1887

Abstract

is a facultative, anaerobic, opportunistic pathogen associated with medical and dental diseases. Bacterial phenotypic traits and pathogenesis are often influenced by lysogeny.

The aim of this study was to characterize both the morphology and complete genome sequences of induced prophages purified from clinical isolates.

isolates were recovered from the roots of teeth of patients attending an endodontic clinic. The morphological features of isolated phage were characterized using transmission electron microscopy (TEM). DNA sequencing was performed using the Illumina MiSeq platform.

TEM indicated that the isolated φEf-vB1 prophage belongs to the family . The φEf-vB1 prophage was stable over a wide range of temperatures and pH. Sequencing of φEf-vB1 DNA revealed that the phage genome is 37 561 bp in length with a G+C content of 37.6mol% and contained 53 ORFs. Comparison with previously predicted prophage genomes using revealed that φEf-vB1 has a high sequence similarity to previously characterized phage genomes. The lysogenic strain exhibited a higher biofilm formation capacity relative to the non-lysogenic strain.

The current findings highlight the role of lysogeny in modification of properties and reveal the potential importance of prophages in biology and pathogenesis.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.001246
2020-08-25
2020-10-29
Loading full text...

Full text loading...

References

  1. Facklam RR, Carvalho MGS, Teixeira LM. History, taxonomy, biochemical characteristics and antibiotic susceptibility testing of enterococci. In Gilmore MS. ed The Enterococci: Pathogenesis, Molecular Biology, and Antibiotic Resistance Washington, DC: ASM; 2002 pp 1–54
    [Google Scholar]
  2. Richards MJ, Edwards JR, Culver DH, Gaynes RP. Nosocomial infections in combined medical-surgical intensive care units in the United States. Infect Control Hosp Epidemiol 2000; 21:510–515 [CrossRef][PubMed]
    [Google Scholar]
  3. NNIS System National nosocomial infections surveillance (NNIS) system report, data summary from January 1990–May 1999, issued June 1999. A report from the NNIS system. Am J Infect Control 1999; 27:520–532 [CrossRef][PubMed]
    [Google Scholar]
  4. Stuart CH, Schwartz SA, Beeson TJ, Owatz CB. Enterococcus faecalis: its role in root canal treatment failure and current concepts in retreatment. J Endod 2006; 32:93–98 [CrossRef][PubMed]
    [Google Scholar]
  5. Rams TE, Feik D, Young V, Hammond BF, Slots J. Enterococci in human periodontitis. Oral Microbiol Immunol 1992; 7:249–252 [CrossRef][PubMed]
    [Google Scholar]
  6. Peciuliene V, Balciuniene I, Eriksen HM, Haapasalo M. Isolation of Enterococcus faecalis in previously root-filled canals in a Lithuanian population. J Endod 2000; 26:593–595 [CrossRef][PubMed]
    [Google Scholar]
  7. Pinheiro ET, Gomes BPFA, Ferraz CCR, Teixeira FB, Zaia AA et al. Evaluation of root canal microorganisms isolated from teeth with endodontic failure and their antimicrobial susceptibility. Oral Microbiol Immunol 2003; 18:100–103 [CrossRef][PubMed]
    [Google Scholar]
  8. Stevens RH, Porras OD, Delisle AL. Bacteriophages induced from lysogenic root canal isolates of Enterococcus faecalis . Oral Microbiol Immunol 2009; 24:278–284 [CrossRef][PubMed]
    [Google Scholar]
  9. Clewell DB, Francia MV, Flannagan SE, An FY. Enterococcal plasmid transfer: sex pheromones, transfer origins, relaxases, and the Staphylococcus aureus issue. Plasmid 2002; 48:193–201 [CrossRef][PubMed]
    [Google Scholar]
