1887

Abstract

Over a decade ago, a multidrug-resistant nosocomial fungus emerged worldwide and has since become a significant challenge for clinicians and microbiologists across the globe. A resilient pathogen, survives harsh disinfectants, desiccation and high-saline environments. It readily colonizes the inanimate environment, susceptible patients and causes invasive infections that exact a high toll. Prone to misidentification by conventional microbiology techniques, rapidly acquires multiple genetic determinants that confer multidrug resistance. Whole-genome sequencing has identified four distinct clades of , and possibly a fifth one, in circulation. Even as our understanding of this formidable pathogen grows, the nearly simultaneous emergence of its distinct clades in different parts of the world, followed by their rapid global spread, remains largely unexplained. We contend that certain host–pathogen–environmental factors have been evolving along adverse trajectories for the last few decades, especially in regions where originally appeared, until these factors possibly reached a tipping point to compel the evolution, emergence and spread of . Comparative genomics has helped identify several resistance mechanisms in that are analogous to those seen in other species, but they fail to fully explain how high-level resistance rapidly develops in this yeast. A better understanding of these unresolved aspects is essential not only for the effective management of patients, hospital outbreaks and its global spread but also for forecasting and tackling novel resistant pathogens that might emerge in the future. In this review, we discuss the emergence, spread and resistance of , and propose future investigations to tackle this resilient pathogen.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License.
Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.001318
2021-02-18
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/70/3/jmm001318.html?itemId=/content/journal/jmm/10.1099/jmm.0.001318&mimeType=html&fmt=ahah

References

  1. CDC Infection Prevention and Control for Candida auris. Centers for Disease Control and Prevention; Atlanta, GA, USA. 2020. https://www.cdc.gov/fungal/candida-auris/c-auris-infection-control.html [accessed 20 Aug 2020]..
  2. CDC Tracking Candida auris. Centers for Disease Control and Prevention; Atlanta, GA, USA. https://www.cdc.gov/fungal/candida-auris/tracking-c-auris.html [accessed 01 Dec 2020].; 2020
  3. Kean R, Ramage G. Combined antifungal resistance and biofilm tolerance: the global threat of Candida auris . mSphere 2019; 4:
    [Google Scholar]
  4. Rybak JM, Munoz JF, Barker KS, Parker JE, Esquivel BD. Mutations in TAC1B: a novel genetic determinant of clinical fluconazole resistance in Candida auris . mBio 2020; 11:
    [Google Scholar]
  5. Welsh RM, Bentz ML, Shams A, Houston H, Lyons A. Survival, persistence, and isolation of the emerging multidrug-resistant pathogenic yeast Candida auris on a plastic health care surface. J Clin Microbiol 2017; 55:2996–3005
    [Google Scholar]
  6. Cadnum JL, Shaikh AA, Piedrahita CT, Sankar T, Jencson AL. Effectiveness of disinfectants against Candida auris and other Candida species. Infect Control Hosp Epidemiol 2017; 38:1240–1243
    [Google Scholar]
  7. Ruiz-Gaitan A, Moret AM, Tasias-Pitarch M, Aleixandre-Lopez AI, Martinez-Morel H. An outbreak due to Candida auris with prolonged colonisation and candidaemia in a tertiary care European Hospital. Mycoses 2018; 61:498–505
    [Google Scholar]
  8. Tsay S, Welsh RM, Adams EH, Chow NA, Gade L. Notes from the field: ongoing transmission of Candida auris in health care facilities - United States, June 2016-May 2017. MMWR Morb Mortal Wkly Rep 2017; 66:514–515
    [Google Scholar]
  9. Schelenz S, Hagen F, Rhodes JL, Abdolrasouli A, Chowdhary A. First hospital outbreak of the globally emerging Candida auris in a European Hospital. Antimicrob Resist Infect Control 2016; 5:35
    [Google Scholar]
