1887

Abstract

Indwelling medical devices such as endotracheal tubes (ETTs), urinary catheters, vascular access devices, tracheostomies and feeding tubes are often associated with hospital-acquired infections. Bacterial biofilm formed on the ETTs in intubated patients is a significant risk factor associated with ventilator-associated pneumonia. is one of the four frequently encountered bacteria responsible for causing pneumonia, and the biofilm formation on ETTs. However, understanding of biofilm formation on ETT and interventions to prevent biofilm remains lagging. The ability to sense and adapt to external cues contributes to their success. Thus, the biofilm formation is likely to be influenced by the two-component systems (TCSs) that are composed of a membrane-associated sensor kinase and an intracellular response regulator.

This study aims to establish an method to analyse the biofilm formation on ETTs, and identify the TCSs that contribute to this process.

In total, 112 PA14 TCS mutants were tested for their ability to form biofilm on ETTs, their effect on quorum sensing (QS) and motility.

Out of 112 TCS mutants studied, 56 had altered biofilm biomass on ETTs. Although the biofilm formation on ETTs is QS-dependent, none of the 56 loci controlled quorum signal. Of these, 18 novel TCSs specific to ETT biofilm were identified, namely, AauS, AgtS, ColR, CopS, CprR, NasT, KdpD, ParS, PmrB, PprA, PvrS, RcsC, PA14_11120, PA14_32580, PA14_45880, PA14_49420, PA14_52240, PA14_70790. The set of 56 included the GacS network, TCS proteins involved in fimbriae synthesis, TCS proteins involved in antimicrobial peptide resistance, and surface-sensing. Additionally, several of the TCS-encoding genes involved in biofilm formation on ETTs were found to be linked to flagellum-dependent swimming motility.

Our study established an method for studying biofilm formation on the ETT surfaces. We also identified novel ETT-specific TCSs that could serve as targets to prevent biofilm formation on indwelling devices frequently used in clinical settings.

Funding
This study was supported by the:
  • , Department of Biotechnology, Ministry of Science and Technology, http://dx.doi.org/10.13039/501100001407, (Award BT/PR27952/INF/22/212/2018)
  • , The Wellcome Trust DBT India Alliance, http://dx.doi.org/10.13039/501100009053, (Award IA/I/13/1/500919)
Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.001199
2020-05-27
2020-07-02
Loading full text...

Full text loading...

/deliver/fulltext/jmm/69/6/906.html?itemId=/content/journal/jmm/10.1099/jmm.0.001199&mimeType=html&fmt=ahah

References

  1. Melsen WG, Rovers MM, Groenwold RHH, Bergmans DCJJ, Camus C et al. Attributable mortality of ventilator-associated pneumonia: a meta-analysis of individual patient data from randomised prevention studies. Lancet Infect Dis 2013; 13:665–671 [CrossRef]
    [Google Scholar]
  2. Koenig SM, Truwit JD. Ventilator-Associated pneumonia: diagnosis, treatment, and prevention. Clin Microbiol Rev 2006; 19:637–657 [CrossRef]
    [Google Scholar]
  3. Asai T, Shingu K. Leakage of fluid around high-volume, low-pressure cuffs apparatus. A comparison of four tracheal tubes. Anaesthesia 2001; 56:38–42
    [Google Scholar]
  4. Lacherade J-C, Azais M-A, Pouplet C, Colin G. Subglottic secretion drainage for ventilator-associated pneumonia prevention: an underused efficient measure. Ann Transl Med 2018; 6:422 [CrossRef][PubMed]
