1887

Abstract

While colonization by in haemodialysis patients has been assessed, knowledge about colonization by beta-lactam-resistant Gram-negative bacilli is still limited.

To describe clinical and molecular characteristics in haemodialysis patients colonized by (MSSA-MRSA) and beta-lactam-resistant Gram-negative bacilli in an ambulatory renal unit.

The study included patients with central venous catheters in an outpatient haemodialysis facility in Medellín, Colombia (October 2017–October 2018). Swab specimens were collected from the nostrils and skin around vascular access to assess colonization by (MSSA-MRSA). Stool samples were collected from each patient to evaluate beta-lactam-resistant Gram-negative bacilli colonization. Molecular typing included PFGE, multilocus sequence typing (MLST), typing and enterobacterial repetitive intergenic consensus-PCR (ERIC). Clinical information was obtained from medical records and personal interview.

A total of 210 patients were included in the study. colonization was observed in 33.8 % (=71) of the patients, 4.8 % (=10) of which were colonized by methicillin-resistant . Stool samples were collected from 165 patients and of these 41.2 % (=68) and 11.5 % (=19) were colonized by extended-spectrum-beta-lactamase-producing (ESBL) and carbapenem-resistant bacilli, respectively. Typing methods revealed high genetic diversity among and ESBL-producing Gram-negative bacilli (ESBL-GNB). Antibiotic use and hospitalization in the previous 6 months were observed in more than half of the studied population.

The high colonization by ESBL-GNB in haemodialysis patients shows evidence for the need for stronger surveillance, not only for but also for multidrug-resistant bacilli in order to avoid their spread. Additionally, the high genetic diversity suggests other sources of transmission outside the renal unit instead of horizontal transmission between patients.

Funding
This study was supported by the:
  • Not Applicable , Departamento Administrativo de Ciencia, Tecnología e Innovación , (Award 111577756947)
  • Not Applicable , Comité para el Desarrollo de la Investigación CODI, Universidad de Antioquia , (Award 2017-15526)
Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.001244
2020-08-19
2020-10-29
Loading full text...

Full text loading...

