Holck A. Genetic linkage between resistance to quaternary ammonium compounds and beta-lactam antibiotics in food-related Staphylococcus spp. Microb Drug Resist 2001; 7:363–371 [View Article][PubMed]
    [Google Scholar]
  92. Herwaldt LA, Geiss M, Kao C, Pfaller MA. The positive predictive value of isolating coagulase-negative staphylococci from blood cultures. ClinInfectDis 1996; 22:14–20 [View Article]
    [Google Scholar]
  93. Souvenir D, Anderson DE, Palpant S, Mroch H, Askin S et al. Blood cultures positive for coagulase-negative staphylococci: antisepsis, pseudobacteremia, and therapy of patients †. J Clin Microbiol 1998; 36:1923–1926 [View Article]
    [Google Scholar]
  94. Hall KK, Lyman JA. Updated review of blood culture contamination. Clin Microbiol Rev 2006; 19:788–802 [View Article]
    [Google Scholar]
  95. Zarb P, Coignard B, Griskeviciene J, Muller A, Vankerckhoven V. Point prevalence survey of healthcare-associated infections and antimicrobial use in European acute care hospitals. Vol. 17. Eurosurveillance 20121–16
    [Google Scholar]
  96. Widerstrom M, Wistrom J, Sjostedt A, Monsen T. Coagulase-negative staphylococci: update on the molecular epidemiology and clinical presentation, with a focus on Staphylococcus epidermidis and Staphylococcus saprophyticus . Eur J Clin Microbiol Infect Dis 2012; 31:7–20 [View Article]
    [Google Scholar]
  97. Tokars JI. Predictive value of blood cultures positive for coagulase-negative staphylococci: implications for patient care and health care quality assurance. Clinical Infectious Diseases 2004; 39:333–341 [View Article]
    [Google Scholar]
  98. Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP et al. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis 2004; 39:309–317 [View Article]
    [Google Scholar]
  99. Zarb P, Coignard B, Griskeviciene J, Muller A, Vankerckhoven V et al. The European centre for disease prevention and control (ECDC) pilot point prevalence survey of healthcare-associated infections and antimicrobial use. Eurosurveillance 2012; 17:20316 [View Article]
    [Google Scholar]
  100. WHO 2012; Preventing bloodstream infections from central line venous catheters. http://www. who. int/patientsafety/implementation/bsi/en/index. html
  101. Shah H, Bosch W, Thompson KM, Hellinger WC. Intravascular catheter-related bloodstream infection. The Neurohospitalist 2013; 3:144–151 [View Article]
    [Google Scholar]
  102. Han Z, Liang SY, Marschall J. Current strategies for the prevention and management of central line-associated bloodstream infections. Infect Drug Resist 2010; 3:147–163 [View Article][PubMed]
    [Google Scholar]
  103. Kassis C, Rangaraj G, Jiang Y, Hachem RY, Raad I. Differentiating culture samples representing coagulase-negative staphylococcal bacteremia from those representing contamination by use of time-to-positivity and quantitative blood culture methods. J Clin Microbiol 2009; 47:3255–3260 [View Article]
    [Google Scholar]
  104. García P, Benítez R, Lam M, Salinas AM, Wirth H et al. Coagulase-Negative staphylococci: clinical, microbiological and molecular features to predict true bacteraemia. J Med Microbiol 2004; 53:67–72 [View Article]
    [Google Scholar]
  105. Ning Y, Hu R, Yao G, Bo S. Time to positivity of blood culture and its prognostic value in bloodstream infection. Eur J Clin Microbiol Infect Dis 2016; 35:619–624 [View Article]
    [Google Scholar]
  106. Bates DW, Goldman L, Lee TH. Contaminant blood cultures and resource utilization. The true consequences of false-positive results. JAMA 1991; 265:365–369[PubMed]
    [Google Scholar]
  107. Trampuz A, Widmer AF. Infections associated with orthopedic implants. Curr Opin Infect Dis 2006; 19:349–356 [View Article][PubMed]
    [Google Scholar]
  108. Harris LG, Richards RG. Staphylococci and implant surfaces: a review. Injury 2006; 37:S3–S14 [View Article]
    [Google Scholar]
  109. Vuong C, Voyich JM, Fischer ER, Braughton KR, Whitney AR et al. Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system. Cell Microbiol 2004; 6:269–275 [View Article]