  10. Zhu Y, O'Brien B, Leach L, Clarke A, Bates M. Laboratory analysis of an outbreak of Candida auris in New York from 2016 to 2018: impact and lessons learned. J Clin Microbiol 2020; 58:
    [Google Scholar]
  11. Ghosh AK, Paul S, Sood P, Rudramurthy SM, Rajbanshi A. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry for the rapid identification of yeasts causing bloodstream infections. Clin Microbiol Infect 2015; 21:372–378
    [Google Scholar]
  12. Shastri PS, Shankarnarayan SA, Oberoi J, Rudramurthy SM, Wattal C. Candida auris candidaemia in an intensive care unit - Prospective observational study to evaluate epidemiology, risk factors, and outcome. J Crit Care 2020; 57:42–48
    [Google Scholar]
  13. Okinda N, Kagotho E, Castanheira M, Njuguna A, Omuse G. Candidemia at a Referral Hospital in Sub-Saharan Africa: Emergence of Candida Auris as a Major Pathogen. European Congress of Clinical Microbiology and Infectious Diseases Barcelona, Spain: 2014 pp May 10–13
    [Google Scholar]
  14. van Schalkwyk E, Mpembe RS, Thomas J, Shuping L, Ismail H. Epidemiologic shift in candidemia driven by Candida auris, South Africa, 2016-2017(1). Emerg Infect Dis 2019; 25:1698–1707
    [Google Scholar]
  15. Lockhart SR, Etienne KA, Vallabhaneni S, Farooqi J, Chowdhary A. Simultaneous emergence of multidrug-resistant Candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses. Clin Infect Dis 2017; 64:134–140
    [Google Scholar]
  16. Munoz JF, Gade L, Chow NA, Loparev VN, Juieng P. Genomic insights into multidrug-resistance, mating and virulence in Candida auris and related emerging species. Nat Commun 2018; 9:5346
    [Google Scholar]
  17. Chow NA, de Groot T, Badali H, Abastabar M, Chiller TM. Potential fifth clade of Candida auris, Iran, 2018. Emerg Infect Dis 2019; 25:1780–1781
    [Google Scholar]
  18. Abastabar M, Haghani I, Ahangarkani F, Rezai MS, Taghizadeh Armaki M. Candida auris otomycosis in Iran and review of recent literature. Mycoses 2019; 62:101–105
    [Google Scholar]
  19. Pfaller MA, Diekema DJ, Turnidge JD, Castanheira M, Jones RN. Twenty years of the sentry antifungal surveillance program: results for Candida species from 1997-2016. Open Forum Infect Dis 2019; 6:S79–S94
    [Google Scholar]
  20. Meis JF, Chowdhary A, Rhodes JL, Fisher MC, Verweij PE. Clinical implications of globally emerging azole resistance in Aspergillus fumigatus . Philos Trans R Soc Lond B Biol Sci 1709; 2016:371
    [Google Scholar]
  21. Casadevall A, Kontoyiannis DP, Robert V. On the emergence of Candida auris: climate change, azoles, swamps and birds. mBio 2019; 10:
    [Google Scholar]
  22. Cafarchia C, Iatta R, Danesi P, Camarda A, Capelli G. Yeasts isolated from cloacal swabs, feces, and eggs of laying hens. Med Mycol 2019; 57:340–345
    [Google Scholar]
  23. Ekowati Y, Ferrero G, Kennedy MD, de Roda Husman AM, Schets FM. Potential transmission pathways of clinically relevant fungi in indoor swimming pool facilities. Int J Hyg Environ Health 2018; 221:1107–1115
    [Google Scholar]
  24. Anwar S, Glaser A, Acharya S, Yousaf F. Candida auris-an impending threat: a case report from home. Am J Infect Control 2020
    [Google Scholar]
  25. Chow NA, Gade L, Tsay SV, Forsberg K, Greenko JA. Multiple introductions and subsequent transmission of multidrug-resistant Candida auris in the USA: a molecular epidemiological survey. Lancet Infect Dis 2018; 18:1377–1384
    [Google Scholar]
  26. Chow NA, Munoz JF, Gade L, Berkow EL, Li X. Tracing the evolutionary history and global expansion of Candida auris using population genomic analyses. mBio 2020; 11:
    [Google Scholar]
  27. Satoh K, Makimura K, Hasumi Y, Nishiyama Y, Uchida K. Candida auris sp. nov., a novel ascomycetous yeast isolated from the external ear canal of an inpatient in a Japanese Hospital. Microbiol Immunol 2009; 53:41–44
    [Google Scholar]
  28. Lee WG, Shin JH, Uh Y, Kang MG, Kim SH. First three reported cases of nosocomial fungemia caused by Candida auris . J Clin Microbiol 2011; 49:3139–3142
    [Google Scholar]
  29. Sekizuka T, Iguchi S, Umeyama T, Inamine Y, Makimura K. Clade II Candida auris possess genomic structural variations related to an ancestral strain. PLoS One 2019; 14:e0223433