    [Google Scholar]
  5. Smulders K, van der Hoeven H, Weers-Pothoff I, Vandenbroucke-Grauls C. A randomized clinical trial of intermittent subglottic secretion drainage in patients receiving mechanical ventilation. Chest 2002; 121:858–862 [CrossRef]
    [Google Scholar]
  6. Spray SB, Zuidema GD, Cameron JL. Aspiration pneumonia: incidence of aspiration with endotracheal tubes. Am J Surg 1976; 131:701–703
    [Google Scholar]
  7. Valles J et al. Continuous aspiration of subglottic secretions in preventing ventilator-associated pneumonia. Ann Intern Med 1995; 122:179–186 [CrossRef]
    [Google Scholar]
  8. Gil-Perotin S, Ramirez P, Marti V, Sahuquillo JM, Gonzalez E et al. Implications of endotracheal tube biofilm in ventilator-associated pneumonia response: a state of concept. Critical Care 2012; 16:R93 [CrossRef]
    [Google Scholar]
  9. Inglis TJ, Millar MR, Jones JG, Robinson DA. Tracheal tube biofilm as a source of bacterial colonization of the lung. J Clin Microbiol 1989; 27:2014–2018 [CrossRef]
    [Google Scholar]
  10. Ferreira-Coimbra J, Ardanuy C, Diaz E, Leone M, De Pascale G et al. Ventilator-associated pneumonia diagnosis: a prioritization exercise based on multi-criteria decision analysis. Eur J Clin Microbiol Infect Dis 20191–6
    [Google Scholar]
  11. Bonell A, Azarrafiy R, Huong VTL, Viet TL, Phu VD et al. A systematic review and meta-analysis of ventilator-associated pneumonia in adults in Asia: an analysis of national income level on incidence and etiology. Clin Infect Dis 2019; 68:511–518 [CrossRef]
    [Google Scholar]
  12. Ramirez-Estrada S, Borgatta B, Rello J. Pseudomonas aeruginosa ventilator-associated pneumonia management. Infect Drug Resist 2016; 9:7–18
    [Google Scholar]
  13. Costerton JW, Cheng KJ, Geesey GG, Ladd TI, Nickel JC et al. Bacterial biofilms in nature and disease. Annu Rev Microbiol 1987; 41:435–464 [CrossRef]
    [Google Scholar]
  14. Friedman L, Kolter R. Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms. Mol Microbiol 2004; 51:675–690 [CrossRef]
    [Google Scholar]
  15. Mann EE, Wozniak DJ. Pseudomonas biofilm matrix composition and niche biology. FEMS Microbiol Rev 2012; 36:893–916 [CrossRef]
    [Google Scholar]
  16. Goodman AL, Kulasekara B, Rietsch A, Boyd D, Smith RS et al. A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa . Dev Cell 2004; 7:745–754 [CrossRef]
    [Google Scholar]
  17. Balasubramanian D, Schneper L, Merighi M, Smith R, Narasimhan G et al. The regulatory repertoire of Pseudomonas aeruginosa AmpC ß-lactamase regulator AmpR includes virulence genes. PLoS One 2012; 7:e34067 [CrossRef]
    [Google Scholar]
  18. Pedersen SS, Høiby N, Espersen F, Koch C. Role of alginate in infection with mucoid Pseudomonas aeruginosa in cystic fibrosis. Thorax 1992; 47:6–13 [CrossRef]
    [Google Scholar]
  19. Stapper AP, Narasimhan G, Ohman DE, Barakat J, Hentzer M et al. Alginate production affects Pseudomonas aeruginosa biofilm development and architecture, but is not essential for biofilm formation. J Med Microbiol 2004; 53:679–690 [CrossRef]
    [Google Scholar]
  20. Goltermann L, Tolker-Nielsen T. Importance of the exopolysaccharide matrix in antimicrobial tolerance of Pseudomonas aeruginosa aggregates. Antimicrob Agents Chemother 2017; 61:e02696–16 [CrossRef]
    [Google Scholar]
  21. Branda SS, Vik Åshild, Friedman L, Kolter R. Biofilms: the matrix revisited. Trends Microbiol 2005; 13:20–26 [CrossRef]
