1887

Abstract

Biological adhesives and effective topical therapeutic agents that improve wound healing are urgently required for the treatment of chronic ulcers. A biodegradable adhesive based on a carbohydrate polymer with zinc oxide (CPZO) was shown to possess anti-inflammatory activity and enhance wound healing, but its bactericidal activity was unknown.

To investigate the bactericidal activity of CPZO against bacteria commonly present as infectious agents in chronic wounds.

We examined the bactericidal activity of CPZO against three biofilm-producing bacteria (, and ) through three strategies: bacterial suspension, biofilm disruption and wound biofilm model.

In suspension cultures, CPZO had direct, potent bactericidal action against within 24 h, whereas took 7 days to be eliminated. By contrast, survived up to 14 days with CPZO. CPZO had biofilm disruption activity against clinical isolates of in the anti-biofilm test. Finally, in the wound biofilm model, CPZO dramatically reduced the bacterial viability of and .

Together with its previously shown anti-inflammatory properties, the bactericidal activity of CPZO gives it the potential to be a first-line therapeutic option for chronic various ulcers and, possibly, other chronic ulcers, preventing or controlling microbial infections, and leading to the healing of such complicated chronic ulcers.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.001204
2020-05-27
2020-07-04
Loading full text...

Full text loading...

/deliver/fulltext/jmm/69/6/874.html?itemId=/content/journal/jmm/10.1099/jmm.0.001204&mimeType=html&fmt=ahah