    [Google Scholar]
  30. Govender NP, Magobo RE, Mpembe R, Mhlanga M, Matlapeng P. Candida auris in South Africa, 2012-2016. Emerg Infect Dis 2018; 24:2036–2040
    [Google Scholar]
  31. Chowdhary A, Sharma C, Duggal S, Agarwal K, Prakash A. New clonal strain of Candida auris, Delhi, India. Emerg Infect Dis 2013; 19:1670–1673
    [Google Scholar]
  32. Tian S, Rong C, Nian H, Li F, Chu Y. First cases and risk factors of super yeast Candida auris infection or colonization from Shenyang, China. Emerg Microbes Infect 2018; 7:128
    [Google Scholar]
  33. Calvo B, Melo AS, Perozo-Mena A, Hernandez M, Francisco EC. First report of Candida auris in America: clinical and microbiological aspects of 18 episodes of candidemia. J Infect 2016; 73:369–374
    [Google Scholar]
  34. Parra-Giraldo CM, Valderrama SL, Cortes-Fraile G, Garzon JR, Ariza BE. First report of sporadic cases of Candida auris in Colombia. Int J Infect Dis 2018; 69:63–67
    [Google Scholar]
  35. Borman AM, Szekely A, Johnson EM. Comparative pathogenicity of United Kingdom isolates of the emerging pathogen Candida auris and other key pathogenic Candida species. mSphere 2016; 1:
    [Google Scholar]
  36. Eyre DW, Sheppard AE, Madder H, Moir I, Moroney R. A Candida auris outbreak and its control in an intensive care setting. N Engl J Med 2018; 379:1322–1331
    [Google Scholar]
  37. Hamprecht A, Barber AE, Mellinghoff SC, Thelen P, Walther G. Candida auris in Germany and previous exposure to foreign healthcare. Emerg Infect Dis 2019; 25:1763–1765
    [Google Scholar]
  38. Dewaele K, Frans J, Smismans A, Ho E, Tollens T. First case of Candida auris infection in Belgium in a surgical patient from Kuwait. Acta Clin Belg 2020; 75:221–228
    [Google Scholar]
  39. Kohlenberg A, Struelens MJ, Monnet DL, Plachouras D. The Candida Auris Survey Collaborative Group Candida auris: epidemiological situation, laboratory capacity and preparedness in European Union and European Economic Area countries, 2013 to 2017. Euro Surveill 2018; 23: [View Article][PubMed]
    [Google Scholar]
  40. Forsberg K, Woodworth K, Walters M, Berkow EL, Jackson B. Candida auris: the recent emergence of a multidrug-resistant fungal pathogen. Med Mycol 2019; 57:1–12
    [Google Scholar]
  41. Ruiz Gaitan AC, Moret A, Lopez Hontangas JL, Molina JM, Aleixandre Lopez AI. Nosocomial fungemia by Candida auris: first four reported cases in continental Europe. Rev Iberoam Micol 2017; 34:23–27
    [Google Scholar]
  42. Desoubeaux G, Bailly E, Guillaume C, De Kyvon MA, Tellier AC. Candida auris in contemporary mycology labs: a few practical tricks to identify it reliably according to one recent French experience. J Mycol Med 2018; 28:407–410
    [Google Scholar]
  43. Riat A, Neofytos D, Coste A, Harbarth S, Bizzini A. First case of Candida auris in Switzerland: discussion about preventive strategies. Swiss Med Wkly 2018; 148:w14622
    [Google Scholar]
  44. Pekard-Amenitsch S, Schriebl A, Posawetz W, Willinger B, Kolli B. Isolation of Candida auris from ear of otherwise healthy patient, Austria, 2018. Emerg Infect Dis 2018; 24:1596–1597
    [Google Scholar]
  45. Stathi A, Loukou I, Kirikou H, Petrocheilou A, Moustaki M. Isolation of Candida auris from cystic fibrosis patient, Greece, April 2019. Euro Surveill 2019; 24:
    [Google Scholar]
  46. Vogelzang EH, Weersink AJL, van Mansfeld R, Chow NA, Meis JF. The first two cases of Candida auris in the Netherlands. J Fungi 2019; 5:
    [Google Scholar]
  47. Plachouras D, Lötsch F, Kohlenberg A, Monnet DL. Candida auris survey collaborative group Candida auris: epidemiological situation, laboratory capacity and preparedness in the European Union and European Economic Area*, January 2018 to May 2019. Euro Surveill 2020; 25: [View Article][PubMed]
    [Google Scholar]
  48. Crea F, Codda G, Orsi A, Battaglini A, Giacobbe DR. Isolation of Candida auris from invasive and non-invasive samples of a patient suffering from vascular disease, Italy, July 2019. Euro Surveill 2019; 24:
    [Google Scholar]