    [Google Scholar]
  22. Song Z, Wu H, Ciofu O, Kong K-F, Høiby N et al. Pseudomonas aeruginosa alginate is refractory to Th1 immune response and impedes host immune clearance in a mouse model of acute lung infection. J Med Microbiol 2003; 52:731–740 [CrossRef]
    [Google Scholar]
  23. Balasubramanian D, Schneper L, Kumari H, Mathee K. A dynamic and intricate regulatory network determines Pseudomonas aeruginosa virulence. Nucleic Acids Res 2013; 41:1–20 [CrossRef]
    [Google Scholar]
  24. Davies DG et al. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 1998; 280:295–298 [CrossRef]
    [Google Scholar]
  25. Petrova OE, Schurr JR, Schurr MJ, Sauer K. The novel Pseudomonas aeruginosa two-component regulator BfmR controls bacteriophage-mediated lysis and DNA release during biofilm development through PhdA. Mol Microbiol 2011; 81:767–783 [CrossRef]
    [Google Scholar]
  26. Rodrigue A, Quentin Y, Lazdunski A, Méjean V, Foglino M. Cell signalling by oligosaccharides. Two-component systems in Pseudomonas aeruginosa: why so many?. Trends Microbiol 2000; 8:498–504 [CrossRef]
    [Google Scholar]
  27. Vallet I, Olson JW, Lory S, Lazdunski A, Filloux A. The chaperone/usher pathways of Pseudomonas aeruginosa: Identification of fimbrial gene clusters (cup) and their involvement in biofilm formation. Proc Natl Acad Sci U S A 2001; 98:6911–6916 [CrossRef]
    [Google Scholar]
  28. Ventre I, Goodman AL, Vallet-Gely I, Vasseur P, Soscia C et al. Multiple sensors control reciprocal expression of Pseudomonas aeruginosa regulatory RNA and virulence genes. Proc Natl Acad Sci U S A 2006; 103:171–176 [CrossRef]
    [Google Scholar]
  29. Hickman JW, Tifrea DF, Harwood CS. A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. Proc Natl Acad Sci U S A 2005; 102:14422–14427 [CrossRef]
    [Google Scholar]
  30. Merighi M, Lee VT, Hyodo M, Hayakawa Y, Lory S. The second messenger bis-(3'-5')-cyclic-GMP and its PilZ domain-containing receptor Alg44 are required for alginate biosynthesis in Pseudomonas aeruginosa . Mol Microbiol 2007; 65:876–895 [CrossRef]
    [Google Scholar]
  31. Fuqua WC, Winans SC, Greenberg EP. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 1994; 176:269–275 [CrossRef]
    [Google Scholar]
  32. Hobbs M, Collie ES, Free PD, Livingston SP, Mattick JS. PilS and PilR, a two-component transcriptional regulatory system controlling expression of type 4 fimbriae in Pseudomonas aeruginosa . Mol Microbiol 1993; 7:669–682 [CrossRef][PubMed]
    [Google Scholar]
  33. Lin C-T, Huang Y-J, Chu P-H, Hsu J-L, Huang C-H et al. Identification of an HptB-mediated multi-step phosphorelay in Pseudomonas aeruginosa PAO1. Res Microbiol 2006; 157:169–175 [CrossRef]
    [Google Scholar]
  34. Ma S, Wozniak DJ, Ohman DE. Identification of the histidine protein kinase KinB in Pseudomonas aeruginosa and its phosphorylation of the alginate regulator AlgB. J Biol Chem 1997; 272:17952–17960 [CrossRef]
    [Google Scholar]
  35. Moscoso JA, Jaeger T, Valentini M, Hui K, Jenal U et al. The diguanylate cyclase SadC is a central player in Gac/Rsm-mediated biofilm formation in Pseudomonas aeruginosa . J Bacteriol 2014; 196:4081–4088 [CrossRef]
    [Google Scholar]
  36. Moscoso JA, Mikkelsen H, Heeb S, Williams P, Filloux A. The Pseudomonas aeruginosa sensor RetS switches type III and type VI secretion via c-di-GMP signalling. Environ Microbiol 2011; 13:3128–3138 [CrossRef]