References

  1. Harding K. World Union of wound healing societies (WUWHS). principles of best practice: wound infection in clinical practice. An international consensus. London, LTD. Int Wound J 2008; 5::iii-11
    [Google Scholar]
  2. Lipsky BA, Berendt AR, Cornia PB, Pile JC, Peters EJG et al. Infectious diseases society of America clinical practice guideline for the diagnosis and treatment of diabetic foot infections. Clin Infect Dis 2012; 54:e132–e173 [CrossRef][PubMed]
    [Google Scholar]
  3. Nwomeh BC, Yager DR, Cohen IK. Physiology of the chronic wound. Clin Plast Surg 1998; 25:341–356[PubMed]
    [Google Scholar]
  4. Payne WG, Salas RE, Ko F, Naidu DK, Donate G et al. Enzymatic debriding agents are safe in wounds with high bacterial bioburdens and stimulate healing. Eplasty 2008; 8:e17[PubMed]
    [Google Scholar]
  5. Williamson DA, Carter GP, Howden BP. Current and emerging topical antibacterials and antiseptics: agents, action, and resistance patterns. Clin Microbiol Rev 2017; 30:827–860 [CrossRef][PubMed]
    [Google Scholar]
  6. O’Meara S, Al-Kurdi D, Ologun Y, Ovington LG, Martyn‐St James M et al. Antibiotics and antiseptics for venous leg ulcers. Cochrane Database Syst Rev 2010; 20:CD003557
    [Google Scholar]
  7. Spotnitz W. Fibrin sealant patches: powerful and easy-to-use hemostats. OAS 2014; 7:71 [CrossRef]
    [Google Scholar]
  8. Cueto J, Barrientos T, Rodríguez E, Del Moral P. A new biodegradable adhesive for protection of intestinal anastomoses. preliminary communication. Arch Med Res 2011; 42:475–481 [CrossRef][PubMed]
    [Google Scholar]
  9. Moreno-Eutimio MA, Nieto-Velázquez NG, Espinosa-Monroy L, Torres-Ramos Y, Montoya-Estrada A et al. Potent anti-inflammatory activity of carbohydrate polymer with oxide of zinc. Biomed Res Int 2014; 2014:18 [CrossRef][PubMed]
    [Google Scholar]
  10. Cueto J, Barrientos T, Rodriguez E, Espinosa L, Palma J et al. Further experimental studies on a biodegradable adhesive for protection of colorectal anastomosis. Arch Med Res 2014; 45:331–336 [CrossRef][PubMed]
    [Google Scholar]
  11. Cueto J, Moreno MA, Bahena Z, Rodríguez-Ayala E, Del Moral P et al. Tratamiento de las úlceras venosas varicosas complicadas Y refractarias Con polímero de maltodextrina Y óxido de zinc. Reporte inicial. Rev Mex Angiol 2015; 43:102–108
    [Google Scholar]
  12. Moreno-Eutimio MA, Espinosa-Monroy L, Orozco-Amaro T, Torres-Ramos Y, Montoya-Estrada A et al. Enhanced healing and anti-inflammatory effects of a carbohydrate polymer with zinc oxide in patients with chronic venous leg ulcers: preliminary results. Arch Med Sci 2018; 14:336–344 [CrossRef][PubMed]
    [Google Scholar]
  13. Cueto J, Moreno M, Ibáñez T, Rodríguez E, Moreno J. Resultados del tratamiento de las úlceras venosas Con un polímero polisacárido Con óxido de zinc. Med Int Méx 2016; 32:48–57
    [Google Scholar]
  14. Moreno-Eutimio MA, Moreno J, Cueto J. Efecto de un polímero polisacárido Con óxido de zinc en La reducción del tamaño de las úlceras venosas crónicas. Rev Mex Angiol 2016; 44:67–71
    [Google Scholar]
  15. Cueto J, Barrientos T, Ochoa R, Bert E, Ibarra J et al. Case report. severe septic complications in a diabetic foot decades after multiple injections of a modeling agent. J of Diabetol 2018; 2:1–5
    [Google Scholar]
  16. Bello-López JM, Delgado-Balbuena L, Rojas-Huidobro D, Rojo-Medina J. Treatment of platelet concentrates and plasma with riboflavin and UV light: impact in bacterial reduction. Transfus Clin Biol 2018; 25:197–203 [CrossRef][PubMed]
    [Google Scholar]
  17. Michael CA, Dominey-Howes D, Labbate M. The antimicrobial resistance crisis: causes, consequences, and management. Front Public Health 2014; 2:145 [CrossRef][PubMed]
    [Google Scholar]
  18. Hammond AA, Miller KG, Kruczek CJ, Dertien J, Colmer-Hamood JA et al. An in vitro biofilm model to examine the effect of antibiotic ointments on biofilms produced by burn wound bacterial isolates. Burns 2011; 37:312–321 [CrossRef][PubMed]
    [Google Scholar]
  19. Rossolini GM, Arena F, Pecile P, Pollini S. Update on the antibiotic resistance crisis. Curr Opin Pharmacol 2014; 18:56–60 [CrossRef][PubMed]
    [Google Scholar]