  49. Heath CH, Dyer JR, Pang S, Coombs GW, Gardam DJ. Candida auris sternal osteomyelitis in a man from Kenya visiting Australia, 2015. Emerg Infect Dis 2019; 25:192–194
    [Google Scholar]
  50. Vallabhaneni S, Kallen A, Tsay S, Chow N, Welsh R. Investigation of the first seven reported cases of Candida auris, a globally emerging invasive, multidrug-resistant fungus - United States, May 2013-August 2016. MMWR Morb Mortal Wkly Rep 2016; 65:1234–1237
    [Google Scholar]
  51. Pacilli M, Kerins JL, Clegg WJ, Walblay KA, Adil H. Regional emergence of Candida auris in Chicago and lessons learned from intensive follow-up at one Ventilator-Capable skilled nursing facility. Clin Infect Dis 2020
    [Google Scholar]
  52. Schwartz IS, Hammond GW. First reported case of multidrug-resistant Candida auris in Canada. Can Commun Dis Rep 2017; 43:150–153
    [Google Scholar]
  53. Morales-Lopez SE, Parra-Giraldo CM, Ceballos-Garzon A, Martinez HP, Rodriguez GJ. Invasive infections with multidrug-resistant yeast Candida auris, Colombia. Emerg Infect Dis 2017; 23:162–164
    [Google Scholar]
  54. Armstrong PA, Rivera SM, Escandon P, Caceres DH, Chow N. Hospital-associated multicenter outbreak of emerging fungus Candida auris, Colombia, 2016. Emerg Infect Dis 2019; 25:
    [Google Scholar]
  55. Arauz AB, Caceres DH, Santiago E, Armstrong P, Arosemena S. Isolation of Candida auris from 9 patients in central America: importance of accurate diagnosis and susceptibility testing. Mycoses 2018; 61:44–47
    [Google Scholar]
  56. Ávalos A. Hospital Calderón Guardia tiene controlada infección con hongo superresistente. La Nación; 2019. https://www.nacion.com/el-pais/salud/hospital-calderon-guardia-tiene-controlada/SPLGVOQ2DRGSHJ2JJLOYHWFMXA/story/ [accessed 4 July 2020]..
  57. Moreno MV, Simian ME, Villarroel J, Fuenzalida LM, Yarad MF. Primer aislamiento de Candida auris en Chile. Rev Chilena Infectol 2019; 36:767–773
    [Google Scholar]
  58. Ayala-Gaytan JJ, Montoya AM, Martinez-Resendez MF, Guajardo-Lara CE deJT-RR et al. First case of Candida auris isolated from the bloodstream of a Mexican patient with serious gastrointestinal complications from severe endometriosis. Infection 2020
    [Google Scholar]
  59. Emara M, Ahmad S, Khan Z, Joseph L, Al-Obaid I. Candida auris candidemia in Kuwait, 2014. Emerg Infect Dis 2015; 21:1091–1092
    [Google Scholar]
  60. Belkin A, Gazit Z, Keller N, Ben-Ami R, Wieder-Finesod A. Candida auris infection leading to nosocomial transmission, Israel, 2017. Emerg Infect Dis 2018; 24:801–804
    [Google Scholar]
  61. Al-Siyabi T, Busaidi A I, Balkhair A, Al-Muharrmi Z, Al-Salti M. First report of Candida auris in Oman: clinical and microbiological description of five candidemia cases. J Infect 2017; 75:373–376
    [Google Scholar]
  62. Alatoom A, Sartawi M, Lawlor K, AbdelWareth L, Thomsen J. Persistent candidemia despite appropriate fungal therapy: first case of Candida auris from the United Arab Emirates. Int J Infect Dis 2018; 70:36–37
    [Google Scholar]
  63. El-Kholy M, Shawky S, Fayed A, Meis J. Candida auris bloodstream infection in Egypt. In Gangneux JP, Gangneux JP, Lortholary O, Cornely OA, Pagano L. (editors) 9th Trends in Medical Mycology Held on 11–14 October 2019 5, 9th ed. Nice, France: Organized under the Auspices of EORTC-IDG and ECMM: J Fungi (Basel); 2019 pp 310–311
    [Google Scholar]
  64. Abdalhamid B, Almaghrabi R, Althawadi S, Omrani A. First report of Candida auris infections from Saudi Arabia. J Infect Public Health 2018; 11:598–599
    [Google Scholar]
  65. M Badri A, Sherfi SA. First detection of emergent fungal pathogen Candida auris in Khartoum state, Sudan. Am J Biomed Sci Res 2019; 6:4–7 [View Article]
    [Google Scholar]
  66. Tan YE, Tan AL. Arrival of Candida auris fungus in Singapore: report of the first 3 cases. Ann Acad Med Singapore 2018; 47:260–262
    [Google Scholar]
  67. Barantsevich NE, Orlova OE, Shlyakhto EV, Johnson EM, Woodford N. Emergence of Candida auris in Russia. J Hosp Infect 2019; 102:445–448
    [Google Scholar]