  10. Ramsey M, Hartke A, Huycke M. The physiology and metabolism of enterococci. In Gilmore MS, Clewell DB, Ike Y, Shankar N. eds Enterococci: from Commensals to Leading Causes of Drug Resistant Infection Boston, MA: Massachusetts Eye and Ear Infirmary; 2014
    [Google Scholar]
  11. Bonten MJ, Willems R, Weinstein RA. Vancomycin-resistant enterococci: why are they here, and where do they come from?. Lancet Infect Dis 2001; 1:314–325 [CrossRef][PubMed]
    [Google Scholar]
  12. Courvalin P. Antimicrobial drug resistance: "Prediction is very difficult, especially about the future". Emerg Infect Dis 2005; 11:1503–1506 [CrossRef][PubMed]
    [Google Scholar]
  13. Mazaheri Nezhad Fard R, Barton MD, Heuzenroeder MW. Novel bacteriophages in Enterococcus spp. Curr Microbiol 2010; 60:400–406 [CrossRef][PubMed]
    [Google Scholar]
  14. Paulsen IT, Banerjei L, Myers GSA, Nelson KE, Seshadri R et al. Role of mobile DNA in the evolution of vancomycin-resistant Enterococcus faecalis . Science 2003; 299:2071–2074 [CrossRef][PubMed]
    [Google Scholar]
  15. Kjems E. Studies on streptococcal bacteriophages. I. Technique of isolating phage-producing strains. Acta Pathol Microbiol Scand 1955; 36:433–440[PubMed]
    [Google Scholar]
  16. Paisano AF, Spira B, Cai S, Bombana AC. In vitro antimicrobial effect of bacteriophages on human dentin infected with Enterococcus faecalis ATCC 29212. Oral Microbiol Immunol 2004; 19:327–330 [CrossRef][PubMed]
    [Google Scholar]
  17. Uchiyama J, Rashel M, Takemura I, Wakiguchi H, Matsuzaki S. In silico and in vivo evaluation of bacteriophage phiEF24C, a candidate for treatment of Enterococcus faecalis infections. Appl Environ Microbiol 2008; 74:4149–4163 [CrossRef][PubMed]
    [Google Scholar]
  18. Tormo MA, Ferrer MD, Maiques E, Ubeda C, Selva L et al. Staphylococcus aureus pathogenicity island DNA is packaged in particles composed of phage proteins. J Bacteriol 2008; 190:2434–2440 [CrossRef][PubMed]
    [Google Scholar]
  19. van Wamel WJB, Rooijakkers SHM, Ruyken M, van Kessel KPM, van Strijp JAG. The innate immune modulators staphylococcal complement inhibitor and chemotaxis inhibitory protein of Staphylococcus aureus are located on beta-hemolysin-converting bacteriophages. J Bacteriol 2006; 188:1310–1315 [CrossRef][PubMed]
    [Google Scholar]
  20. Prévost G, Cribier B, Couppié P, Petiau P, Supersac G et al. Panton-Valentine leucocidin and gamma-hemolysin from Staphylococcus aureus ATCC 49775 are encoded by distinct genetic loci and have different biological activities. Infect Immun 1995; 63:4121–4129 [CrossRef][PubMed]
    [Google Scholar]
  21. Aziz RK, Ismail SA, Park H-W, Kotb M. Post-proteomic identification of a novel phage-encoded streptodornase, Sda1, in invasive M1T1 Streptococcus pyogenes . Mol Microbiol 2004; 54:184–197 [CrossRef][PubMed]
    [Google Scholar]
  22. Aziz RK, Edwards RA, Taylor WW, Low DE, McGeer A et al. Mosaic prophages with horizontally acquired genes account for the emergence and diversification of the globally disseminated M1T1 clone of Streptococcus pyogenes . J Bacteriol 2005; 187:3311–3318 [CrossRef][PubMed]
    [Google Scholar]
  23. Banks DJ, Lei B, Musser JM. Prophage induction and expression of prophage-encoded virulence factors in group A Streptococcus serotype M3 strain MGAS315. Infect Immun 2003; 71:7079–7086 [CrossRef][PubMed]
    [Google Scholar]
  24. Bensing BA, Siboo IR, Sullam PM. Proteins PblA and PblB of Streptococcus mitis, which promote binding to human platelets, are encoded within a lysogenic bacteriophage. Infect Immun 2001; 69:6186–6192 [CrossRef][PubMed]
    [Google Scholar]
  25. Bourgogne A, Garsin DA, Qin X, Singh KV, Sillanpaa J et al. Large scale variation in Enterococcus faecalis illustrated by the genome analysis of strain OG1RF. Genome Biol 2008; 9:R110 [CrossRef][PubMed]
