1887

Abstract

An important factor for delayed healing of chronic wounds is the presence of bacteria. Quorum sensing (QS), a cell density-dependent signalling system, controls the production of many virulence factors and biofilm formation in .

Inhibition by sodium salicylate (NaSa) of QS-regulated virulence expression was evaluated in QS-characterized clinical wound isolates of cultured in serum-containing medium.

Fourteen clinical strains from chronic wounds were evaluated for the production of QS signals and virulence factors. Inhibition of QS by NaSa in clinical strains, wild-type PAO1 and QS reporter strains was evaluated using assays for the production of biofilm, pyocyanin, siderophores, alkaline protease, elastase and stapholytic protease.

Six clinical strains secreted several QS-associated virulence factors and signal molecules and two were negative for all factors. Sub-inhibitory concentrations of NaSa downregulated the expression of the QS-related genes , and and reduced the secretion of several virulence factors in PAO1 and clinical strains cultured in serum. Compared to serum-free media, the presence of serum increased the expression of QS genes and production of siderophores and pyocyanin but decreased biofilm formation.

from chronic wound infections showed different virulence properties. While very few strains showed no QS activity, approximately half were highly virulent and produced QS signals, suggesting that the targeting of QS is a viable and relevant strategy for infection control. NaSa showed activity as a QS-inhibitor by lowering the virulence phenotypes and QS signals at both transcriptional and extracellular levels.

Funding
This study was supported by the:
  • Mölnlycke Health Care AB (SE)
    • Principle Award Recipient: Sofia Almqvist
  • Mölnlycke Health Care AB (SE)
    • Principle Award Recipient: Erik Gerner
  • Doctor Felix Neubergh Foundation (SE)
    • Principle Award Recipient: Margarita Trobos
  • Doctor Felix Neubergh Foundation (SE)
    • Principle Award Recipient: Erik Gerner
  • Adlerbertska Stiftelserna
    • Principle Award Recipient: Margarita Trobos
  • Adlerbertska Stiftelserna
    • Principle Award Recipient: Erik Gerner
  • Stiftelsen Handlanden Hjalmar Svenssons
    • Principle Award Recipient: Erik Gerner
  • CARe - Centre for Antibiotic Resistance Research at University of Gothenburg
    • Principle Award Recipient: Margarita Trobos
  • European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 754412 (Award MoRE2020 - Region Västra Götaland)
    • Principle Award Recipient: Margarita Trobos
  • Stiftelsen för Strategisk Forskning (Award RMA15-0110 2016)
    • Principle Award Recipient: Margarita Trobos
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.001188
2020-04-22
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jmm/69/5/767.html?itemId=/content/journal/jmm/10.1099/jmm.0.001188&mimeType=html&fmt=ahah