    [Google Scholar]
  110. Giormezis N, Kolonitsiou F, Foka A, Drougka E, Liakopoulos A et al. Coagulase-Negative staphylococcal bloodstream and prosthetic-device-associated infections: the role of biofilm formation and distribution of adhesin and toxin genes. J Med Microbiol 2014; 63:1500–1508 [View Article]
    [Google Scholar]
  111. Kotilainen P. Association of coagulase-negative staphylococcal slime production and adherence with the development and outcome of adult septicemias. J Clin Microbiol 1990; 28:2779–2785 [View Article][PubMed]
    [Google Scholar]
  112. Papadimitriou-Olivgeri I, Giormezis N, Papadimitriou-Olivgeris M, Zotou A, Kolonitsiou F et al. Number of positive blood cultures, biofilm formation, and adhesin genes in differentiating true coagulase-negative staphylococci bacteremia from contamination. Eur J Clin Microbiol Infect Dis 2016; 35:57–66 [View Article]
    [Google Scholar]
  113. Zimmerli W, Trampuz A, Ochsner PE. Prosthetic-Joint infections. N Engl J Med 2004; 351:1645–1654 [View Article]
    [Google Scholar]
  114. Phillips JE, Crane TP, Noy M, Elliott TSJ, Grimer RJ. The incidence of deep prosthetic infections in specialist orthopaedic hospital - A 15-year prospective survey. J Bone Jt Surgery-British Vol 2006; 88:943–948
    [Google Scholar]
  115. Sivadon V, Rottman M, Chaverot S, Quincampoix J-C, Avettand V et al. Use of genotypic identification by sodA sequencing in a prospective study to examine the distribution of coagulase-negative Staphylococcus species among strains recovered during septic orthopedic surgery and evaluate their significance. J Clin Microbiol 2005; 43:2952–2954 [View Article][PubMed]
    [Google Scholar]
  116. James PJ, Butcher IA, Gardner ER, Hamblen DL et al. Methicillin-resistant Staphylococcus epidermidis in infection of hip arthroplasties. J Bone Joint Surg Br 1994; 76-B:725–727 [View Article]
    [Google Scholar]
  117. Mohanty SS, Kay PR. Infection in total joint replacements. J Bone Joint Surg Br 2004; 86-B:266–268 [View Article]
    [Google Scholar]
  118. Etienne J, Brun Y, el Solh N, Delorme V, Mouren C et al. Characterization of clinically significant isolates of Staphylococcus epidermidis from patients with endocarditis. J Clin Microbiol 1988; 26:613–617 [View Article]
    [Google Scholar]
  119. Hellmark B, Unemo M, Nilsdotter-Augustinsson A, Söderquist B. Antibiotic susceptibility among Staphylococcus epidermidis isolated from prosthetic joint infections with special focus on rifampicin and variability of the rpoB gene. Clin Microbiol Infect 2009; 15:238–244 [View Article][PubMed]
    [Google Scholar]
  120. Atkins BL, Athanasou N, Deeks JJ, Crook DWM, Simpson H. Prospective evaluation of criteria for microbiological diagnosis of Prosthetic-Joint infection at revision arthroplasty prospective evaluation of criteria for microbiological diagnosis of Prosthetic-Joint infection at revision arthroplasty. J Clin Microbiol 1998; 36:2932–2939
    [Google Scholar]
  121. Kim SD, McDonald LC, Jarvis WR, McAllister SK, Jerris R et al. Determining the significance of coagulase-negative staphylococci isolated from blood cultures at a community hospital: a role for species and strain identification. Infect Control Hosp Epidemiol 2000; 21:213–217 [View Article][PubMed]
    [Google Scholar]
  122. Parvizi J, Tan TL, Goswami K, Higuera C, Della Valle C et al. The 2018 definition of periprosthetic hip and knee infection: an evidence-based and validated criteria. J Arthroplasty 2018; 33:1309–1314 [View Article]
    [Google Scholar]
  123. Schleifer KH, Kloos WE. Isolation and characterization of staphylococci from human skin. Int J Syst Bacteriol 1975; 25:50–61
    [Google Scholar]
  124. Schleifer KH, Kloos WE. Isolation and characterization of staphylococci from human skin I. amended descriptions of Staphylococcus epidermidis and Staphylococcus saprophyticus and descriptions of three new species: Staphylococcus cohnii, Staphylococcus haemolyticus, and Staphylococcus xylosus . Int J Syst Bacteriol 1975; 25:50–61 [View Article]
