1887

Abstract

. Carbapenem-resistant is responsible for increased patient mortality.

Five and 30 day in-hospital all-cause mortality in patients with infections were assessed, followed by evaluations concerning potential correlations between the type III secretion system (TTSS) genotype and the production of metallo-β-lactamase (MBL).

This assessment comprised a retrospective cohort study including consecutive patients with carbapenem-resistant infections hospitalized in Brazil from January 2009 to June 2019. PCR analyses were performed to determine the presence of TTSS-encoding genes and MBL genes.

The 30-day and 5-day mortality rates for 262 patients were 36.6 and 17.9 %, respectively. The unadjusted survival probabilities for up to 5 days were 70.55 % for patients presenting -positive isolates and 86 % for those presenting -negative isolates. The use of urinary catheters, as well as the presence of comorbidity conditions, secondary bacteremia related to the respiratory tract, were independently associated with death at 5 and 30 days. The gene was detected in 64.8 % of the isolates, the presence of the and genes varied and genes occurred in 19.3 % of the isolates. The genotype was significantly more frequent among multiresistant strains. MBL genes were not detected in 92 % of the isolates.

Inappropriate therapy is a crucial factor regarding the worse prognosis among patients with infections caused by multiresistant , especially those who died within 5 days of diagnosis, regardless of the genotype associated with TTSS virulence.

Funding
This study was supported by the:
  • Not Applicable , CNPQ , (Award 428397/2018-2)
  • Not Applicable , FAPEMIG , (Award APQ-04062-17)
Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.001273
2020-11-10
2021-01-19
Loading full text...

Full text loading...