References

  1. Phillips CJ, Humphreys I, Fletcher J, Harding K, Chamberlain G et al. Estimating the costs associated with the management of patients with chronic wounds using linked routine data. Int Wound J 2016; 13:1193–1197
    [Google Scholar]
  2. Green J, Jester R, McKinley R, Pooler A. The impact of chronic venous leg ulcers: a systematic review. J Wound Care 2014; 23:601–612
    [Google Scholar]
  3. Gottrup F, Apelqvist J, Bjarnsholt T, Bjansholt T, Cooper R et al. EWMA document: antimicrobials and non-healing wounds. Evidence, controversies and suggestions. J Wound Care 2013; 22:S1–89
    [Google Scholar]
  4. Malone M, Bjarnsholt T, McBain AJ, James GA, Stoodley P et al. The prevalence of biofilms in chronic wounds: a systematic review and meta-analysis of published data. J Wound Care 2017; 26:20–25
    [Google Scholar]
  5. Sanchez CJ, Mende K, Beckius ML, Akers KS, Romano DR et al. Biofilm formation by clinical isolates and the implications in chronic infections. BMC Infect Dis 2013; 13:47 [View Article][PubMed][PubMed]
    [Google Scholar]
  6. Hoiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. Antibiotic resistance of bacterial biofilms. International Journal of Antimicrobial Agents 2010; 35:322–332
    [Google Scholar]
  7. Sugden R, Kelly R, Davies S. Combatting antimicrobial resistance globally. Nature Microbiology 2016; 1:16187
    [Google Scholar]
  8. Hoiby N, Ciofu O, Johansen HK, Song ZJ, Moser C et al. The clinical impact of bacterial biofilms. International Journal of Oral Science 2011; 3:55–65
    [Google Scholar]
  9. Wolcott RD, Hanson JD, Rees EJ, Koenig LD, Phillips CD et al. Analysis of the chronic wound microbiota of 2,963 patients by 16S rDNA pyrosequencing. Wound Repair Regen 2016; 24:163–174
    [Google Scholar]
  10. Gjodsbol K, Christensen JJ, Karlsmark T, Jorgensen B, Klein BM et al. Multiple bacterial species reside in chronic wounds: a longitudinal study. Int Wound J 2006; 3:225–231
    [Google Scholar]
  11. Halbert AR, Stacey MC, Rohr JB, Jopp-McKay A. The effect of bacterial colonization on venous ulcer healing. The Australasian Journal of Dermatology 1992; 33:75–80
    [Google Scholar]
  12. Madsen SM, Westh H, Danielsen L, Rosdahl VT. Bacterial colonization and healing of venous leg ulcers. APMIS: acta pathologica, microbiologica, et immunologica. Scandinavica 1996; 104:895–899
    [Google Scholar]
  13. Rickard AH, Colacino KR, Manton KM, Morton RI, Pulcini E et al. Production of cell-cell signalling molecules by bacteria isolated from human chronic wounds. J Appl Microbiol 2010; 108:1509–1522
    [Google Scholar]
  14. Lee J, Zhang L. The hierarchy quorum sensing network in Pseudomonas aeruginosa . Protein & cell 2015; 6:26–41
    [Google Scholar]
  15. Allen L, Dockrell DH, Pattery T, Lee DG, Cornelis P et al. Pyocyanin production by Pseudomonas aeruginosa induces neutrophil apoptosis and impairs neutrophil-mediated host defenses in vivo. The Journal of Immunology 2005; 174:3643–3649
    [Google Scholar]
  16. Ramos I, Dietrich LEP, Price-Whelan A, Newman DK. Phenazines affect biofilm formation by Pseudomonas aeruginosa in similar ways at various scales. Res Microbiol 2010; 161:187–191
    [Google Scholar]
  17. Das T, Kutty SK, Kumar N, Manefield M. Pyocyanin facilitates extracellular DNA binding to Pseudomonas aeruginosa influencing cell surface properties and aggregation. PloS one 2013; 8:e58299
    [Google Scholar]
  18. Wolz C, Hohloch K, Ocaktan A, Poole K, Evans RW et al. Iron release from transferrin by pyoverdin and elastase from Pseudomonas aeruginosa . Infect Immun 1994; 62:4021–4027
    [Google Scholar]
  19. Laarman AJ, Bardoel BW, Ruyken M, Fernie J, Milder FJ et al. Pseudomonas aeruginosa alkaline protease blocks complement activation via the classical and lectin pathways. Journal of immunology 2012; 188:386–393
    [Google Scholar]
  20. van der Plas MJ, Bhongir RK, Kjellstrom S, Siller H, Kasetty G et al. Pseudomonas aeruginosa elastase cleaves a C-terminal peptide from human thrombin that inhibits host inflammatory responses. Nat Commun 2016; 7:11567