    [Google Scholar]
  125. Kloos WE, Schleifer KH. Simplified scheme for routine identification of human Staphylococcus species. J Clin Microbiol 1975; 1:82–88 [View Article]
    [Google Scholar]
  126. Carbonnelle E, Beretti J-L, Cottyn S, Quesne G, Berche P et al. Rapid identification of staphylococci isolated in clinical microbiology laboratories by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 2007; 45:2156–2161 [View Article]
    [Google Scholar]
  127. Dubois D, Leyssene D, Chacornac JP, Kostrzewa M, Schmit PO et al. Identification of a Variety of Staphylococcus Species by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry. J Clin Microbiol 2010; 48:941–945 [View Article]
    [Google Scholar]
  128. Nagel JL, Huang AM, Kunapuli A, Gandhi TN, Washer LL et al. Impact of antimicrobial stewardship intervention on coagulase-negative Staphylococcus blood cultures in conjunction with rapid diagnostic testing. J Clin Microbiol 2014; 52:2849–2854 [View Article]
    [Google Scholar]
  129. Baird-Parker AC. A classification of micrococci and staphylococci based on physiological and biochemical tests. J Gen Microbiol 1963; 30:409–427 [View Article]
    [Google Scholar]
  130. Götz F, Bannerman T, Schleifer K-H. The genera Staphylococcus and Macrococcus . The Prokaryotes Springer; 2006 pp 5–75
    [Google Scholar]
  131. Struelens MJ, Study E, Markers E, Microbiology C, Escmid ID. Consensus guidelines for appropriate use and evaluation of microbial epidemiologic typing systems. Clin Microbiol Infect 1996; 2:2–11 [View Article][PubMed]
    [Google Scholar]
  132. van Belkum A, Struelens M, de Visser A, Verbrugh H, Tibayrenc M. Role of genomic typing in taxonomy, evolutionary genetics, and microbial epidemiology. Clin Microbiol Rev 2001; 14:547–560 [View Article]
    [Google Scholar]
  133. De Buyser M-L, Morvan A, Aubert S, Dilasser F, Solh NE, el Solh N. Evaluation of a ribosomal RNA gene probe for the identification of species and subspecies within the genus Staphylococcus . J Gen Microbiol 1992; 138:889–899 [View Article]
    [Google Scholar]
  134. Takahashi T, Satoh I, Kikuchi N. Phylogenetic relationships of 38 taxa of the genus Staphylococcus based on 16S rRNA gene sequence analysis. Int J Syst Bacteriol 1999; 1999:725–728
    [Google Scholar]
  135. Ghebremedhin B, Layer F, König W, König B. Genetic classification and distinguishing of Staphylococcus species based on different partial gap, 16S rRNA, hsp60, rpoB, sodA, and tuf gene sequences. J Clin Microbiol 2008; 46:1019–1025 [View Article]
    [Google Scholar]
  136. Kosecka-Strojek M, Sabat AJ, Akkerboom V, Becker K, van Zanten E et al. Development and validation of a reference data set for assigning Staphylococcus species based on next-generation sequencing of the 16S-23S rRNA region. Front Cell Infect Microbiol 2019; 9:1–19 [View Article]
    [Google Scholar]
  137. Švec P, Bel AD, Sedláček I, Petráš P, Gelbíčová T, Echahidi F, Cnockaert M et al. Staphylococcus petrasii subsp. pragensis subsp. nov., occurring in human clinical material. Int J Syst Evol Microbiol 2015; 65:2071–2077 [View Article][PubMed]
    [Google Scholar]
  138. Heikens E. Comparison of genotypic and phenotypic methods for species-level identification of clinical isolates of coagulase-negative staphylococci comparison of genotypic and phenotypic methods for species-level identification of clinical isolates of Coagulase-Nega. J Clin Microbiol 2005; 43:2286–2290
    [Google Scholar]
  139. Poyart C, Quesne G, Boumaila C, Trieu-Cuot P. Rapid and accurate species-level identification of coagulase-negative staphylococci by using the sodA gene as a target. J Clin Microbiol 2001; 39:4296–4301 [View Article]
    [Google Scholar]
  140. Mellmann A, Becker K, von Eiff C, Keckevoet U, Schumann P et al. Sequencing and staphylococci identification. Emerg Infect Dis 2006; 12:333–336 [View Article]
    [Google Scholar]
  141. Giammarinaro P, Leroy S, Chacornac J-P, Delmas J, Talon R. Development of a new oligonucleotide array to identify staphylococcal strains at species level. J Clin Microbiol 2005; 43:3673–3680 [View Article][PubMed]