    [Google Scholar]
  37. O'Toole GA, Kolter R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 1998; 30:295–304 [CrossRef]
    [Google Scholar]
  38. Petrova OE, Sauer K. SagS contributes to the motile-sessile switch and acts in concert with bfisr to enable Pseudomonas aeruginosa biofilm formation. J Bacteriol 2011; 193:6614–6628 [CrossRef]
    [Google Scholar]
  39. Stock AM, Robinson VL, Goudreau PN, Transduction T-CS. Two-Component signal transduction. Annu Rev Biochem 2000; 69:183–215 [CrossRef]
    [Google Scholar]
  40. Kollaran AM, Joge S, Kotian HS, Badal D, Prakash D et al. Context-specific requirement of forty-four two-component loci in Pseudomonas aeruginosa swarming. iScience 2019; 13:305–317 [CrossRef]
    [Google Scholar]
  41. Parkins MD, Ceri H, Storey DG. Pseudomonas aeruginosa GacA, a factor in multihost virulence, is also essential for biofilm formation. Mol Microbiol 2001; 40:1215–1226 [CrossRef]
    [Google Scholar]
  42. Gooderham WJ, Hancock REW. Regulation of virulence and antibiotic resistance by two-component regulatory systems in Pseudomonas aeruginosa . FEMS Microbiol Rev 2009; 33:279–294 [CrossRef]
    [Google Scholar]
  43. Irie Y, Starkey M, Edwards AN, Wozniak DJ, Romeo T et al. Pseudomonas aeruginosa biofilm matrix polysaccharide Psl is regulated transcriptionally by RpoS and post-transcriptionally by RsmA. Mol Microbiol 2010; 78:158–172
    [Google Scholar]
  44. Chambonnier G, Roux L, Redelberger D, Fadel F, Filloux A et al. The hybrid histidine kinase LadS forms a multicomponent signal transduction system with the GacS/GacA two-component system in Pseudomonas aeruginosa . PLoS Genet 2016; 12:e1006032–30 [CrossRef]
    [Google Scholar]
  45. Deretic V, Dikshit R, Konyecsni WM, Chakrabarty AM, Misra TK. The algR gene, which regulates mucoidy in Pseudomonas aeruginosa, belongs to a class of environmentally responsive genes. J Bacteriol 1989; 171:1278–1283 [CrossRef]
    [Google Scholar]
  46. Belete B, Lu H, Wozniak DJ. Pseudomonas aeruginosa AlgR regulates type IV pilus biosynthesis by activating transcription of the fimU-pilVWXY1Y2E operon. J Bacteriol 2008; 190:2023–2030 [CrossRef]
    [Google Scholar]
  47. Kong W, Zhao J, Kang H, Zhu M, Zhou T et al. ChIP-seq reveals the global regulator AlgR mediating cyclic di-GMP synthesis in Pseudomonas aeruginosa . Nucleic Acids Res 2015; 43:8268–8282 [CrossRef]
    [Google Scholar]
  48. McPhee JB, Bains M, Winsor G, Lewenza S, Kwasnicka A et al. Contribution of the PhoP-PhoQ and PmrA-PmrB two-component regulatory systems to Mg2+-induced gene regulation in Pseudomonas aeruginosa . J Bacteriol 2006; 188:3995–4006 [CrossRef]
    [Google Scholar]
  49. Caille O, Rossier C, Perron K. A copper-activated two-component system interacts with zinc and imipenem resistance in Pseudomonas aeruginosa . J Bacteriol 2007; 189:4561–4568 [CrossRef]
    [Google Scholar]
  50. McPhee JB, Lewenza S, Hancock REW. Cationic antimicrobial peptides activate a two-component regulatory system, PmrA-PmrB, that regulates resistance to polymyxin B and cationic antimicrobial peptides in Pseudomonas aeruginosa . Mol Microbiol 2003; 50:205–217 [CrossRef]
    [Google Scholar]
  51. Francis VI, Stevenson EC, Porter SL. Two-component systems required for virulence in Pseudomonas aeruginosa . FEMS Microbiol Lett 2017; 364:fnx104 [CrossRef]
    [Google Scholar]