References

  1. Montero MM, López Montesinos I, Knobel H, Molas E, Sorlí L et al. Risk factors for mortality among patients with Pseudomonas aeruginosa bloodstream infections: what is the influence of XDR phenotype on outcomes?. J Clin Med 2020; 9:514 [CrossRef][PubMed]
    [Google Scholar]
  2. Garcia-Vidal C, Cardozo-Espinola C, Puerta-Alcalde P, Marco F, Tellez A et al. Risk factors for mortality in patients with acute leukemia and bloodstream infections in the era of multiresistance. PLoS One 2018; 13:e0199531 [CrossRef][PubMed]
    [Google Scholar]
  3. Sader HS, Castanheira M, Duncan LR, Flamm RK. Antimicrobial susceptibility of Enterobacteriaceae and Pseudomonas aeruginosa isolates from United States medical centers stratified by infection type: results from the International Network for Optimal Resistance Monitoring (INFORM) surveillance program, 2015–2016. Diagn Microbiol Infect Dis 2018; 92:69–74 [CrossRef][PubMed]
    [Google Scholar]
  4. Shahrbanou IPJ, Jalal M, Asghar S, Vahid P, Abbas BB et al. Occurrence of a multidrug resistant Pseudomonas aeruginosa strains in hospitalized patients in southwest of Iran: Characterization of resistance trends and virulence determinants. Jundishapur J Microbiol 2018; 11:e57341
    [Google Scholar]
  5. Walkty A, Lagace-Wiens P, Adam H, Baxter M, Karlowsky J et al. Antimicrobial susceptibility of 2906 Pseudomonas aeruginosa clinical isolates obtained from patients in Canadian hospitals over a period of 8 years: results of the Canadian Ward surveillance study (CANWARD), 2008–2015. Diagn Microbiol Infect Dis 2017; 87:60–63 [CrossRef][PubMed]
    [Google Scholar]
  6. Ponce de Leon A, Merchant S, Raman G, Avendano E, Chan J et al. Pseudomonas infections among hospitalized adults in Latin America: a systematic review and meta-analysis. BMC Infect Dis 2020; 20:250 [CrossRef][PubMed]
    [Google Scholar]
  7. Balkhair A, Al-Muharrmi Z, Al'Adawi B, Al Busaidi I, Taher HB et al. Prevalence and 30-day all-cause mortality of carbapenem-and colistin-resistant bacteraemia caused by Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae: Description of a decade-long trend. Int J Infect Dis 2019; 85:10–15 [CrossRef][PubMed]
    [Google Scholar]
  8. Jácome PRLA, Alves LR, Jácome-Júnior AT, Silva MJBD, Lima JLDC et al. Detection of blaSPM-1, blaKPC, blaTEM and blaCTX-M genes in isolates of Pseudomonas aeruginosa, Acinetobacter spp. and Klebsiella spp. from cancer patients with healthcare-associated infections. J Med Microbiol 2016; 65:658–665 [CrossRef][PubMed]
    [Google Scholar]
  9. Baumgart AM, Molinari MA, Silveira AC. Prevalence of carbapenem resistant Pseudomonas aeruginosa and Acinetobacter baumannii in high complexity hospital. Braz J Infect Dis 2010; 14:433–436 [CrossRef][PubMed]
    [Google Scholar]
  10. Sharifi H, Pouladfar G, Shakibaie MR, Pourabbas B, Mardaneh J et al. Prevalence of β-lactamase genes, class 1 integrons, major virulence factors and clonal relationships of multidrug-resistant Pseudomonas aeruginosa isolated from hospitalized patients in southeast of Iran. Iran J Basic Med Sci 2019; 22:806–812 [CrossRef][PubMed]
    [Google Scholar]
  11. Quiles MG, Carlesse F, da Silva MA, Mingrone RC, Fonseca JM et al. High mortality outbreak of carbapenem-resistant Pseudomonas aeruginosa infection in a Brazilian pediatric oncology hospital. Braz J Infect Dis 2017; 21:205–206 [CrossRef][PubMed]
    [Google Scholar]
  12. Matos EC, Matos HJ, Conceição ML, Rodrigues YC, Carneiro IC et al. Clinical and microbiological features of infections caused by Pseudomonas aeruginosa in patients hospitalized in intensive care units. Rev Soc Bras Med Trop 2016; 49:305–311 [CrossRef][PubMed]
    [Google Scholar]
  13. Babich T, Naucler P, Valik JK, Giske CG, Benito N et al. Ceftazidime, carbapenems, or piperacillin-tazobactam as single definitive therapy for Pseudomonas aeruginosa bloodstream infection: a multisite retrospective study. Clin Infect Dis 2020; 70:2270–2280 [CrossRef][PubMed]
    [Google Scholar]
  14. Engel J, Balachandran P. Role of Pseudomonas aeruginosa type III effectors in disease. Curr Opin Microbiol 2009; 12:61–66 [CrossRef][PubMed]
    [Google Scholar]
  15. Hauser AR. The type III secretion system of Pseudomonas aeruginosa: infection by injection. Nat Rev Microbiol 2009; 7:654–665 [CrossRef][PubMed]
    [Google Scholar]
  16. Takata I, Yamagishi Y, Mikamo H. Association of the exoU genotype with a multidrug non-susceptible phenotype and mRNA expressions of resistance genes in Pseudomonas aeruginosa. J Infect Chemother 2018; 24:45–52 [CrossRef][PubMed]
    [Google Scholar]
  17. El-Solh AA, Hattemer A, Hauser AR, Alhajhusain A, Vora H. Clinical outcomes of type III Pseudomonas aeruginosa bacteremia. Crit Care Med 2012; 40:1157–1163 [CrossRef][PubMed]
    [Google Scholar]
  18. Khodayary R, Nikokar I, Mobayen MR, Afrasiabi F, Araghian A et al. High incidence of type III secretion system associated virulence factors (exoenzymes) in Pseudomonas aeruginosa isolated from Iranian burn patients. BMC Res Notes 2019; 12:28 [CrossRef]
    [Google Scholar]
  19. Ferreira ML, Dantas RC, Faria ALS, Gonçalves IR, Silveira de Brito C et al. Molecular epidemiological survey of the quinolone- and carbapenem-resistant genotype and its association with the type III secretion system in Pseudomonas aeruginosa. J Med Microbiol 2015; 64:262–271 [CrossRef][PubMed]
    [Google Scholar]
  20. Gilbert DN, Sande MA, Moellering RC, Eliopoulos GM. The Sanford Guide to Antimicrobial Therapy, 37th ed. Sperryville, VA: Antimicrobial Therapy Incorporated; 2007
    [Google Scholar]