    [Google Scholar]
  142. Wang H, Du P, Li J, Zhang Y, Zhang W et al. Comparative analysis of microbiome between accurately identified 16S rDNA and quantified bacteria in simulated samples. J Med Microbiol 2014; 63:433–440 [View Article]
    [Google Scholar]
  143. Ichiyama S, Ohta M, Shimokata K, Kato N, Takeuchi J. Genomic DNA fingerprinting by pulsed-field gel electrophoresis as an epidemiological marker for study of nosocomial infections caused by methicillin-resistant Staphylococcus aureus . J Clin Microbiol 1991; 29:2690–2695 [View Article][PubMed]
    [Google Scholar]
  144. Goering RV, Winters MA. Rapid method for epidemiological evaluation of gram-positive cocci by field inversion gel electrophoresis. J Clin Microbiol 1992; 30:577–580 [View Article]
    [Google Scholar]
  145. Lina B, Vandenesch F, Etienne J, Kreiswirth B, Fleurette J. Comparison of coagulase-negative staphylococci by pulsed-field gel electrophoresis. FEMS Microbiol Lett 1992; 92:133–138 [View Article]
    [Google Scholar]
  146. Crossley KB, Archer G, Jefferson K, Fowler V. The Staphylococci in Human Disease New York: Churchill Livingstone; 1997
    [Google Scholar]
  147. Sloos JH, Dijkshoorn L, Vogel L, van Boven CPA. Performance of phenotypic and genotypic methods to determine the clinical relevance of serial blood isolates ofStaphylococcus epidermidis in patients with septicemia. J Clin Microbiol 2000; 38:2488–2493 [View Article]
    [Google Scholar]
  148. Salipante SJ, SenGupta DJ, Cummings LA, Land TA, Hoogestraat DR et al. Application of whole-genome sequencing for bacterial strain typing in molecular epidemiology. J Clin Microbiol 2015; 53:1072–1079 [View Article]
    [Google Scholar]
  149. Mickelsen PA, Plorde JJ, Gordon KP, Hargiss C, McClure J et al. Instability of antibiotic resistance in a strain of Staphylococcus epidermidis isolated from an outbreak of prosthetic valve endocarditis. Journal of Infectious Diseases 1985; 152:50–58 [View Article]
    [Google Scholar]
  150. Galdbart J-O, Morvan A, Desplaces N, el Solh N. Phenotypic and genomic variation among Staphylococcus epidermidis strains infecting joint prostheses. J Clin Microbiol 1999; 37:1306–1312 [View Article]
    [Google Scholar]
  151. Ziebuhr W, Dietrich K, Trautmann M, Wilhelm M. Chromosomal rearrangements affecting biofilm production and antibiotic resistance in a Staphylococcus epidermidis strain causing shunt-associated ventriculitis. Int J Med Microbiol 2000; 290:115–120 [View Article][PubMed]
    [Google Scholar]
  152. Miragaia M, Carrico JA, Thomas JC, Couto I, Enright MC et al. Comparison of molecular typing methods for characterization of Staphylococcus epidermidis: proposal for clone definition. J Clin Microbiol 2008; 46:118–129 [View Article]
    [Google Scholar]
  153. Maiden MCJ, Bygraves JA, Feil E, Morelli G, Russell JE et al. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A 1998; 95:3140–3145 [View Article]
    [Google Scholar]
  154. Thomas JC, Vargas MR, Miragaia M, Peacock SJ, Archer GL et al. Improved multilocus sequence typing scheme for Staphylococcus epidermidis. J Clin Microbiol 2007; 45:616–619 [View Article]
    [Google Scholar]
  155. Miragaia M, Thomas JC, Couto I, Enright MC, de Lencastre H. Inferring a population structure for Staphylococcus epidermidis from multilocus sequence typing data. J Bacteriol 2007; 189:2540–2552 [View Article]
    [Google Scholar]
  156. Rolo J, de Lencastre H, Miragaia M. Strategies of adaptation of Staphylococcus epidermidis to hospital and community: amplification and diversification of SCCmec. J Antimicrob Chemother 2012; 67:1333–1341 [View Article][PubMed]
    [Google Scholar]
  157. pubmlst.org S. epidermidis MLST profiles [Internet]. [cited 2019 Nov 11]. https://pubmlst.org/bigsdb?db=pubmlst_sepidermidis_seqdef&page=downloadProfiles&scheme_id=1
  158. Kozitskaya S, Olson ME, Fey PD, Witte W, Ohlsen K et al. Clonal analysis of Staphylococcus epidermidis isolates carrying or lacking biofilm-mediating genes by multilocus sequence typing. J Clin Microbiol 2005; 43:4751–4757 [View Article]