    [Google Scholar]
  21. Lamont IL, Beare PA, Ochsner U, Vasil AI, Vasil ML. Siderophore-Mediated signaling regulates virulence factor production in Pseudomonasaeruginosa . Proc Natl Acad Sci U S A 2002; 99:7072–7077
    [Google Scholar]
  22. Jensen PO, Bjarnsholt T, Phipps R, Rasmussen TB, Calum H et al. Rapid necrotic killing of polymorphonuclear leukocytes is caused by quorum-sensing-controlled production of rhamnolipid by Pseudomonas aeruginosa . Microbiology 2007; 153:1329–1338
    [Google Scholar]
  23. Davey ME, Caiazza NC, O'Toole GA. Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J Bacteriol 2003; 185:1027–1036
    [Google Scholar]
  24. Kessler E, Safrin M, Olson JC, Ohman DE. Secreted LasA of Pseudomonas aeruginosa is a staphylolytic protease. J Biol Chem 1993; 268:7503–7508
    [Google Scholar]
  25. Davies DG. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 1998; 280:295–298
    [Google Scholar]
  26. Passos da Silva D, Schofield MC, Parsek MR, Tseng BS. An update on the Sociomicrobiology of quorum sensing in gram-negative biofilm development. Pathogens 2017; 6:
    [Google Scholar]
  27. Schaber JA, Triffo WJ, Suh SJ, Oliver JW, Hastert MC et al. Pseudomonas aeruginosa forms biofilms in acute infection independent of cell-to-cell signaling. Infect Immun 2007; 75:3715–3721
    [Google Scholar]
  28. Schaber JA, Hammond A, Carty NL, Williams SC, Colmer-Hamood JA et al. Diversity of biofilms produced by quorum-sensing-deficient clinical isolates of Pseudomonas aeruginosa. J Med Microbiol 2007; 56:738–748
    [Google Scholar]
  29. Prithiviraj B, Bais HP, Weir T, Suresh B, Najarro EH et al. Down regulation of virulence factors of Pseudomonas aeruginosa by salicylic acid attenuates its virulence on Arabidopsis thaliana and Caenorhabditis elegans . Infect Immun 2005; 73:5319–5328
    [Google Scholar]
  30. Yang L, Rybtke MT, Jakobsen TH, Hentzer M, Bjarnsholt T et al. Computer-Aided identification of recognized drugs as Pseudomonas aeruginosa quorum-sensing inhibitors. Antimicrob Agents Chemother 2009; 53:2432–2443
    [Google Scholar]
  31. Bandara M, Sankaridurg P, Zhu H, Hume E, Willcox M. Effect of salicylic acid on the membrane proteome and virulence of Pseudomonas aeruginosa. Invest Ophthalmol Vis Sci 2016; 57:1213–1220
    [Google Scholar]
  32. Yalkowsky SH, Banerjee S. Aqueous Solubility: Methods of Estimation for Organic Compounds New York: Marcel Dekker; 1992
    [Google Scholar]
  33. WHO The International Pharmacopoeia World Health Organization; 2006
    [Google Scholar]
  34. Hentzer M, Riedel K, Rasmussen TB, Heydorn A, Andersen JB et al. Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology 2002; 148:87–102
    [Google Scholar]
  35. Hentzer M, Wu H, Andersen JB, Riedel K, Rasmussen TB et al. Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. The EMBO journal 2003; 22:3803–3815
    [Google Scholar]
  36. Tang K, Zhang Y, Yu M, Shi X, Coenye T et al. Evaluation of a new high-throughput method for identifying quorum quenching bacteria. Sci Rep 2013; 3:2935
    [Google Scholar]
  37. Aiba-Kojima E, Tsuno NH, Inoue K, Matsumoto D, Shigeura T et al. Characterization of wound drainage fluids as a source of soluble factors associated with wound healing: comparison with platelet-rich plasma and potential use in cell culture. Wound Repair Regen 2007; 15:511–520
    [Google Scholar]
  38. Tarnuzzer RW, Schultz GS. Biochemical analysis of acute and chronic wound environments. Wound Repair Regen 1996; 4:321–325
    [Google Scholar]
  39. Trainor GL. The importance of plasma protein binding in drug discovery. Expert opinion on drug discovery 2007; 2:51–64
    [Google Scholar]
  40. Ghuman J, Zunszain PA, Petitpas I, Bhattacharya AA, Otagiri M et al. Structural basis of the drug-binding specificity of human serum albumin. Journal of molecular biology 2005; 353:38–52
    [Google Scholar]
  41. Rasmussen TB, Bjarnsholt T, Skindersoe ME, Hentzer M, Kristoffersen P et al. Screening for quorum-sensing inhibitors (QSI) by use of a novel genetic system, the QSI selector. J Bacteriol 2005; 187:1799–1814