  52. Merritt JH, Kadouri DE, O’Toole GA. Growing and analyzing static biofilms. Curr Protoc Microbiol 200600:1B.1.1-1B.1.17
    [Google Scholar]
  53. Pearson JP, Pesci EC, Iglewski BH. Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J Bacteriol 1997; 179:5756–5767 [CrossRef]
    [Google Scholar]
  54. Liberati NT, Urbach JM, Miyata S, Lee DG, Drenkard E et al. An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc Natl Acad Sci U S A 2006; 103:2833–2838 [CrossRef]
    [Google Scholar]
  55. O’Toole GA. Microtiter dish biofilm formation assay. JoVE 2011e2437
    [Google Scholar]
  56. O’Toole GA, Pratt LA, Watnick PI, Newman DK, Weaver VB et al. Genetic approaches to study of biofilms. Methods Enzymol 1999; 310:91–109
    [Google Scholar]
  57. Schaefer AL, Hanzelka BL, Parsek MR, Detection GEP. purification, and structural elucidation of the acylhomoserine lactone inducer of Vibrio fischeri luminescence and other related molecules. Methods Enzymol 2000; 305:288–301
    [Google Scholar]
  58. Yang Y, Yao F, Zhou M, Zhu J, Zhang X et al. F18ab Escherichia coli flagella expression is regulated by acyl-homoserine lactone and contributes to bacterial virulence. Vet Microbiol 2013; 165:378–383 [CrossRef]
    [Google Scholar]
  59. Winsor GL, Griffiths EJ, Lo R, Dhillon BK, Shay JA et al. Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database. Nucleic Acids Res 2016; 44:D646–D653 [CrossRef]
    [Google Scholar]
  60. Fisher RA. Student. Ann Eugen 1939; 9:1–9
    [Google Scholar]
  61. Colvin KM, Alnabelseya N, Baker P, Whitney JC, Howell PL et al. PelA deacetylase activity is required for Pel polysaccharide synthesis in Pseudomonas aeruginosa . J Bacteriol 2013; 195:2329–2339 [CrossRef]
    [Google Scholar]
  62. Mukherjee S, Moustafa D, Smith CD, Goldberg JB, Bassler BL. The RhlR quorum-sensing receptor controls Pseudomonas aeruginosa pathogenesis and biofilm development independently of its canonical homoserine lactone autoinducer. PLoS Pathog 2017; 13:e1006504 [CrossRef]
    [Google Scholar]
  63. Dasgupta N, Wolfgang MC, Goodman AL, Arora SK, Jyot J et al. A four-tiered transcriptional regulatory circuit controls flagellar biogenesis in Pseudomonas aeruginosa . Mol Microbiol 2003; 50:809–824 [CrossRef]
    [Google Scholar]
  64. Frisk A, Jyot J, Arora SK, Ramphal R. Identification and functional characterization of flgM, a gene encoding the anti-sigma 28 factor in Pseudomonas aeruginosa . J Bacteriol 2002; 184:1514–1521 [CrossRef]
    [Google Scholar]
  65. Bhuwan M, Lee H-J, Peng H-L, Chang H-Y. Histidine-containing phosphotransfer protein-B (HptB) regulates swarming motility through partner-switching system in Pseudomonas aeruginosa PAO1 Strain. J. Biol. Chem. 2012; 287:1903–1914 [CrossRef]
    [Google Scholar]
  66. Alm RA, Hallinan JP, Watson AA, Mattick JS. Fimbrial biogenesis genes of Pseudomonas aeruginosa: pilW and pilX increase the similarity of type 4 fimbriae to the GSP protein-secretion systems and pilY1 encodes a gonococcal PilC homologue. Mol Microbiol 1996; 22:161–173
    [Google Scholar]
  67. Allison DG, Ruiz B, SanJose C, Jaspe A, Gilbert P. Extracellular products as mediators of the formation and detachment of Pseudomonas fluorescens biofilms. FEMS Microbiol Lett 1998; 167:179–184 [CrossRef][PubMed]
    [Google Scholar]
  68. Duan K, Surette MG. Environmental regulation of Pseudomonas aeruginosa PAO1 Las and Rhl quorum-sensing systems. J Bacteriol 2007; 189:4827–4836 [CrossRef]