  21. Daikos GL, Tsaousi S, Tzouvelekis LS, Anyfantis I, Psichogiou M et al. Carbapenemase-producing Klebsiella pneumoniae bloodstream infections: lowering mortality by antibiotic combination schemes and the role of carbapenems. Antimicrob Agents Chemother 2014; 58:2322–2328 [CrossRef][PubMed]
    [Google Scholar]
  22. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012; 18:268–281 [CrossRef][PubMed]
    [Google Scholar]
  23. Woodford N. Rapid characterization of beta-lactamases by multiplex PCR. Methods Mol Biol 2010; 642:181–192 [CrossRef][PubMed]
    [Google Scholar]
  24. Jabalameli F, Mirsalehian A, Khoramian B, Aligholi M, Khoramrooz SS et al. Evaluation of biofilm production and characterization of genes encoding type III secretion system among Pseudomonas aeruginosa isolated from burn patients. Burns 2012; 38:1192–1197 [CrossRef][PubMed]
    [Google Scholar]
  25. Khodayary R, Nikokar I, Mobayen MR, Afrasiabi F, Araghian A et al. High incidence of type III secretion system associated virulence factors (exoenzymes) in Pseudomonas aeruginosa isolated from Iranian burn patients. BMC Res Notes 2019; 12:28 [CrossRef][PubMed]
    [Google Scholar]
  26. Subedi D, Vijay AK, Kohli GS, Rice SA, Willcox M. Association between possession of ExoU and antibiotic resistance in Pseudomonas aeruginosa. PLoS One 2018; 13:e0204936 [CrossRef][PubMed]
    [Google Scholar]
  27. Morrow KA, Ochoa CD, Balczon R, Zhou C, Cauthen L et al. Pseudomonas aeruginosa exoenzymes U and Y induce a transmissible endothelial proteinopathy. Am J Physiol Lung Cell Mol Physiol 2016; 310:L337–L353 [CrossRef]
    [Google Scholar]
  28. Aditi ­, Shariff M, Chhabra SK, Rahman M-U. Similar virulence properties of infection and colonization associated Pseudomonas aeruginosa. J Med Microbiol 2017; 66:1489–1498 [CrossRef][PubMed]
    [Google Scholar]
  29. Dias VC, Resende JA, Bastos AN, De Andrade Bastos LQ, De Andrade Bastos VQ et al. Epidemiological, physiological and molecular characteristics of a Brazilian collection of carbapenem-resistant Acinetobacter baumannii and Pseudomonas aeruginosa. Microb Drug Resist 2017; 23:852–863 [CrossRef][PubMed]
    [Google Scholar]
  30. Potron A, Poirel L, Nordmann P. Emerging broad-spectrum resistance in Pseudomonas aeruginosa and Acinetobacter baumannii: mechanisms and epidemiology. Int J Antimicrob Agents 2015; 45:568–585 [CrossRef][PubMed]
    [Google Scholar]
  31. Gales AC, Castanheira M, Jones RN, Sader HS. Antimicrobial resistance among Gram-negative bacilli isolated from Latin America: results from SENTRY antimicrobial surveillance program (Latin America, 2008–2010). Diagn Microbiol Infect Dis 2012; 73:354–360 [CrossRef][PubMed]
    [Google Scholar]
  32. Aviv T, Lazarovitch T, Katz D, Zaidenstein R, Dadon M et al. The epidemiological impact and significance of carbapenem resistance in Pseudomonas aeruginosa bloodstream infections: a matched case-case-control analysis. Infect Control Hosp Epidemiol 2018; 39:1262–1265 [CrossRef][PubMed]
    [Google Scholar]
  33. Osih RB, McGregor JC, Rich SE, Moore AC, Furuno JP et al. Impact of empiric antibiotic therapy on outcomes in patients with Pseudomonas aeruginosa bacteremia. Antimicrob Agents Chemother 2007; 51:839–844 [CrossRef][PubMed]
    [Google Scholar]
  34. Bogan C, Kaye KS, Chopra T, Hayakawa K, Pogue JM et al. Outcomes of carbapenem-resistant Enterobacteriaceae isolation: matched analysis. Am J Infect Control 2014; 42:612–620 [CrossRef][PubMed]
    [Google Scholar]
  35. Britt NS, Ritchie DJ, Kollef MH, Burnham CA, Durkin MJ et al. Importance of site of infection and antibiotic selection in the treatment of carbapenem-resistant Pseudomonas aeruginosa sepsis. Antimicrob Agents Chemother 2018; 62:pii: e02400-17. [CrossRef][PubMed]
    [Google Scholar]
  36. Dantas RC, Ferreira ML, Gontijo-Filho PP, Ribas RM. Pseudomonas aeruginosa bacteraemia: independent risk factors for mortality and impact of resistance on outcome. J Med Microbiol 2014; 63:1679–1687 [CrossRef][PubMed]
    [Google Scholar]
  37. Joo EJ, Kang CI, Ha YE, Park SY, Kang S-J et al. Impact of inappropriate empiric antimicrobial therapy on outcome in Pseudomonas aeruginosa bacteraemia: a stratified analysis according to sites of infection. Infection 2011; 39:309–318 [CrossRef][PubMed]
    [Google Scholar]
  38. Peng Y, Bi J, Shi J, Li Y, Ye X, Xiaofeng X et al. Multidrug-resistant Pseudomonas aeruginosa infections pose growing threat to health care-associated infection control in the hospitals of Southern China: a case-control surveillance study. Am J Infect Control 2014; 42:1308–1311 [CrossRef][PubMed]
    [Google Scholar]
  39. Cezário RC, Duarte De Morais L, Ferreira JC, Costa-Pinto RM, da Costa Darini AL et al. Nosocomial outbreak by imipenem-resistant metallo-β-lactamase-producing Pseudomonas aeruginosa in an adult intensive care unit in a Brazilian teaching hospital. Enferm Infecc Microbiol Clin 2009; 27:269–274 [CrossRef][PubMed]
    [Google Scholar]
  40. Horna G, Amaro C, Palacios A, Guerra H, Ruiz J. High frequency of the exoU+/exoS+ genotype associated with multidrug-resistant “high-risk clones” of Pseudomonas aeruginosa clinical isolates from Peruvian hospitals. Sci Rep 2019; 9:10874 [CrossRef][PubMed]
    [Google Scholar]
  41. Cho HH, Kwon KC, Kim S, Koo SH. Correlation between virulence genotype and fluoroquinolone resistance in carbapenem-resistant Pseudomonas aeruginosa. Ann Lab Med 2014; 34:286–292 [CrossRef][PubMed]
    [Google Scholar]
  42. Agnello M, Wong-Beringer A. Differentiation in quinolone resistance by virulence genotype in Pseudomonas aeruginosa. PLoS One 2012; 7:e42973 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.001273
Loading
/content/journal/jmm/10.1099/jmm.0.001273
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error