    [Google Scholar]
  42. Rumbaugh KP, Hamood AN, Griswold JA. Analysis of Pseudomonas aeruginosa clinical isolates for possible variations within the virulence genes exotoxin A and exoenzyme S. The Journal of surgical research 1999; 82:95–105
    [Google Scholar]
  43. Li Y, HP Q, Liu JL, Wan HY. Correlation between group behavior and quorum sensing in Pseudomonas aeruginosa isolated from patients with hospital-acquired pneumonia. Journal of thoracic disease 2014; 6:810–817
    [Google Scholar]
  44. Le Berre R, Nguyen S, Nowak E, Kipnis E, Pierre M et al. Quorum-Sensing activity and related virulence factor expression in clinically pathogenic isolates of Pseudomonas aeruginosa . Clinical Microbiology and Infection: the Official Publication of the European Society of Clinical Microbiology and Infectious Diseases 2008; 14:337–343
    [Google Scholar]
  45. Kohler T, Buckling A, van Delden C. Cooperation and virulence of clinical Pseudomonas aeruginosa populations. Proc Natl Acad Sci U S A 2009; 106:6339–6344
    [Google Scholar]
  46. Guendouze A, Plener L, Bzdrenga J, Jacquet P, Remy B et al. Effect of quorum quenching lactonase in clinical isolates of Pseudomonas aeruginosa and comparison with quorum sensing inhibitors. Front Microbiol 2017; 8:227
    [Google Scholar]
  47. Bjarnsholt T, Jensen PO, Jakobsen TH, Phipps R, Nielsen AK et al. Quorum sensing and virulence of Pseudomonas aeruginosa during lung infection of cystic fibrosis patients. PloS one 2010; 5:e10115
    [Google Scholar]
  48. Soukarieh F, Williams P, Stocks MJ, Camara M. Pseudomonas aeruginosa quorum sensing systems as drug discovery targets: current position and future perspectives. Journal of medicinal chemistry 2018
    [Google Scholar]
  49. Cornforth DM, Diggle FL, Melvin JA, Bomberger JM, Whiteley M. Quantitative framework for model evaluation in microbiology research using Pseudomonas aeruginosa and cystic fibrosis infection as a test case. mBio 2020; 11:
    [Google Scholar]
  50. Erickson DL, Endersby R, Kirkham A, Stuber K, Vollman DD et al. Pseudomonas aeruginosa quorum-sensing systems may control virulence factor expression in the lungs of patients with cystic fibrosis. Infect Immun 2002; 70:1783–1790
    [Google Scholar]
  51. Singh PK, Schaefer AL, Parsek MR, Moninger TO, Welsh MJ et al. Quorum-Sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 2000; 407:762–764
    [Google Scholar]
  52. Yates EA, Philipp B, Buckley C, Atkinson S, Chhabra SR et al. N-Acylhomoserine lactones undergo lactonolysis in a pH-, temperature-, and acyl chain length-dependent manner during growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa . Infect Immun 2002; 70:5635–5646
    [Google Scholar]
  53. Smith AC, Rice A, Sutton B, Gabrilska R, Wessel AK et al. Albumin inhibits Pseudomonas aeruginosa quorum sensing and alters polymicrobial interactions. Infect Immun 2017; 85:
    [Google Scholar]
  54. Yang F, Wang LH, Wang J, Dong YH, JY H et al. Quorum quenching enzyme activity is widely conserved in the sera of mammalian species. FEBS letters 2005; 579:3713–3717
    [Google Scholar]
  55. Dekimpe V, Deziel E. Revisiting the quorum-sensing hierarchy in Pseudomonas aeruginosa: the transcriptional regulator RhlR regulates LasR-specific factors. Microbiology 2009; 155:712–723
    [Google Scholar]
  56. Sandoz KM, Mitzimberg SM, Schuster M. Social cheating in Pseudomonas aeruginosa quorum sensing. Proc Natl Acad Sci U S A 2007; 104:15876–15881
    [Google Scholar]
  57. Mund A, Diggle SP, Harrison F. The fitness of Pseudomonas aeruginosa quorum sensing signal cheats is influenced by the diffusivity of the environment. mBio 2017; 8:
    [Google Scholar]
  58. Hentzer M, Givskov M. Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections. J Clin Invest 2003; 112:1300–1307
    [Google Scholar]
  59. El-Mowafy SA, Abd El Galil KH, El-Messery SM, Shaaban MI. Aspirin is an efficient inhibitor of quorum sensing, virulence and toxins in Pseudomonas aeruginosa . Microb Pathog 2014; 74:25–32