    [Google Scholar]
  69. Jensen V, Löns D, Zaoui C, Bredenbruch F, Meissner A et al. RhlR expression in Pseudomonas aeruginosa is modulated by the Pseudomonas quinolone signal via PhoB-dependent and -independent pathways. J Bacteriol 2006; 188:8601–8606 [CrossRef]
    [Google Scholar]
  70. Wagner VE, Bushnell D, Passador L, Brooks AI, Iglewski BH. Microarray Analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. J Bacteriol 2003; 185:2080–2095 [CrossRef]
    [Google Scholar]
  71. Welsh MA, Blackwell HE. Chemical genetics reveals environment-specific roles for quorum sensing circuits in Pseudomonas aeruginosa . Cell Chemical Biology 2016; 23:361–369 [CrossRef]
    [Google Scholar]
  72. Ritchings BW, Almira EC, Lory S, Ramphal R. Cloning and phenotypic characterization of fleS and fleR, new response regulators of Pseudomonas aeruginosa which regulate motility and adhesion to mucin. Infect Immun 1995; 63:4868–4876 [CrossRef]
    [Google Scholar]
  73. Gellatly SL, Bains M, Breidenstein EBM, Strehmel J, Reffuveille F et al. Novel roles for two-component regulatory systems in cytotoxicity and virulence-related properties in Pseudomonas aeruginosa . AIMS Microbiol 2018; 4:173–191
    [Google Scholar]
  74. Mukherjee S, Jemielita M, Stergioula V, Tikhonov M, Bassler BL. Photosensing and quorum sensing are integrated to control Pseudomonas aeruginosa collective behaviors. PLoS Biol 2019; 17:e3000579 [CrossRef]
    [Google Scholar]
  75. Nowicki EM, O'Brien JP, Brodbelt JS, Trent MS. Extracellular zinc induces phosphoethanolamine addition to Pseudomonas aeruginosa lipid A via the ColRS two-component system. Mol Microbiol 2015; 97:166–178 [CrossRef]
    [Google Scholar]
  76. Fernández L, Jenssen H, Bains M, Wiegand I, Gooderham WJ et al. The two-component system CprRS senses cationic peptides and triggers adaptive resistance in Pseudomonas aeruginosa independently of ParRS. Antimicrob Agents Chemother 2012; 56:6212–6222 [CrossRef]
    [Google Scholar]
  77. Mulcahy H, Lewenza S. Magnesium limitation is an environmental trigger of the Pseudomonas aeruginosa biofilm lifestyle. PLoS One 2011; 6:e23307 [CrossRef]
    [Google Scholar]
  78. Kulasekara HD, Ventre I, Kulasekara BR, Lazdunski A, Filloux A et al. A novel two-component system controls the expression of Pseudomonas aeruginosa fimbrial cup genes. Mol Microbiol 2005; 55:368–380 [CrossRef]
    [Google Scholar]
  79. Mikkelsen H, Ball G, Giraud C, Filloux A. Expression of Pseudomonas aeruginosa CupD fimbrial genes is antagonistically controlled by RcsB and the EAL-containing PvrR response regulators. PLoS One 2009; 4:e6018 [CrossRef]
    [Google Scholar]
  80. Nicastro GG, Boechat AL, Abe CM, Kaihami GH, Baldini RL. Pseudomonas aeruginosa PA14 cupD transcription is activated by the RcsB response regulator, but repressed by its putative cognate sensor RcsC. FEMS Microbiol Lett 2009; 301:115–123 [CrossRef][PubMed]
    [Google Scholar]
  81. Broder UN, Jaeger T, Jenal U. LadS is a calcium-responsive kinase that induces acute-to-chronic virulence switch in Pseudomonas aeruginosa . Nat Microbiol 2017; 2:16184 [CrossRef]
    [Google Scholar]
  82. Morris ER, Hall G, Li C, Heeb S, Kulkarni RV et al. Structural rearrangement in an RsmA/CsrA ortholog of Pseudomonas aeruginosa creates a dimeric RNA-binding protein, RsmN. Structure 2013; 21:1659–1671 [CrossRef]
    [Google Scholar]