    [Google Scholar]
  26. Zoletti GO, Santos KRN, Santos KRN. Identification of Enterococcus faecalis in root-filled teeth with or without periradicular lesions by culture-dependent and-independent approaches. J Endod 2006; 32:722–726 [CrossRef][PubMed]
    [Google Scholar]
  27. Hudzicki J. Kirby-Bauer Disk Diffusion Susceptibility Test Protocol Washington, DC: ASM; 2009
    [Google Scholar]
  28. Jorgensen JH, Turnidge JD. Susceptibility test methods: dilution and disk diffusion methods. In Murray PR, Baron EJ, Jorgensen JH, Landry ML, Pfaller MA. (editors) Manual of Clinical Microbiology, 9th edn. Washington, DC: ASM; 2007 pp 1152–1172
    [Google Scholar]
  29. CLSI Performance Standards for Antimicrobial Susceptibility Testing, 26th edn. Wayne, PA: Clinical and Laboratory Standards Institute; 2016
    [Google Scholar]
  30. Khan Mirzaei M, Nilsson AS. Isolation of phages for phage therapy: a comparison of spot tests and efficiency of plating analyses for determination of host range and efficacy. PLoS One 2015; 10:e0118557 [CrossRef][PubMed]
    [Google Scholar]
  31. Adams MH. Bacteriophages New York: Interscience Publishers; 1959
    [Google Scholar]
  32. Manohar P, Tamhankar AJ, Lundborg CS, Ramesh N. Isolation, characterization and in vivo efficacy of Escherichia phage myPSH1131. PLoS One 2018; 13:e0206278 [CrossRef][PubMed]
    [Google Scholar]
  33. Mahmoud M, Askora A, Barakat AB, Rabie OE-F, Hassan SE. Isolation and characterization of polyvalent bacteriophages infecting multi drug resistant Salmonella serovars isolated from broilers in Egypt. Int J Food Microbiol 2018; 266:8–13 [CrossRef][PubMed]
    [Google Scholar]
  34. El Didamony G, Askora A, Shehata AA. Isolation and characterization of T7-like lytic bacteriophages infecting multidrug resistant Pseudomonas aeruginosa isolated from Egypt. Curr Microbiol 2015; 70:786–791 [CrossRef][PubMed]
    [Google Scholar]
  35. Pajunen M, Kiljunen S, Skurnik M. Bacteriophage phiYeO3-12, specific for Yersinia enterocolitica serotype O:3, is related to coliphages T3 and T7. J Bacteriol 2000; 182:5114–5120 [CrossRef][PubMed]
    [Google Scholar]
  36. Sambrook J, Russell DW. Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; 2001
    [Google Scholar]
  37. Arndt D, Grant JR, Marcu A, Sajed T, Pon A et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 2016; 44:W16–W21 [CrossRef][PubMed]
    [Google Scholar]
  38. Delcher AL, Kasif S, Fleischmann RD, Peterson J, White O et al. Alignment of whole genomes. Nucleic Acids Res 1999; 27:2369–2376 [CrossRef][PubMed]
    [Google Scholar]
  39. Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997; 25:955–964 [CrossRef][PubMed]
    [Google Scholar]
  40. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25:3389–3402 [CrossRef][PubMed]
    [Google Scholar]
  41. Merritt JH, Kadouri DE, O'Toole GA. Growing and analyzing static biofilms. Curr Protoc Microbiol 2005; chapter 1:unit 1B.1 [CrossRef][PubMed]
    [Google Scholar]
  42. Chuang-Smith ON, Wells CL, Henry-Stanley MJ, Dunny GM. Acceleration of Enterococcus faecalis biofilm formation by aggregation substance expression in an ex vivo model of cardiac valve colonization. PLoS One 2010; 5:e15798 [CrossRef][PubMed]
    [Google Scholar]
  43. Sava IG, Heikens E, Huebner J. Pathogenesis and immunity in enterococcal infections. Clin Microbiol Infect 2010; 16:533–540 [CrossRef][PubMed]
    [Google Scholar]
  44. Schwarz-Linek U, Höök M, Potts JR. The molecular basis of fibronectin-mediated bacterial adherence to host cells. Mol Microbiol 2004; 52:631–641 [CrossRef][PubMed]