    [Google Scholar]
  159. Månsson E, Hellmark B, Sundqvist M, Söderquist B. Sequence types of Staphylococcus epidermidis associated with prosthetic joint infections are not present in the laminar airflow during prosthetic joint surgery. APMIS 2015; 123:589–595 [View Article]
    [Google Scholar]
  160. Price JR, Golubchik T, Cole K, Wilson DJ, Crook DW et al. Whole-genome sequencing shows that patient-to-patient transmission rarely accounts for acquisition of Staphylococcus aureus in an intensive care unit. Clinical Infectious Diseases 2014; 58:609–618 [View Article]
    [Google Scholar]
  161. O'Connor C, Powell J, Finnegan C, O'Gorman A, Barrett S et al. Incidence, management and outcomes of the first cfr-mediated linezolid-resistant Staphylococcus epidermidis outbreak in a tertiary referral centre in the Republic of Ireland. J Hosp Infect 2015; 90:316–321 [View Article]
    [Google Scholar]
  162. Obszańska K, Borek AL, Hryniewicz W, Sitkiewicz I. Multiple locus VNTR fingerprinting (MLVF) of Streptococcus pyogenes . Virulence 2012; 3:539–542 [View Article]
    [Google Scholar]
  163. Cavanagh JP, Klingenberg C, Hanssen A-M, Fredheim EA, Francois P et al. Core genome conservation of Staphylococcus haemolyticus limits sequence based population structure analysis. J Microbiol Methods 2012; 89:159–166 [View Article][PubMed]
    [Google Scholar]
  164. Pankhurst LJ, del Ojo Elias C, Votintseva AA, Walker TM, Cole K et al. Rapid, comprehensive, and affordable mycobacterial diagnosis with whole-genome sequencing: a prospective study. Lancet Respir Med 2016; 4:49–58 [View Article]
    [Google Scholar]
  165. Eyre DW, De Silva D, Cole K, Peters J, Cole MJ et al. WGS to predict antibiotic MICs for Neisseria gonorrhoeae. J Antimicrob Chemother 2017; 72:1937–1947 [View Article]
    [Google Scholar]
  166. Price JR, Cole K, Bexley A, Kostiou V, Eyre DW et al. Transmission of Staphylococcus aureus between health-care workers, the environment, and patients in an intensive care unit: a longitudinal cohort study based on whole-genome sequencing. Lancet Infect Dis 2017; 17:207–214 [View Article]
    [Google Scholar]
  167. Street TL, Sanderson ND, Atkins BL, Brent AJ, Cole K et al. Molecular diagnosis of orthopaedic device infection directly from sonication fluid by metagenomic sequencing. J Clin Microbiol 2017; 55:2334–2347 [View Article][PubMed]
    [Google Scholar]
  168. Ruppé E, Lazarevic V, Girard M, Mouton W, Ferry T et al. Clinical metagenomics of bone and joint infections: a proof of concept study. Sci Rep 2017; 7:1–12 [View Article]
    [Google Scholar]
  169. Schmidt K, Mwaigwisya S, Crossman LC, Doumith M, Munroe D et al. Identification of bacterial pathogens and antimicrobial resistance directly from clinical urines by nanopore-based metagenomic sequencing. J Antimicrob Chemother 2017; 72:104–114 [View Article][PubMed]
    [Google Scholar]
  170. Charalampous T, Kay GL, Richardson H, Aydin A, Baldan R, Leggett RM et al. Nanopore metagenomics enables rapid clinical diagnosis of bacterial lower respiratory infection. Nat Biotechnol 2019; 37:783–792 [View Article]
    [Google Scholar]
  171. Greninger AL, Naccache SN, Federman S, Yu G, Mbala P et al. Rapid metagenomic identification of viral pathogens in clinical samples by real-time nanopore sequencing analysis. Genome Med 2015; 7:1–13 [View Article]
    [Google Scholar]
  172. Staphylococcus epidermidis SRA - NCBI [Internet]. [cited 2020 May 23]. https://www.ncbi.nlm.nih.gov/sra/?term=(staphylococcus epidermidis)
  173. Leinonen R, Sugawara H, Shumway M. International Nucleotide Sequence Database Collaboration The sequence read archive. Nucleic Acids Res 2011; 39:D19–D21 [View Article][PubMed]
    [Google Scholar]
  174. Colindale NISRL Bacteriology reference department user manual; 2018
  175. Gordon NC, Price JR, Cole K, Everitt R, Morgan M et al. Prediction of Staphylococcus aureus antimicrobial resistance by whole-genome sequencing. J Clin Microbiol 2014; 52:1182–1191 [View Article]