  68. Tang HJ, Lai CC, Lai FJ, SY L, Liang HY. Emergence of multidrug-resistant Candida auris in Taiwan. Int J Antimicrob Agents 2019; 53:705–706
    [Google Scholar]
  69. Dutta S, Rahman MH, Hossain KS, Haq JA. Detection of Candida auris and its antifungal susceptibility: first report from Bangladesh. IMC J Med Sci 2019; 13:1–5
    [Google Scholar]
  70. Mohd Tap R, Lim TC, Kamarudin NA, Ginsapu SJ, Abd Razak MF. A fatal case of Candida auris and Candida tropicalis candidemia in neutropenic patient. Mycopathologia 2018; 183:559–564
    [Google Scholar]
  71. Chayakulkeeree M, Ungulkraiwit P, Chongtrakool P, Ngamskulrungroj P, De Groot T. The first case of Candida auris fungemia in Thailand. in: Gangneux JP, Lortholary O, Cornely oa, Pagano L, editors. 9th trends in medical mycology held on 11–14 October 2019, NICE, France, organized under the auspices of EORTC-IDG and ECMM. J Fungi 2019; 5:p. 247
    [Google Scholar]
  72. Fisher MC, Hawkins NJ, Sanglard D, Gurr SJ. Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science 2018; 360:739–742
    [Google Scholar]
  73. Lubbert C, Baars C, Dayakar A, Lippmann N, Rodloff AC. Environmental pollution with antimicrobial agents from bulk drug manufacturing industries in Hyderabad, South India, is associated with dissemination of extended-spectrum beta-lactamase and carbapenemase-producing pathogens. Infection 2017; 45:479–491
    [Google Scholar]
  74. Berger S, El Chazli Y, Babu AF, Coste AT. Azole resistance in Aspergillus fumigatus: a consequence of antifungal use in agriculture?. Front Microbiol 2017; 8:1024
    [Google Scholar]
  75. Jackson BR, Chow N, Forsberg K, Litvintseva AP, Lockhart SR. On the origins of a species: what might explain the rise of Candida auris?. J Fungi 2019; 5:
    [Google Scholar]
  76. Bostock J, McAndrew B, Richards R, Jauncey K, Telfer T. Aquaculture: global status and trends. Philos Trans R Soc Lond B Biol Sci 2010; 365:2897–2912
    [Google Scholar]
  77. Cabello FC, Godfrey HP, Tomova A, Ivanova L, Dolz H. Antimicrobial use in aquaculture re-examined: its relevance to antimicrobial resistance and to animal and human health. Environ Microbiol 2013; 15:1917–1942
    [Google Scholar]
  78. Hai NV. The use of probiotics in aquaculture. J Appl Microbiol 2015; 119:917–935
    [Google Scholar]
  79. Leventhal GE, Hill AL, Nowak MA, Bonhoeffer S. Evolution and emergence of infectious diseases in theoretical and real-world networks. Nat Commun 2015; 6:6101
    [Google Scholar]
  80. Chakrabarti A, Sood P, Rudramurthy SM, Chen S, Kaur H. Incidence, characteristics and outcome of ICU-acquired candidemia in India. Intensive Care Med 2015; 41:285–295
    [Google Scholar]
  81. Rudramurthy SM, Chakrabarti A, Paul RA, Sood P, Kaur H. Candida auris candidaemia in Indian ICUs: analysis of risk factors. J Antimicrob Chemother 2017; 72:1794–1801
    [Google Scholar]
  82. Adams E, Quinn M, Tsay S, Poirot E, Chaturvedi S. Candida auris in healthcare facilities, New York, USA, 2013-2017. Emerg Infect Dis 2018; 24:1816–1824
    [Google Scholar]
  83. Chakrabarti A, Sood P, Rudramurthy SM, Chen S, Jillwin TJ. Characteristics, outcome and risk factors for mortality of pediatric patients with ICU-acquired candidemia in India: a multicenter prospective study. Mycoses 2020
    [Google Scholar]
  84. Brown JL, Delaney C, Short B, Butcher MC, McKloud E. Candida auris phenotypic heterogeneity determines pathogenicity in vitro. mSphere 2020; 5:
    [Google Scholar]
  85. Van Boeckel TP, Gandra S, Ashok A, Caudron Q, Grenfell BT. Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data. Lancet Infect Dis 2014; 14:742–750
    [Google Scholar]
  86. Klein EY, Van Boeckel TP, Martinez EM, Pant S, Gandra S. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc Natl Acad Sci U S A 2018; 115:E3463–E3470
    [Google Scholar]
  87. ECDC European Surveillance of Antimicrobial Consumption Network (ESAC-Net). European Centre for Disease Prevention and Control; 2020. https://www.ecdc.europa.eu/en/about-us/partnerships-and-networks/disease-and-laboratory-networks/esac-net [accessed 25 Apr 2020].