    [Google Scholar]
  45. Vaca DJ, Thibau A, Schütz M, Kraiczy P, Happonen L et al. Interaction with the host: the role of fibronectin and extracellular matrix proteins in the adhesion of Gram-negative bacteria. Med Microbiol Immunol 2020; 209:277–299 [CrossRef][PubMed]
    [Google Scholar]
  46. Beloin C, Valle J, Latour-Lambert P, Faure P, Kzreminski M et al. Global impact of mature biofilm lifestyle on Escherichia coli K-12 gene expression. Mol Microbiol 2004; 51:659–674 [CrossRef][PubMed]
    [Google Scholar]
  47. Boschi-Muller S, Gand A, Branlant G. The methionine sulfoxide reductases: catalysis and substrate specificities. Arch Biochem Biophys 2008; 474:266–273 [CrossRef][PubMed]
    [Google Scholar]
  48. Zhao C, Hartke A, La Sorda M, Posteraro B, Laplace J-M et al. Role of methionine sulfoxide reductases A and B of Enterococcus faecalis in oxidative stress and virulence. Infect Immun 2010; 78:3889–3897 [CrossRef][PubMed]
    [Google Scholar]
  49. Vidana R, Sullivan A, Billström H, Ahlquist M, Lund B. Enterococcus faecalis infection in root canals – host-derived or exogenous source?. Lett Appl Microbiol 2011; 52:109–115 [CrossRef][PubMed]
    [Google Scholar]
  50. Stevens RH, Zhang H, Sedgley C, Bergman A, Manda AR. The prevalence and impact of lysogeny among oral isolates of Enterococcus faecalis . J Oral Microbiol 2019; 11:1643207 [CrossRef][PubMed]
    [Google Scholar]
  51. Stevens RH, Ektefaie MR, Fouts DE. The annotated complete DNA sequence of Enterococcus faecalis bacteriophage phiEf11 and its comparison with all available phage and predicted prophage genomes. FEMS Microbiol Lett 2011; 317:9–26 [CrossRef][PubMed]
    [Google Scholar]
  52. Baer BS, Krueger AP. The B. mycoides N host-virus system. I. Differences in appearance and rate of growth of the lysogenic and parent indicator strains. J Gen Physiol 1952; 35:857–864 [CrossRef][PubMed]
    [Google Scholar]
  53. Rigvava S, Tchgkonia I, Jgenti D, Dvalidze T, Carpino J et al. Comparative analysis of the biological and physical properties of Enterococcus faecalis bacteriophage vB_EfaS_GEC-EfS_3 and Streptococcus mitis bacteriophage vB_SmM_GEC-SmitisM_2. Can J Microbiol 2013; 59:18–21 [CrossRef][PubMed]
    [Google Scholar]
  54. Rahmat Ullah S, Andleeb S, Raza T, Jamal M, Mehmood K. Effectiveness of a lytic phage SRG1 against vancomycin-resistant Enterococcus faecalis in compost and soil. Biomed Res Int 2017; 2017:9351017. [CrossRef][PubMed]
    [Google Scholar]
  55. McHugh CP, Zhang P, Michalek S, Eleazer PD. pH required to kill Enterococcus faecalis in vitro . J Endod 2004; 30:218–219 [CrossRef][PubMed]
    [Google Scholar]
  56. Foulquié Moreno MR, Sarantinopoulos P, Tsakalidou E, De Vuyst L. The role and application of enterococci in food and health. Int J Food Microbiol 2006; 106:1–24 [CrossRef][PubMed]
    [Google Scholar]
  57. Ptashne M. . A Genetic Switch: Phage Lambda Revisited, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; 2004
    [Google Scholar]
  58. Groth AC, Fish M, Nusse R, Calos MP. Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31. Genetics 2004; 166:1775–1782 [CrossRef][PubMed]
    [Google Scholar]
  59. Valpuesta JM, Carrascosa JL. Structure of viral connectors and their function in bacteriophage assembly and DNA packaging. Q Rev Biophys 1994; 27:107–155 [CrossRef][PubMed]
    [Google Scholar]
  60. Guasch A, Pous J, Ibarra B, Gomis-Rüth FX, Valpuesta JM et al. Detailed architecture of a DNA translocating machine: the high-resolution structure of the bacteriophage phi29 connector particle. J Mol Biol 2002; 315:663–676 [CrossRef][PubMed]
    [Google Scholar]