    [Google Scholar]
  176. Köser CU, Holden MTG, Ellington MJ, Cartwright EJP, Brown NM et al. Rapid whole-genome sequencing for investigation of a neonatal MRSA outbreak. N Engl J Med 2012; 366:2267–2275 [View Article]
    [Google Scholar]
  177. Laabei M, Recker M, Rudkin JK, Aldeljawi M, Gulay Z et al. Predicting the virulence of MRSA from its genome sequence. Genome Res 2014; 24:839–849 [View Article][PubMed]
    [Google Scholar]
  178. Tong SYC, Schaumburg F, Ellington MJ, Corander J, Pichon B et al. Novel staphylococcal species that form part of a Staphylococcus aureus-related complex: the non-pigmented Staphylococcus argenteus sp. nov. and the non-human primate-associated Staphylococcus schweitzeri sp. nov. Int J Syst Evol Microbiol 2015; 65:15–22 [View Article]
    [Google Scholar]
  179. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J et al. The sequence Alignment/Map format and SAMtools. Bioinformatics 2009; 25:2078–2079 [View Article]
    [Google Scholar]
  180. Lunter G, Goodson M. Stampy: a statistical algorithm for sensitive and fast mapping of illumina sequence reads. Genome Res 2011; 21:936–939 [View Article][PubMed]
    [Google Scholar]
  181. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article]
    [Google Scholar]
  182. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 2008; 18:821–829 [View Article][PubMed]
    [Google Scholar]
  183. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article]
    [Google Scholar]
  184. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article]
    [Google Scholar]
  185. Long SW, Williams D, Valson C, Cantu CC, Cernoch P et al. A genomic day in the life of a clinical microbiology laboratory. J Clin Microbiol 2013; 51:1272–1277 [View Article]
    [Google Scholar]
  186. Roach DJ, Burton JN, Lee C, Stackhouse B, Butler-Wu SM et al. A year of infection in the intensive care unit: prospective whole genome sequencing of bacterial clinical isolates reveals cryptic transmissions and novel microbiota. PLoS Genet 2015; 11:e1005413–1005421 [View Article]
    [Google Scholar]
  187. Hasman H, Saputra D, Sicheritz-Ponten T, Lund O, Svendsen CA et al. Rapid whole-genome sequencing for detection and characterization of microorganisms directly from clinical samples. J Clin Microbiol 2014; 52:139–146 [View Article][PubMed]
    [Google Scholar]
  188. Mason A, Foster D, Bradley P, Golubchik T, Doumith M et al. Accuracy of Different Bioinformatics Methods in Detecting Antibiotic Resistance and Virulence Factors from Staphylococcus aureus Whole-Genome Sequences. J Clin Microbiol 2018; 56:e01815–01817 [View Article]
    [Google Scholar]
  189. Gupta SK, Padmanabhan BR, Diene SM, Lopez-Rojas R, Kempf M et al. ARG-annot, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob Agents Chemother 2014; 58:212–220 [View Article]
    [Google Scholar]
  190. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 2012; 67:2640–2644 [View Article][PubMed]
    [Google Scholar]
  191. Bradley P, Gordon NC, Walker TM, Dunn L, Heys S et al. Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis . Nat Commun 2015; 6:1–15 [View Article]
    [Google Scholar]
  192. Hunt M, Mather AE, Sánchez-Busó L, Page AJ, Parkhill J et al. ARIBA: rapid antimicrobial resistance genotyping directly from sequencing reads. Microb Genom 2017; 3:1–11 [View Article]
    [Google Scholar]
  193. Köser CU, Ellington MJ, Cartwright EJP, Gillespie SH, Brown NM et al. Routine use of microbial whole genome sequencing in diagnostic and public health microbiology. PLoS Pathog 2012; 8:e1002824–1002829 [View Article]
    [Google Scholar]
  194. Harrison EM, Paterson GK, Holden MTG, Ba X, Rolo J et al. A novel hybrid SCCmec-mecC region in Staphylococcus sciuri . J Antimicrob Chemother 2014; 69:911–918 [View Article]
    [Google Scholar]
  195. Barbier F, Ruppé E, Hernandez D, Lebeaux D, Francois P. Methicillin‐resistant coagulase‐negative staphylococci in the community: high Homology of SCCmec IVa between Staphylococcus epidermidis and major clones of methicillin‐Resistant Staphylococcus aureus . J Infect Dis 2010; 202:270–281