  83. Laskowski MA, Osborn E, Kazmierczak BI. A novel sensor kinase-response regulator hybrid regulates type III secretion and is required for virulence in Pseudomonas aeruginosa . Mol Microbiol 2004; 54:1090–1103 [CrossRef]
    [Google Scholar]
  84. Laskowski MA, Kazmierczak BI. Mutational analysis of RetS, an unusual sensor kinase-response regulator hybrid required for Pseudomonas aeruginosa virulence. Infect Immun 2006; 74:4462–4473 [CrossRef]
    [Google Scholar]
  85. Dean CR, Neshat S, Poole K, PfeR PK. PfeR, an enterobactin-responsive activator of ferric enterobactin receptor gene expression in Pseudomonas aeruginosa . J Bacteriol 1996; 178:5361–5369 [CrossRef]
    [Google Scholar]
  86. Kreamer NN, Costa F, Newman DK. The ferrous iron-responsive BqsRS two-component system activates genes that promote cationic stress tolerance. MBio 2015; 6:e02549–14 [CrossRef]
    [Google Scholar]
  87. Faure LM, Llamas MA, Bastiaansen KC, de Bentzmann S, Bigot S. Phosphate starvation relayed by PhoB activates the expression of the Pseudomonas aeruginosa σvreI ECF factor and its target genes. Microbiology 2013; 159:1315–1327 [CrossRef]
    [Google Scholar]
  88. Van Alst NE, Picardo KF, Iglewski BH, Haidaris CG. Nitrate sensing and metabolism modulate motility, biofilm formation, and virulence in Pseudomonas aeruginosa . Infect Immun 2007; 75:3780–3790 [CrossRef]
    [Google Scholar]
  89. Li W, Lu C-D. Regulation of carbon and nitrogen utilization by CbrAB and NtrBC two-component systems in Pseudomonas aeruginosa . J Bacteriol 2007; 189:5413–5420 [CrossRef][PubMed]
    [Google Scholar]
  90. Tatke G, Kumari H, Silva-Herzog E, Ramirez L, Mathee K. Pseudomonas aeruginosa MifS-MifR two-component system is specific for α-ketoglutarate utilization. PLoS One 2015; 10:e0129629 [CrossRef]
    [Google Scholar]
  91. O'Connor JR, Kuwada NJ, Huangyutitham V, Wiggins PA, Harwood CS. Surface sensing and lateral subcellular localization of WspA, the receptor in a chemosensory-like system leading to c-di-GMP production. Mol Microbiol 2012; 86:720–729 [CrossRef]
    [Google Scholar]
  92. Kong W, Chen L, Zhao J, Shen T, Surette MG et al. Hybrid sensor kinase PA1611 in Pseudomonas aeruginosa regulates transitions between acute and chronic infection through direct interaction with RetS. Mol Microbiol 2013; 88:784–797 [CrossRef]
    [Google Scholar]
  93. Ramsey MM, Whiteley M. Pseudomonas aeruginosa attachment and biofilm development in dynamic environments. Mol Microbiol 2004; 53:1075–1087 [CrossRef]
    [Google Scholar]
  94. Yeung ATY, Bains M, Hancock REW. The sensor kinase CbrA is a global regulator that modulates metabolism, virulence, and antibiotic resistance in Pseudomonas aeruginosa . J Bacteriol 2011; 193:918–931 [CrossRef]
    [Google Scholar]
  95. Whitchurch CB, Erova TE, Emery JA, Sargent JL, Harris JM et al. Phosphorylation of the Pseudomonas aeruginosa response regulator AlgR is essential for type IV fimbria-mediated twitching motility. J Bacteriol 2002; 184:4544–4554 [CrossRef]
    [Google Scholar]
  96. Wagner VE, Li L-L, Isabella VM, Iglewski BH. Analysis of the hierarchy of quorum-sensing regulation in Pseudomonas aeruginosa . Anal Bioanal Chem 2007; 387:469–479 [CrossRef][PubMed]
    [Google Scholar]
  97. Petrova OE, Sauer K. A novel signaling network essential for regulating Pseudomonas aeruginosa biofilm development. PLoS Pathog 2009; 5:e1000668 [CrossRef]
    [Google Scholar]