  88. Vallabhaneni S, Baggs J, Tsay S, Srinivasan AR, Jernigan JA. Trends in antifungal use in US hospitals, 2006-12. J Antimicrob Chemother 2018; 73:2867–2875
    [Google Scholar]
  89. Kim SI, Kang MW. Current usage and prospect of new antifungal agents in Korea. Infect Chemother 2010; 42:209–215
    [Google Scholar]
  90. Tham R, Carroll O, Liu K, Dattani H, Bray BD. Temporal trends and treatment patterns of systemic antifungal therapy in hospitals in England: an analysis of the hospital treatment insights database, PSI Conference 2019. Westminster, London: Queen Elizabeth II Centre; 2-5 June 2019
    [Google Scholar]
  91. WHO The Global Health Observatory: Hospital beds per 1000 population. World Health Organization; 2020. https://www.who.int/data/gho/indicator-metadata-registry/imr-details/3119 [accessed 25 Apr 2020]..
  92. TWB World Bank Open Data: Hospital beds (per 1000 people). The World Bank. https://data.worldbank.org/indicator/SH.MED.BEDS.ZS [accessed 25 Apr 2020].; 2020
  93. Adhikari NK, Fowler RA, Bhagwanjee S, Rubenfeld GD. Critical care and the global burden of critical illness in adults. Lancet 2010; 376:1339–1346
    [Google Scholar]
  94. Prin M, Wunsch H. International comparisons of intensive care: informing outcomes and improving standards. Curr Opin Crit Care 2012; 18:700–706
    [Google Scholar]
  95. Sharma S, Swayne DA, Obimbo C. Trend analysis and change point techniques: a survey. Energ Ecol Environ 2016; 1:123–130
    [Google Scholar]
  96. Killick R, Eckley IA. Changepoint: an R package for changepoint analysis. J Stat Software 2014; 58:1–19
    [Google Scholar]
  97. James NA, Matteson DS. Ecp: an R package for nonparametric multiple change point analysis of multivariate data. J Stat Software 2014; 62:1–25
    [Google Scholar]
  98. Moyes CL, Vontas J, Martins AJ, LC N, Koou SY. Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans. PLoS Negl Trop Dis 2017; 11:e0005625
    [Google Scholar]
  99. Hancock PA, Wiebe A, Gleave KA, Bhatt S, Cameron E. Associated patterns of insecticide resistance in field populations of malaria vectors across Africa. Proc Natl Acad Sci U S A 2018; 115:5938–5943
    [Google Scholar]
  100. Grist EP, Flegg JA, Humphreys G, Mas IS, Anderson TJ. Optimal health and disease management using spatial uncertainty: a geographic characterization of emergent artemisinin-resistant Plasmodium falciparum distributions in Southeast Asia. Int J Health Geogr 2016; 15:37
    [Google Scholar]
  101. Escandon P, Chow NA, Caceres DH, Gade L, Berkow EL. Molecular epidemiology of Candida auris in Colombia reveals a highly related, countrywide colonization with regional patterns in amphotericin B resistance. Clin Infect Dis 2019; 68:15–21
    [Google Scholar]
  102. Piedrahita CT, Cadnum JL, Jencson AL, Shaikh AA, Ghannoum MA et al. Environmental surfaces in healthcare facilities are a potential source for transmission of Candida auris and other Candida species. Infect Control Hosp Epidemiol 2017; 38:1107–1109 [View Article]
    [Google Scholar]
  103. Rutala WA, Kanamori H, Gergen MF, Sickbert-Bennett EE, Weber DJ. Susceptibility of Candida auris and Candida albicans to 21 germicides used in healthcare facilities. Infect Control Hosp Epidemiol 2019; 40:380–382 [View Article]
    [Google Scholar]
  104. Cadnum JL, Shaikh AA, Piedrahita CT, Jencson AL, Larkin EL et al. Relative resistance of the emerging fungal pathogen Candida auris and Other Candida species to killing by ultraviolet light. Infect Control Hosp Epidemiol 2018; 39:94–96 [View Article]
    [Google Scholar]
  105. Sarma S, Kumar N, Sharma S, Govil D, Ali T et al. Candidemia caused by amphotericin B and fluconazole resistant Candida auris. Indian J Med Microbiol 2013; 31:90–91 [View Article]
    [Google Scholar]
  106. Biswal M, Rudramurthy SM, Jain N, Shamanth AS, Sharma D et al. Controlling a possible outbreak of Candida auris infection: lessons learnt from multiple interventions. J Hosp Infect 2017; 97:363–370 [View Article]
    [Google Scholar]
  107. ECDC Rapid risk assessment. Candida auris in healthcare settings - Europe. European Centre for Disease Prevention and Control; Stockholm. 2018. https://www.ecdc.europa.eu/en/publications-data/rapid-risk-assessment-candida-auris-healthcare-settings-europe [accessed 20 August 2020]..