    [Google Scholar]
  196. Hung W-C, Chen H-J, Lin Y-T, Tsai J-C, Chen C-W et al. Skin commensal staphylococci may act as reservoir for fusidic acid resistance genes. PLoS One 2015; 10:e0143106–0143115 [View Article]
    [Google Scholar]
  197. Thakker-Varia S, Jenssen WD, Moon-McDermott L, Weinstein MP, Dubin DT. Molecular epidemiology of macrolides-lincosamides-streptogramin B resistance in Staphylococcus aureus and coagulase-negative staphylococci. Antimicrob Agents Chemother 1987; 31:735–743 [View Article]
    [Google Scholar]
  198. Fowler PW, Cole K, Gordon NC, Kearns AM, Llewelyn MJ et al. Robust prediction of resistance to trimethoprim in Staphylococcus aureus . Cell Chemical Biology 2018; 25:339–349 [View Article]
    [Google Scholar]
  199. Recker M, Laabei M, Toleman MS, Reuter S, Saunderson RB et al. Clonal differences in Staphylococcus aureus bacteraemia-associated mortality. Nat Microbiol 2017; 2:1381–1388 [View Article]
    [Google Scholar]
  200. Méric G, Mageiros L, Pensar J, Laabei M, Yahara K et al. Disease-associated genotypes of the commensal skin bacterium Staphylococcus epidermidis . Nat Commun 2018; 9:5034 [View Article][PubMed]
    [Google Scholar]
  201. Wirth T, Wong V, Vandenesch F, Rasigade J-P, Rasigade Jeanâ€Philippe. Applied phyloepidemiology: detecting drivers of pathogen transmission from genomic signatures using density measures. Evol Appl 2020; 13:1513–1525 [View Article][PubMed]
    [Google Scholar]
  202. Stenmark B, Hellmark B, Söderquist B. Genomic analysis of Staphylococcus capitis isolated from blood cultures in neonates at a neonatal intensive care unit in Sweden. Eur J Clin Microbiol Infect Dis 2019; 38:2069–2075 [View Article]
    [Google Scholar]
  203. Joensen KG, Scheutz F, Lund O, Hasman H, Kaas RS et al. Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli . J Clin Microbiol 2014; 52:1501–1510 [View Article][PubMed]
    [Google Scholar]
  204. Chaves F, García-Alvarez M, Sanz F, Alba C, Otero JR. Nosocomial spread of a Staphylococcus hominis subsp. novobiosepticus strain causing sepsis in a neonatal intensive care unit. J Clin Microbiol 2005; 43:4877–4879 [View Article][PubMed]
    [Google Scholar]
  205. Rodríguez-Aranda A, Daskalaki M, Villar J, Sanz F, Otero JR et al. Nosocomial spread of linezolid-resistant Staphylococcus haemolyticus infections in an intensive care unit. Diagn Microbiol Infect Dis 2009; 63:398–402 [View Article][PubMed]
    [Google Scholar]
  206. Lazaris A, Coleman DC, Kearns AM, Pichon B, Kinnevey PM et al. Novel multiresistance cfr plasmids in linezolid-resistant methicillin-resistant Staphylococcus epidermidis and vancomycin-resistant Enterococcus faecium (VRE) from a hospital outbreak: co-location of cfr and optrA in VRE. J Antimicrob Chemother 2017; 72:3252–3257 [View Article]
    [Google Scholar]
  207. Thomas JC, Zhang L, Robinson DA, Manuscript A. Differing lifestyles of Staphylococcus epidermidis as revealed through Bayesian clustering of multilocus sequence types. Infect Genet Evol 2014; 22:257–264 [View Article][PubMed]
    [Google Scholar]
  208. Young BC, Wu C-H, Gordon NC, Cole K, Price JR et al. Severe infections emerge from commensal bacteria by adaptive evolution. Elife 2017; 6:1–25 [View Article][PubMed]
    [Google Scholar]
  209. Didelot X, Walker AS, Peto TE, Crook DW, Wilson DJ. Within-host evolution of bacterial pathogens. Nat Rev Microbiol 2016; 14:150–162 [View Article][PubMed]
    [Google Scholar]
  210. Dengler Haunreiter V, Boumasmoud M, Häffner N, Wipfli D, Leimer N et al. In-host evolution of Staphylococcus epidermidis in a pacemaker-associated endocarditis resulting in increased antibiotic tolerance. Nat Commun 2019; 10:1149 [View Article][PubMed]
    [Google Scholar]
  211. Mwangi MM, Wu SW, Zhou Y, Sieradzki K, de Lencastre H et al. Tracking the in vivo evolution of multidrug resistance in Staphylococcus aureus by whole-genome sequencing. Proc Natl Acad Sci U S A 2007; 104:9451–9456 [View Article][PubMed]