  20. Aslam B, Wang W, Arshad MI, Khurshid M, Muzammil S et al. Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist 2018; 11:16451658 [CrossRef][PubMed]
    [Google Scholar]
  21. Lipsky BA, Hoey C. Topical antimicrobial therapy for treating chronic wounds. Clin Infect Dis 2009; 49:1541–1549 [CrossRef][PubMed]
    [Google Scholar]
  22. Rhoads DD, Cox SB, Rees EJ, Sun Y, Wolcott RD. Clinical identification of bacteria in human chronic wound infections: culturing vs. 16S ribosomal DNA sequencing. BMC Infect Dis 2012; 12:321 [CrossRef][PubMed]
    [Google Scholar]
  23. Gjødsbøl K, Christensen JJ, Karlsmark T, Jørgensen B, Klein BM et al. Multiple bacterial species reside in chronic wounds: a longitudinal study. Int Wound J 2006; 3:225–231 [CrossRef][PubMed]
    [Google Scholar]
  24. Robson MC, Payne WG, Ko F, Mentis M, Donati G et al. Hypochlorous acid as a potential wound care agent: Part II. stabilized hypochlorous acid: its role in decreasing tissue bacterial bioburden and overcoming the inhibition of infection on wound healing. J Burns Wounds 2007; 6:e6[PubMed]
    [Google Scholar]
  25. Percival SL, Emanuel C, Cutting KF, Williams DW. Microbiology of the skin and the role of biofilms in infection. Int Wound J 2012; 9:14–32 [CrossRef][PubMed]
    [Google Scholar]
  26. Kiamco MM, Atci E, Khan QF, Mohamed A, Renslow RS et al. Vancomycin and maltodextrin affect structure and activity of Staphylococcus aureus biofilms. Biotechnol Bioeng 2015; 112:2562–2570 [CrossRef][PubMed]
    [Google Scholar]
  27. Falghoush A, Beyenal H, Besser TE, Omsland A, Call DR, Call Douglas R. Osmotic compounds enhance antibiotic efficacy against Acinetobacter baumannii biofilm communities. Appl Environ Microbiol 2017; 83:1–36 [CrossRef][PubMed]
    [Google Scholar]
  28. Mohamed Amin Z, Koh SP, Yeap SK, Abdul Hamid NS, Tan CP et al. Efficacy study of broken rice maltodextrin in in vitro wound healing assay. Biomed Res Int 2015; 2015:1–12 [CrossRef][PubMed]
    [Google Scholar]
  29. Sultana ST, Call DR, Beyenal H. Maltodextrin enhances biofilm elimination by electrochemical scaffold. Sci Rep 2016; 6:1–9 [CrossRef]
    [Google Scholar]
  30. Khan ST, Ahamed M, Musarrat J, Al-Khedhairy AA. Anti-biofilm and antibacterial activities of zinc oxide nanoparticles against the oral opportunistic pathogens Rothia dentocariosa and Rothia mucilaginosa . Eur J Oral Sci 2014; 122:397–403 [CrossRef][PubMed]
    [Google Scholar]
  31. Dizaj SM, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibkia K. Antimicrobial activity of the metals and metal oxide nanoparticles. Mater Sci Eng C Mater Biol Appl 2014; 44:278–284 [CrossRef][PubMed]
    [Google Scholar]
  32. É R, Woerther PL, Barbier F. Mechanisms of antimicrobial resistance in Gram-negative bacilli. Ann Intensive Care 2015; 5:21
    [Google Scholar]
  33. Riaz M, Zia R, Saleemi F, Ikram H, Bashir F et al. In vitro antimicrobial activity of ZnO based glass-ceramics against pathogenic bacteria. J Mater Sci Mater Med 2015; 26:268 [CrossRef][PubMed]
    [Google Scholar]
  34. Reddy LS, Nisha MM, Joice M, Shilpa PN. Antimicrobial activity of zinc oxide (ZnO) nanoparticle against Klebsiella pneumoniae . Pharm Biol 2014; 52:1388–1397 [CrossRef][PubMed]
    [Google Scholar]
  35. Ivask A, Juganson K, Bondarenko O, Mortimer M, Aruoja V et al. Mechanisms of toxic action of Ag, ZnO and CuO nanoparticles to selected ecotoxicological test organisms and mammalian cells in vitro: a comparative review. Nanotoxicology 2014; 8 Suppl 1:57–71 [CrossRef][PubMed]
    [Google Scholar]
  36. van der Waal SV, van der Sluis LWM, Özok AR, Exterkate RAM, van Marle J et al. The effects of hyperosmosis or high pH on a dual-species biofilm of Enterococcus faecalis and Pseudomonas aeruginosa: an in vitro study. Int Endod J 2011; 44:1110–1117 [CrossRef][PubMed]
    [Google Scholar]
  37. Jacobsen F, Fisahn C, Sorkin M, Thiele I, Hirsch T et al. Efficacy of topically delivered moxifloxacin against wound infection by Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus . Antimicrob Agents Chemother 2011; 55:2325–2334 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.001204
Loading
/content/journal/jmm/10.1099/jmm.0.001204
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error