  108. Tsay S, Kallen A, Jackson BR, Chiller TM, Vallabhaneni S. Approach to the investigation and management of patients with Candida auris, an emerging multidrug-resistant yeast. Clin Infect Dis 2018; 66:306–311 [View Article]
    [Google Scholar]
  109. Abdolrasouli A, Armstrong-James D, Ryan L, Schelenz S. In vitro efficacy of disinfectants utilised for skin decolonisation and environmental decontamination during a hospital outbreak with Candida auris . Mycoses 2017; 60:758–763 [View Article]
    [Google Scholar]
  110. Sabino R, Veríssimo C, Pereira Álvaro Ayres, Antunes F, Pereira AA, auris C. Candida auris, an agent of hospital-associated outbreaks: which challenging issues do we need to have in mind?. Microorganisms 2020; 8:E181181 28 01 2020 [View Article][PubMed]
    [Google Scholar]
  111. Navalkele BD, Revankar S, Chandrasekar P. Candida auris: a worrisome, globally emerging pathogen. Expert Rev Anti Infect Ther 2017; 15:819–827 [View Article][PubMed]
    [Google Scholar]
  112. Kordalewska M, Zhao Y, Lockhart SR, Chowdhary A, Berrio I et al. Rapid and accurate molecular identification of the emerging multidrug-resistant pathogen Candida auris . J Clin Microbiol 2017; 55:2445–2452 [View Article][PubMed]
    [Google Scholar]
  113. Leach L, Zhu Y, Chaturvedi S. Development and validation of a real-time PCR assay for rapid detection of Candida auris from surveillance samples. J Clin Microbiol 2018; 56: 24 01 2018 [View Article][PubMed]
    [Google Scholar]
  114. Hou X, Lee A, Jiménez-Ortigosa C, Kordalewska M, Perlin DS et al. Rapid detection of ERG11-associated azole resistance and FKS-associated echinocandin resistance in Candida auris . Antimicrob Agents Chemother 2019; 63: 21 12 2018 [View Article][PubMed]
    [Google Scholar]
  115. Das S, Singh S, Tawde Y, Chakrabarti A, Shankarnarayan SA et al. A selective medium for isolation and detection of Candida auris ; an emerging pathogen. J Clin Microbiol 2020 [View Article]
    [Google Scholar]
  116. Horton MV, Johnson CJ, Kernien JF, Patel TD, Lam BC et al. Candida auris forms high-burden biofilms in skin niche conditions and on porcine skin. mSphere 2020; 5:e00910-19 22 01 2020 [View Article][PubMed]
    [Google Scholar]
  117. Day AM, McNiff MM, da Silva Dantas A, Gow NAR, Quinn J. Hog1 regulates stress tolerance and virulence in the emerging fungal pathogen Candida auris . mSphere 2018; 3:e00506-18 24 10 2018 [View Article][PubMed]
    [Google Scholar]
  118. Sherry L, Ramage G, Kean R, Borman A, Johnson EM et al. Biofilm-Forming capability of highly virulent, multidrug-resistant Candida auris . Emerg Infect Dis 2017; 23:328–331 [View Article][PubMed]
    [Google Scholar]
  119. Kean R, McKloud E, Townsend EM, Sherry L, Delaney C et al. The comparative efficacy of antiseptics against Candida auris biofilms. Int J Antimicrob Agents 2018; 52:673–677 [View Article][PubMed]
    [Google Scholar]
  120. Kean R, Delaney C, Sherry L, Borman A, Johnson EM et al. Transcriptome assembly and profiling of Candida auris reveals novel insights into biofilm-mediated resistance. mSphere 2018; 3:e00334-18 11 07 2018 [View Article][PubMed]
    [Google Scholar]
  121. Zamith-Miranda D, Heyman HM, Cleare LG, Couvillion SP, Clair GC. Multi-omics signature of Candida auris an emerging and multidrug-resistant pathogen. mSystems 2019; 4:
    [Google Scholar]
  122. Short B, Brown J, Delaney C, Sherry L, Williams C et al. Candida auris exhibits resilient biofilm characteristics in vitro: implications for environmental persistence. J Hosp Infect 2019; 103:92–96 [View Article][PubMed]
    [Google Scholar]
  123. Singh R, Kaur M, Chakrabarti A, Shankarnarayan SA, Rudramurthy SM. Biofilm formation by Candida auris isolated from colonising sites and candidemia cases. Mycoses 2019; 62:706–709 [View Article][PubMed]
