1887

Abstract

causes a diversity of infections in both healthcare and community settings. This pathogen is showing an increased ability to accumulate antimicrobial resistance and virulence genes, making it a public health concern. Here we describe the whole-genome sequence characteristics of an ST15 colistin-resistant isolate obtained from a blood culture of a 79-year-old female patient admitted to a university hospital in Brazil. Kp14U04 was resistant to most clinically useful antimicrobial agents, remaining susceptible only to aminoglycosides and fosfomycin. The colistin resistance in this isolate was due to a ~1.3 kb deletion containing four genes, namely , , and the transcriptional regulator . The study isolate presented a variety of antimicrobial resistance genes, including the carbapenemase-encoding gene , the extended-spectrum beta-lactamase (ESBL)-encoding gene and the beta-lactamase-encoding gene . Additionally, Kp14U04 harboured a multiple stress resistance protein, efflux systems and regulators, heavy metal resistance and virulence genes, plasmids, prophage-related sequences and genomic islands. These features revealed the high potential of this isolate to resist antimicrobial therapy, survive in adverse environments, cause infections and overcome host defence mechanisms.

Funding
This study was supported by the:
  • BeatrizMeurer Moreira , Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (BR)
  • BeatrizMeurer Moreira , Conselho Nacional de Desenvolvimento Científico e Tecnológico , (Award 465718/2014-0)
  • BeatrizMeurer Moreira , Conselho Nacional de Desenvolvimento Científico e Tecnológico , (Award 88881.068043/2014-01)
  • LuisGuilherme de Araujo Longo , Coordenação de Aperfeiçoamento de Pessoal de Nível Superior , (Award 001)
Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.001309
2021-01-21
2021-02-26
Loading full text...

Full text loading...

References

  1. Wyres KL, Holt KE. Klebsiella pneumoniae as a key trafficker of drug resistance genes from environmental to clinically important bacteria. Curr Opin Microbiol 2018; 45: 131 139 [CrossRef]
    [Google Scholar]
  2. Poirel L, Jayol A, Bontron S, Villegas M-V, Ozdamar M et al. The mgrB gene as a key target for acquired resistance to colistin in Klebsiella pneumoniae . J Antimicrob Chemother 2015; 70: 75 80 [CrossRef]
    [Google Scholar]
  3. Longo LGA, de Sousa VS, Kraychete GB, Justo-da-Silva LH, Rocha JA et al. Colistin resistance emerges in pandrug-resistant Klebsiella pneumoniae epidemic clones in Rio de Janeiro, Brazil. Int J Antimicrob Agents 2019; 54: 579 586 [CrossRef]
    [Google Scholar]
  4. Ludden C, Moradigaravand D, Jamrozy D, Gouliouris T, Blane B et al. A one health study of the genetic relatedness of Klebsiella pneumoniae and their mobile elements in the East of England. Clin Infect Dis 2020; 70: 219 226 Available from [CrossRef]
    [Google Scholar]
  5. Clinical and Laboratory Standards Institute (CLSI) Performance Standards for Antimicrobial Susceptibility Testing , 30thed. CLSI supplement M100. 2020
    [Google Scholar]
  6. European Committee on Antimicrobial Susceptibility Testing (EUCAST) Breakpoints tables for interpretation of MICs and zone diameters verion 10.0 [Internet]. 2020 Jan 1. https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_10.0_Breakpoint_Tables.pdf
  7. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 2014; 30: 2114 2120 [CrossRef]
    [Google Scholar]
  8. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13: e1005595 [CrossRef]
    [Google Scholar]
  9. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9: 75 [CrossRef]
    [Google Scholar]
  10. Bertelli C, Laird MR, Williams KP, Lau BY, Hoad G et al. IslandViewer 4: expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res 2017; 45: W30 W35 [CrossRef]
    [Google Scholar]
  11. Arndt D, Grant JR, Marcu A, Sajed T, Pon A et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 2016; 44: W16 W21 [CrossRef]
    [Google Scholar]
  12. Sullivan MJ, Petty NK, Beatson SA. Easyfig: a genome comparison visualizer. Bioinformatics 2011; 27: 1009 1010 [CrossRef]
    [Google Scholar]
  13. Poirel L, Jayol A, Nordmann P. Polymyxins: antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes. Clin Microbiol Rev 2017; 30: 557 596 [CrossRef] [PubMed]
    [Google Scholar]
  14. Navon-Venezia S, Kondratyeva K, Carattoli A. Klebsiella pneumoniae: a major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol Rev 2017; 41: 252 275 [CrossRef] [PubMed]
    [Google Scholar]
  15. de Man TJB, Lutgring JD, Lonsway DR, Anderson KF, Kiehlbauch JA et al. Genomic analysis of a pan-resistant isolate of Klebsiella pneumoniae, United States 2016. mBio 2018; 9: [CrossRef]
    [Google Scholar]
  16. Bernasconi OJ, Donà V, Pires J, Kuenzli E, Hatz C et al. Deciphering the complete deletion of the mgrB locus in an unusual colistin-resistant Klebsiella pneumoniae isolate colonising the gut of a traveller returning from India. Int J Antimicrob Agents 2018; 51: 529 531 [CrossRef]
    [Google Scholar]
  17. Sharma P, Haycocks JRJ, Middlemiss AD, Kettles RA, Sellars LE et al. The multiple antibiotic resistance operon of enteric bacteria controls DNA repair and outer membrane integrity. Nat Commun 2017; 8: [CrossRef]
    [Google Scholar]
  18. Rosario-Cruz Z, Boyd JM. Physiological roles of bacillithiol in intracellular metal processing. Current Genetics 62 Springer Verlag; 2016 pp 59 65 [CrossRef]
    [Google Scholar]
  19. Holden VI, Wright MS, Houle S, Collingwood A, Dozois CM et al. Iron Acquisition and Siderophore Release by Carbapenem-Resistant Sequence Type 258 Klebsiella pneumoniae . mSphere 2018; 3: e00125-18 [CrossRef] [PubMed]
    [Google Scholar]
  20. Pitout JDD, Nordmann P, Poirel L. Carbapenemase-producing Klebsiella pneumoniae, a key pathogen set for global nosocomial dominance. Antimicrob Agents Chemother 2015; 59: 5873 5884 [CrossRef] [PubMed]
    [Google Scholar]
  21. Ares-Arroyo M, Bernabe-Balas C, Santos-Lopez A, Baquero MR, Prasad KN et al. Pcr-Based analysis of ColE1 plasmids in clinical isolates and metagenomic samples reveals their importance as gene capture platforms. Front Microbiol 2018; 9: 469 [CrossRef] [PubMed]
    [Google Scholar]
  22. Ostria-Hernández ML, Sánchez-Vallejo CJ, Ibarra JA, Castro-Escarpulli G. Survey of clustered regularly interspaced short palindromic repeats and their associated Cas proteins (CRISPR/Cas) systems in multiple sequenced strains of Klebsiella pneumoniae. BMC Res Notes 2015; 8: 332 [CrossRef]
    [Google Scholar]
  23. HY L, Kao CY, Lin WH, Zheng PX, Yan JJ. Characterization of CRISPR-Cas systems in clinical. Front Microbiol 2018; 9: 15 95
    [Google Scholar]
  24. Karimi Z, Ahmadi A, Najafi A, Ranjbar R. Bacterial CRISPR regions: general features and their potential for epidemiological molecular typing studies. Open Microbiol J 2018; 12: 59 70 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.001309
Loading
/content/journal/jmm/10.1099/jmm.0.001309
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error