References

  1. Tang SS, Apisarnthanarak A, Hsu LY. Mechanisms of β-lactam antimicrobial resistance and epidemiology of major community- and healthcare-associated multidrug-resistant bacteria. Adv Drug Deliv Rev 2014; 78:3–13 [CrossRef][PubMed]
    [Google Scholar]
  2. Laxminarayan R, Duse A, Wattal C, Zaidi AKM, Wertheim HFL et al. Antibiotic resistance-the need for global solutions. Lancet Infect Dis 2013; 13:1057–1098 [CrossRef][PubMed]
    [Google Scholar]
  3. Pop-Vicas A, Strom J, Stanley K, D'Agata EMC. Multidrug-resistant Gram-negative bacteria among patients who require chronic hemodialysis. Clin J Am Soc Nephrol 2008; 3:752–758 [CrossRef][PubMed]
    [Google Scholar]
  4. Snyder GM, D'Agata EMC. Novel antimicrobial-resistant bacteria among patients requiring chronic hemodialysis. Curr Opin Nephrol Hypertens 2012; 21:211–215 [CrossRef][PubMed]
    [Google Scholar]
  5. Safdar N, Bradley EA. The risk of infection after nasal colonization with Staphylococcus aureus . Am J Med 2008; 121:310–315 [CrossRef][PubMed]
    [Google Scholar]
  6. Moore C, Davis NF, Burke JP, Power R, Mohan P et al. Colonisation with methicillin-resistant Staphylococcus aureus prior to renal transplantation is associated with long-term renal allograft failure. Transpl Int 2014; 27:926–930 [CrossRef][PubMed]
    [Google Scholar]
  7. Vasoo S, Barreto JN, Tosh PK. Emerging issues in Gram-negative bacterial resistance: an update for the practicing clinician. Mayo Clin Proc 2015; 90:395–403 [CrossRef][PubMed]
    [Google Scholar]
  8. Livermore DM. Current epidemiology and growing resistance of Gram-negative pathogens. Korean J Intern Med 2012; 27:128–142 [CrossRef][PubMed]
    [Google Scholar]
  9. Centers for Disease Control and Prevention Recommendations for preventing transmission of infections among chronic hemodialysis patients. MMWR Recomm Rep 2001; 50:1–43[PubMed]
    [Google Scholar]
  10. Pence MA, Hink T, Burnham C-AD. Comparison of chromogenic media for recovery of carbapenemase-producing Enterobacteriaceae (CPE) and evaluation of CPE prevalence at a tertiary care academic medical center. J Clin Microbiol 2015; 53:663–666 [CrossRef][PubMed]
    [Google Scholar]
  11. Romero-Jung PA, Treviño M, Martínez-Lamas L, Varón C. [Utility of chromID ESBL medium for detection of cephalosporin-resistant enterobacteria in inoculated blood culture bottles]. Enferm Infecc Microbiol Clin 2009; 27:12367–368 [CrossRef][PubMed]
    [Google Scholar]
  12. CLSI Performance Standards for Antimicrobial Susceptibility Testing, 28nd Informational Supplement. CLSI Document M100-S28 Wayne, PA: Clinical and Laboratory Standards Institute; 2018
    [Google Scholar]
  13. Brakstad OG, Aasbakk K, Maeland JA. Detection of Staphylococcus aureus by polymerase chain reaction amplification of the nuc gene. J Clin Microbiol 1992; 30:1654–1660 [CrossRef][PubMed]
    [Google Scholar]
  14. Kondo Y, Ito T, Ma XX, Watanabe S, Kreiswirth BN et al. Combination of multiplex PCRs for staphylococcal cassette chromosome mec type assignment: rapid identification system for mec, CCR, and major differences in junkyard regions. Antimicrob Agents Chemother 2007; 51:264–274 [CrossRef][PubMed]
    [Google Scholar]
  15. Milheiriço C, Oliveira DC, de Lencastre H. Multiplex PCR strategy for subtyping the staphylococcal cassette chromosome mec type IV in methicillin-resistant Staphylococcus aureus: 'SCCmec IV multiplex'. J Antimicrob Chemother 2007; 60:42–48 [CrossRef][PubMed]
    [Google Scholar]
  16. Dallenne C, Da Costa A, Decré D, Favier C, Arlet G. Development of a set of multiplex PCR assays for the detection of genes encoding important beta-lactamases in Enterobacteriaceae. J Antimicrob Chemother 2010; 65:490–495 [CrossRef][PubMed]
    [Google Scholar]
  17. Poirel L, Walsh TR, Cuvillier V, Nordmann P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis 2011; 70:119–123 [CrossRef][PubMed]
    [Google Scholar]
  18. Mulvey MR, Chui L, Ismail J, Louie L, Murphy C et al. Development of a Canadian standardized protocol for subtyping methicillin-resistant Staphylococcus aureus using pulsed-field gel electrophoresis. J Clin Microbiol 2001; 39:3481–3485 [CrossRef][PubMed]
    [Google Scholar]
  19. Shopsin B, Gomez M, Montgomery SO, Smith DH, Waddington M et al. Evaluation of protein A gene polymorphic region DNA sequencing for typing of Staphylococcus aureus strains. J Clin Microbiol 1999; 37:3556–3563 [CrossRef][PubMed]
    [Google Scholar]
  20. Mathema B, Mediavilla J, Kreiswirth BN. Sequence analysis of the variable number tandem repeat in Staphylococcus aureus protein A gene: spa typing. Methods Mol Biol 2008; 431:285–305 [CrossRef][PubMed]
    [Google Scholar]
  21. da Silva Dias RC, Borges-Neto AA, D'Almeida Ferraiuoli GI, de-Oliveira MP, Riley LW et al. Prevalence of AmpC and other beta-lactamases in enterobacteria at a large urban university hospital in Brazil. Diagn Microbiol Infect Dis 2008; 60:79–87 [CrossRef][PubMed]
    [Google Scholar]
  22. Feil EJ, Li BC, Aanensen DM, Hanage WP, Spratt BG. eBURST: inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. J Bacteriol 2004; 186:1518–1530 [CrossRef][PubMed]
    [Google Scholar]