    [Google Scholar]
  124. Szekely A, Borman AM, Johnson EM. Candida auris Isolates of the Southern Asian and South African lineages exhibit different phenotypic and antifungal susceptibility profiles in vitro . J Clin Microbiol 2019; 57: 26 04 2019 [View Article][PubMed]
    [Google Scholar]
  125. Johnson CJ, Davis JM, Huttenlocher A, Kernien JF, Nett JE. Emerging fungal pathogen Candida auris evades neutrophil attack. mBio 2018; 9:e01403-18 21 08 2018 [View Article][PubMed]
    [Google Scholar]
  126. Bruno M, Kersten S, Bain JM, Jaeger M, Rosati D et al. Transcriptional and functional insights into the host immune response against the emerging fungal pathogen Candida auris. Nat Microbiol 2020; 5:1516–1531 [View Article][PubMed]
    [Google Scholar]
  127. Chaabane F, Graf A, Jequier L, Coste AT. Review on antifungal resistance mechanisms in the emerging pathogen Candida auris . Front Microbiol 2019; 10:2788 [View Article][PubMed]
    [Google Scholar]
  128. Chowdhary A, Prakash A, Sharma C, Kordalewska M, Kumar A et al. A multicentre study of antifungal susceptibility patterns among 350 Candida auris isolates (2009-17) in India: role of the ERG11 and FKS1 genes in azole and echinocandin resistance. J Antimicrob Chemother 2018; 73:891–899 [View Article][PubMed]
    [Google Scholar]
  129. Bhattacharya S, Holowka T, Orner EP, Fries BC. Gene duplication associated with increased fluconazole tolerance in Candida auris cells of advanced generational age. Sci Rep 2019; 9:5052 [View Article][PubMed]
    [Google Scholar]
  130. Kim SH, Iyer KR, Pardeshi L, Munoz JF, Robbins N. Genetic analysis of Candida auris implicates Hsp90 in morphogenesis and azole tolerance and Cdr1 in azole resistance. MBio 2019; 10:
    [Google Scholar]
  131. Wasi M, Khandelwal NK, Moorhouse AJ, Nair R, Vishwakarma P et al. ABC transporter genes show upregulated expression in drug-resistant clinical isolates of Candida auris: a genome-wide characterization of ATP-Binding Cassette (ABC) transporter genes. Front Microbiol 2019; 10:1445 [View Article][PubMed]
    [Google Scholar]
  132. Rybak JM, Doorley LA, Nishimoto AT, Barker KS, Palmer GE et al. Abrogation of Triazole Resistance upon Deletion of CDR1 in a Clinical Isolate of Candida auris . Antimicrob Agents Chemother 2019; 63: [View Article]
    [Google Scholar]
  133. Berkow EL, Lockhart SR. Activity of CD101, a long-acting echinocandin, against clinical isolates of Candida auris. Diagn Microbiol Infect Dis 2018; 90:196–197 [View Article][PubMed]
    [Google Scholar]
  134. Rhodes J, Abdolrasouli A, Farrer RA, Cuomo CA, Aanensen DM et al. Genomic epidemiology of the UK outbreak of the emerging human fungal pathogen Candida auris. Emerg Microbes Infect 2018; 7:1–12 [View Article][PubMed]
    [Google Scholar]
  135. Kordalewska M, Lee A, Park S, Berrio I, Chowdhary A et al. Understanding echinocandin resistance in the emerging pathogen Candida auris. Antimicrob Agents Chemother 2018; 62: 25 05 2018 [View Article][PubMed]
    [Google Scholar]
  136. Dominguez EG, Zarnowski R, Choy HL, Zhao M, Sanchez H et al. Conserved Role for Biofilm Matrix Polysaccharides in Candida auris Drug Resistance. mSphere 2019; 4:e00680-18 02 01 2019 [View Article][PubMed]
    [Google Scholar]
  137. Romera D, Aguilera-Correa JJ, Gadea I, Viñuela-Sandoval L, García-Rodríguez J et al. Candida auris: a comparison between planktonic and biofilm susceptibility to antifungal drugs. J Med Microbiol 2019; 68:1353–1358 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.001318
Loading
/content/journal/jmm/10.1099/jmm.0.001318
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error