    [Google Scholar]
  212. Howden BP, Stinear TP, Allen DL, Johnson PDR, Ward PB et al. Genomic analysis reveals a point mutation in the two-component sensor gene graS that leads to intermediate vancomycin resistance in clinical Staphylococcus aureus. Antimicrob Agents Chemother 2008; 52:3755–3762 [View Article][PubMed]
    [Google Scholar]
  213. Young BC, Wilson DJ. On the evolution of virulence during Staphylococcus aureus nasal carriage. Virulence 2012; 3:454–456 [View Article][PubMed]
    [Google Scholar]
  214. Gill VJ, Selepak ST, Williams EC. Species identification and antibiotic susceptibilities of coagulase-negative staphylococci isolated from clinical specimens. J Clin Microbiol 1983; 18:1314–1319 [View Article][PubMed]
    [Google Scholar]
  215. Kleeman KT, Bannerman TL, Kloos WE. Species distribution of coagulase-negative staphylococcal isolates at a community hospital and implications for selection of staphylococcal identification procedures. J Clin Microbiol 1993; 31:1318–1321 [View Article][PubMed]
    [Google Scholar]
  216. Jarløv JO, Højbjerg T, Busch-Sørensen C, Scheibel J, Møller JK et al. Coagulase-negative staphylococci in Danish blood cultures: species distribution and antibiotic susceptibility. J Hosp Infect 1996; 32:217–227 [View Article][PubMed]
    [Google Scholar]
  217. Kawamura Y, Hou XG, Sultana F, Hirose K, Miyake M et al. Distribution of Staphylococcus species among human clinical specimens and emended description of Staphylococcus caprae. J Clin Microbiol 1998; 36:2038–2042 [View Article][PubMed]
    [Google Scholar]
  218. Del' Alamo L, Cereda RF, Tosin I, Miranda EA, Sader HS. Antimicrobial susceptibility of coagulase-negative staphylococci and characterization of isolates with reduced susceptibility to glycopeptides. Diagn Microbiol Infect Dis 1999; 34:185–191 [View Article][PubMed]
    [Google Scholar]
  219. Petinaki E, Kontos F, Miriagou V, Maniati M, Hatzi F et al. Survey of methicillin-resistant coagulase-negative staphylococci in the hospitals of central Greece. Int J Antimicrob Agents 2001; 18:563–566 [View Article][PubMed]
    [Google Scholar]
  220. Cuevas O, Cercenado E, Vindel A, Guinea J, Sánchez-Conde M et al. Evolution of the antimicrobial resistance of Staphylococcus spp. in Spain: five nationwide prevalence studies, 1986 to 2002. Antimicrob Agents Chemother 2004; 48:4240–4245 [View Article][PubMed]
    [Google Scholar]
  221. Mathur T, Singhal S, Khan S, Upadhyay DJ, Fatma T et al. Detection of biofilm formation among the clinical isolates of Staphylococci: an evaluation of three different screening methods. Indian J Med Microbiol 2006; 24:25 [View Article][PubMed]
    [Google Scholar]
  222. Arciola CR, Campoccia D, An YH, Baldassarri L, Pirini V et al. Prevalence and antibiotic resistance of 15 minor staphylococcal species colonizing orthopedic implants. Int J Artif Organs 2006; 29:395–401 [View Article][PubMed]
    [Google Scholar]
  223. Chaudhury A, Kumar AG. In vitro activity of antimicrobial agents against oxacillin resistant staphylococci with special reference to Staphylococcus haemolyticus. Indian J Med Microbiol 2007; 25:50 [View Article][PubMed]
    [Google Scholar]
  224. Gatermann SG, Koschinski T, Friedrich S. Distribution and expression of macrolide resistance genes in coagulase-negative staphylococci. Clin Microbiol Infect 2007; 13:777–781 [View Article][PubMed]
    [Google Scholar]
  225. Koksal F, Yasar H, Samasti M. Antibiotic resistance patterns of coagulase-negative Staphylococcus strains isolated from blood cultures of septicemic patients in Turkey. Microbiol Res 2009; 164:404–410 [View Article][PubMed]
    [Google Scholar]
  226. Jain A, Agarwal A, Verma RK, Awasthi S, Singh KP. Intravenous device associated blood stream staphylococcal infection in paediatric patients. Indian J Med Res 2011; 134:193–199
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.001337
Loading
/content/journal/jmm/10.1099/jmm.0.001337
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error