  23. Karanika S, Karantanos T, Arvanitis M, Grigoras C, Mylonakis E. Fecal colonization with extended-spectrum beta-lactamase-producing Enterobacteriaceae and risk factors among healthy individuals: a systematic review and Metaanalysis. Clin Infect Dis 2016; 63:310–318 [CrossRef][PubMed]
    [Google Scholar]
  24. Correia S, Pacheco R, Radhouani H, Diniz JC, Ponce P et al. High prevalence of ESBL-producing Escherichia coli isolates among hemodialysis patients in Portugal: appearance of ST410 with the bla(CTX-M-14) gene. Diagn Microbiol Infect Dis 2012; 74:423–425 [CrossRef][PubMed]
    [Google Scholar]
  25. Detsis M, Karanika S, Mylonakis E, Acquisition Rate ICU. Icu acquisition rate, risk factors, and clinical significance of digestive tract colonization with extended-spectrum beta-lactamase-producing Enterobacteriaceae: a systematic review and meta-analysis. Crit Care Med 2017; 45:705–714 [CrossRef][PubMed]
    [Google Scholar]
  26. Martins LRL, Pina SMR, Simões RLR, de Matos AJF, Rodrigues P et al. Common phenotypic and genotypic antimicrobial resistance patterns found in a case study of multiresistant E. coli from cohabitant pets, humans, and household surfaces. J Environ Health 2013; 75:74–81[PubMed]
    [Google Scholar]
  27. Hernández C, Blanco V, Motoa G, Correa A, Maya JJ et al. Evolución de la resistencia antimicrobiana de bacilos Gram negativos en unidades de cuidados intensivos en Colombia. Biomédica 2014; 34:91–100
    [Google Scholar]
  28. Leistner R, Meyer E, Gastmeier P, Pfeifer Y, Eller C et al. Risk factors associated with the community-acquired colonization of extended-spectrum beta-lactamase (ESBL) positive Escherichia coli. An exploratory case-control study. PLoS One 2013; 8:e74323 [CrossRef][PubMed]
    [Google Scholar]
  29. Carlet J. The gut is the epicentre of antibiotic resistance. Antimicrob Resist Infect Control 2012; 1:39 [CrossRef][PubMed]
    [Google Scholar]
  30. Bar-Yoseph H, Hussein K, Braun E, Paul M. Natural history and decolonization strategies for ESBL/carbapenem-resistant Enterobacteriaceae carriage: systematic review and meta-analysis. J Antimicrob Chemother 2016; 71:2729–2739 [CrossRef][PubMed]
    [Google Scholar]
  31. Papp-Wallace KM, Endimiani A, Taracila MA, Bonomo RA. Carbapenems: past, present, and future. Antimicrob Agents Chemother 2011; 55:4943–4960 [CrossRef][PubMed]
    [Google Scholar]
  32. Villar HE, Baserni MN, Jugo MB. Faecal carriage of ESBL-producing Enterobacteriaceae and carbapenem-resistant Gram-negative bacilli in community settings. J Infect Dev Ctries 2013; 7:630–634 [CrossRef][PubMed]
    [Google Scholar]
  33. Rezende TFT, Doi AM, Quiles MG, Pignatari ACC, Manfrendi S et al. Detection of colonization by carbapenem-resistant organisms by real-time polymerase chain reaction from rectal swabs in patients with chronic renal disease. J Hosp Infect 2017; 96:123–128 [CrossRef][PubMed]
    [Google Scholar]
  34. Ryanputra D, Wang D, Lee MB, Teo BW, Tok PL. Peritoneal dialysis-related peritonitis from carbapenemase-producing. Perit Dial Int 2019; 39:97–98
    [Google Scholar]
  35. Bahramian A, Shariati A, Azimi T, Sharahi JY, Bostanghadiri N et al. First report of New Delhi metallo-β-lactamase-6 (NDM-6) among Klebsiella pneumoniae ST147 strains isolated from dialysis patients in Iran. Infect Genet Evol 2019; 69:142–145 [CrossRef][PubMed]
    [Google Scholar]
  36. Hidalgo M, Carvajal LP, Rincón S, Faccini-Martínez Álvaro A, Tres Palacios AA et al. Methicillin-resistant Staphylococcus aureus USA300 Latin American variant in patients undergoing hemodialysis and HIV infected in a hospital in Bogotá, Colombia. PLoS One 2015; 10:e0140748 [CrossRef][PubMed]
    [Google Scholar]
  37. Maamoun HAH, Soliman AR, El Sherif R. Carriage of Staphylococcus aureus in the nose of patients on regular dialysis treatment using hemodialysis catheters. Hemodial Int 2011; 15:563–567 [CrossRef][PubMed]
    [Google Scholar]
  38. Patel G, Jenkins SG, Mediavilla JR, Kreiswirth BN, Radbill B et al. Clinical and molecular epidemiology of methicillin-resistant Staphylococcus aureus among patients in an ambulatory hemodialysis center. Infect Control Hosp Epidemiol 2011; 32:881–888 [CrossRef][PubMed]
    [Google Scholar]
  39. Bogut A, Kozioł-Montewka M, Baranowicz I, Jóźwiak L, Ksiazek A et al. Characterisation of Staphylococcus aureus nasal and skin carriage among patients undergoing haemodialysis treatment. New Microbiol 2007; 30:149–154[PubMed]
    [Google Scholar]
  40. Jiménez JN, Ocampo AM, Vanegas JM, Rodriguez EA, Mediavilla JR et al. Cc8 MRSA strains harboring SCCmec type IVC are predominant in Colombian hospitals. PLoS One 2012; 7:e38576 [CrossRef][PubMed]
    [Google Scholar]
  41. Rodríguez-Tamayo EA, Ruiz-Cadavid A, Sánchez-González LM, García-Valencia N, Jiménez-Quiceno JN. Spread of genetically related methicillin-susceptible Staphylococcus aureus belonging to CC45, in healthy nasal carriers in Child Day Care Centers of Medellin, Colombia. Enferm Infecc Microbiol Clin 2016; 34:159–165 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.001244
Loading
/content/journal/jmm/10.1099/jmm.0.001244
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error