  98. Valentini M, Laventie BJ, Moscoso J, Jenal U, Filloux A. The diguanylate cyclase HsbD intersects with the HptB regulatory cascade to control Pseudomonas aeruginosa biofilm and motility. PLoS Genet 2016; 12:1–30
    [Google Scholar]
  99. Chand NS, Lee JS-W, Clatworthy AE, Golas AJ, Smith RS et al. The sensor kinase kinb regulates virulence in acute Pseudomonas aeruginosa infection. J Bacteriol 2011; 193:2989–2999 [CrossRef]
    [Google Scholar]
  100. Yeung ATY, Torfs ECW, Jamshidi F, Bains M, Wiegand I et al. Swarming of Pseudomonas aeruginosa is controlled by a broad spectrum of transcriptional regulators, including MetR. J Bacteriol 2009; 191:5592–5602 [CrossRef]
    [Google Scholar]
  101. Yu H, Mudd M, Boucher JC, Schurr MJ, Deretic V. Identification of the algZ gene upstream of the response regulator algR and its participation in control of alginate production in Pseudomonas aeruginosa . J Bacteriol 1997; 179:187–193 [CrossRef][PubMed]
    [Google Scholar]
  102. Bordi C, Lamy M-C, Ventre I, Termine E, Hachani A et al. Regulatory RNAs and the HptB/RetS signalling pathways fine-tune Pseudomonas aeruginosa pathogenesis. Mol Microbiol 2010; 76:1427–1443 [CrossRef][PubMed]
    [Google Scholar]
  103. Dieppois G, Ducret V, Caille O, Perron K. The transcriptional regulator CzcR modulates antibiotic resistance and quorum sensing in Pseudomonas aeruginosa . PLoS One 2012; 7:e38148 [CrossRef][PubMed]
    [Google Scholar]
  104. Gellatly SL. Regulation of the PhoP-PhoQ two-component system in Pseudomonas aeruginosa and its role in virulence PhD thesis, University of British Columbia, Department of microbiology and immunology; 2012
    [Google Scholar]
  105. Meléndez-Ortiz HI, Alvarez-Lorenzo C, Concheiro A, Jiménez-Páez VM, Bucio E. Modification of medical grade PVC with N-vinylimidazole to obtain bactericidal surface. Radiat Phys Chem 2016; 119:37–43 [CrossRef]
    [Google Scholar]
  106. Pradeep S, Benjamin S. Mycelial fungi completely remediate di(2-ethylhexyl)phthalate, the hazardous plasticizer in PVC blood storage bag. J Hazard Mater 2012235–236
    [Google Scholar]
  107. Brodie KR. Studies of Poly (vinyl Chloride) Based Endotracheal Tubes from the Nano-to Macroscopic Scale BS thesis, Massachusetts Institute of Technology, Department of Materials Science and Engineering; 2003
    [Google Scholar]
  108. Gausepohl H, Nießner N. Polystyrene and styrene copolymers. Encyclopedia of Materials: Science and Technology (Second Edition) Elsevier; pp 7735–7741
    [Google Scholar]
  109. Bouras N, Madjoubi MA, Kolli M, Benterki S, Hamidouche M. Thermal and mechanical characterization of borosilicate glass. Phys Procedia 2009; 2:1135–1140 [CrossRef]
    [Google Scholar]
  110. Song F, Koo H, Ren D. Effects of material properties on bacterial adhesion and biofilm formation. J Dent Res 2015; 94:1027–1034 [CrossRef][PubMed]
    [Google Scholar]
  111. Guégan C, Garderes J, Le Pennec G, Gaillard F, Fay F et al. Alteration of bacterial adhesion induced by the substrate stiffness. Colloids Surfaces B Biointerfaces 2014; 114:193–200 [CrossRef][PubMed]
    [Google Scholar]
  112. Koledenkov AA, Zyukin SV, Dyatlov VA. Comparative investigations of the mechanical characteristics of the material of endotracheal tubes. Int Polym Sci Technol 2013; 40:11–14 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.001199
Loading
/content/journal/jmm/10.1099/jmm.0.001199
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error