  61. Cumby N, Reimer K, Mengin-Lecreulx D, Davidson AR, Maxwell KL. The phage tail tape measure protein, an inner membrane protein and a periplasmic chaperone play connected roles in the genome injection process of E. coli phage HK97. Mol Microbiol 2015; 96:437–447 [CrossRef][PubMed]
    [Google Scholar]
  62. Kudryashev M, Wang RY-R, Brackmann M, Scherer S, Maier T et al. Structure of the type VI secretion system contractile sheath. Cell 2015; 160:952–962 [CrossRef][PubMed]
    [Google Scholar]
  63. Wang IN, Smith DL, Young R. Holins: the protein clocks of bacteriophage infections. Annu Rev Microbiol 2000; 54:799–825 [CrossRef][PubMed]
    [Google Scholar]
  64. Oliveira H, Melo LDR, Santos SB, Nóbrega FL, Ferreira EC et al. Molecular aspects and comparative genomics of bacteriophage endolysins. J Virol 2013; 87:4558–4570 [CrossRef][PubMed]
    [Google Scholar]
  65. Schmelcher M, Donovan DM, Loessner MJ. Bacteriophage endolysins as novel antimicrobials. Future Microbiol 2012; 7:1147–1171 [CrossRef][PubMed]
    [Google Scholar]
  66. Pell LG, Liu A, Edmonds L, Donaldson LW, Howell PL et al. The X-ray crystal structure of the phage lambda tail terminator protein reveals the biologically relevant hexameric ring structure and demonstrates a conserved mechanism of tail termination among diverse long-tailed phages. J Mol Biol 2009; 389:938–951 [CrossRef][PubMed]
    [Google Scholar]
  67. Sun X, Göhler A, Heller KJ, Neve H. The ltp gene of temperate Streptococcus thermophilus phage TP-J34 confers superinfection exclusion to Streptococcus thermophilus and Lactococcus lactis . Virology 2006; 350:146–157 [CrossRef][PubMed]
    [Google Scholar]
  68. Mahony J, McGrath S, Fitzgerald GF, van Sinderen D. Identification and characterization of lactococcal-prophage-carried superinfection exclusion genes. Appl Environ Microbiol 2008; 74:6206–6215 [CrossRef][PubMed]
    [Google Scholar]
  69. Paget MSB, Helmann JD. The sigma70 family of sigma factors. Genome Biol 2003; 4:203 [CrossRef][PubMed]
    [Google Scholar]
  70. Boyd EF, Brüssow H. Common themes among bacteriophage-encoded virulence factors and diversity among the bacteriophages involved. Trends Microbiol 2002; 10:521–529 [CrossRef][PubMed]
    [Google Scholar]
  71. Wagner PL, Waldor MK. Bacteriophage control of bacterial virulence. Infect Immun 2002; 70:3985–3993 [CrossRef][PubMed]
    [Google Scholar]
  72. Wizemann TM, Moskovitz J, Pearce BJ, Cundell D, Arvidson CG et al. Peptide methionine sulfoxide reductase contributes to the maintenance of adhesins in three major pathogens. Proc Natl Acad Sci USA 1996; 93:7985–7990 [CrossRef][PubMed]
    [Google Scholar]
  73. Wang X, Kim Y, Ma Q, Hong SH, Pokusaeva K et al. Cryptic prophages help bacteria cope with adverse environments. Nat Commun 2010; 1:147 [CrossRef][PubMed]
    [Google Scholar]
  74. Rice SA, Tan CH, Mikkelsen PJ, Kung V, Woo J et al. The biofilm life cycle and virulence of Pseudomonas aeruginosa are dependent on a filamentous prophage. ISME J 2009; 3:271–282 [CrossRef][PubMed]
    [Google Scholar]
  75. Carrolo M, Frias MJ, Pinto FR, Melo-Cristino J, Ramirez M. Prophage spontaneous activation promotes DNA release enhancing biofilm formation in Streptococcus pneumoniae . PLoS One 2010; 5:e15678 [CrossRef][PubMed]
    [Google Scholar]
  76. Stevens RH, Preus HR, Dokko B, Russell DT, Furgang D et al. Prevalence and distribution of bacteriophage phi Aa DNA in strains of Actinobacillus actinomycetemcomitans . FEMS Microbiol Lett 1994; 119:329–337 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.001246
Loading
/content/journal/jmm/10.1099/jmm.0.001246
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error