    [Google Scholar]
  60. Bandara MB, Zhu H, Sankaridurg PR, Willcox MD. Salicylic acid reduces the production of several potential virulence factors of Pseudomonas aeruginosa associated with microbial keratitis. Invest Ophthalmol Vis Sci 2006; 47:4453–4460
    [Google Scholar]
  61. Sedlacek M, Gemery JM, Cheung AL, Bayer AS, Remillard BD. Aspirin treatment is associated with a significantly decreased risk of Staphylococcus aureus bacteremia in hemodialysis patients with tunneled catheters. American Journal of Kidney Diseases: the Official Journal of the National Kidney Foundation 2007; 49:401–408
    [Google Scholar]
  62. Kupferwasser LI, Yeaman MR, Nast CC, Kupferwasser D, Xiong YQ et al. Salicylic acid attenuates virulence in endovascular infections by targeting global regulatory pathways in Staphylococcus aureus. J Clin Invest 2003; 112:222–233
    [Google Scholar]
  63. Alvarez LP, Barbagelata MS, Gordiola M, Cheung AL, Sordelli DO et al. Salicylic acid diminishes Staphylococcus aureus capsular polysaccharide type 5 expression. Infect Immun 2010; 78:1339–1344
    [Google Scholar]
  64. Muller E, Al-Attar J, Wolff AG, Farber BF. Mechanism of salicylate-mediated inhibition of biofilm in Staphylococcus epidermidis . J Infect Dis 1998; 177:501–503
    [Google Scholar]
  65. del Rio Sola ML, Antonio J, Fajardo G, Vaquero Puerta C. Influence of aspirin therapy in the ulcer associated with chronic venous insufficiency. Ann Vasc Surg 2012; 26:620–629
    [Google Scholar]
  66. Bakar SK, Niazi S. Stability of aspirin in different media. Journal of pharmaceutical sciences 1983; 72:1024–1026
    [Google Scholar]
  67. Werthen M, Henriksson L, Jensen PO, Sternberg C, Givskov M et al. An in vitro model of bacterial infections in wounds and other soft tissues. APMIS : acta pathologica, microbiologica, et immunologica. Scandinavica 2010; 118:156–164
    [Google Scholar]
  68. Kirketerp-Moller K, Jensen PO, Fazli M, Madsen KG, Pedersen J et al. Distribution, organization, and ecology of bacteria in chronic wounds. Journal of clinical microbiology 2008; 46:2717–2722
    [Google Scholar]
  69. Alhede M, Kragh KN, Qvortrup K, Allesen-Holm M, van Gennip M et al. Phenotypes of non-attached Pseudomonas aeruginosa aggregates resemble surface attached biofilm. PloS one 2011; 6:e27943
    [Google Scholar]
  70. Schleheck D, Barraud N, Klebensberger J, Webb JS, McDougald D et al. Pseudomonas aeruginosa PAO1 preferentially grows as aggregates in liquid batch cultures and disperses upon starvation. PloS one 2009; 4:e5513
    [Google Scholar]
  71. Hammond A, Dertien J, Colmer-Hamood JA, Griswold JA, Hamood AN. Serum inhibits P. aeruginosa biofilm formation on plastic surfaces and intravenous catheters. The Journal of Surgical Research 2010; 159:735–746
    [Google Scholar]
  72. Ruhal R, Antti H, Rzhepishevska O, Boulanger N, Barbero DR et al. A multivariate approach to correlate bacterial surface properties to biofilm formation by lipopolysaccharide mutants of Pseudomonas aeruginosa . Colloids and Surfaces B, Biointerfaces 2015; 127:182–191
    [Google Scholar]
  73. Singh PK, Parsek MR, Greenberg EP, Welsh MJ. A component of innate immunity prevents bacterial biofilm development. Nature 2002; 417:552–555
    [Google Scholar]
  74. Berlutti F, Morea C, Battistoni A, Sarli S, Cipriani P et al. Iron availability influences aggregation, biofilm, adhesion and invasion of Pseudomonas aeruginosa and Burkholderia cenocepacia . International Journal of Immunopathology and Pharmacology 2005; 18:661–670
    [Google Scholar]
  75. Banin E, Vasil ML, Greenberg EP. Iron and Pseudomonas aeruginosa biofilm formation. Proc Natl Acad Sci U S A 2005; 102:11076–11081
    [Google Scholar]
  76. Kruczek C, Qaisar U, Colmer-Hamood JA, Hamood AN. Serum influences the expression of Pseudomonas aeruginosa quorum-sensing genes and QS-controlled virulence genes during early and late stages of growth. MicrobiologyOpen 2014; 3:64–79
    [Google Scholar]
  77. Albus AM, Pesci EC, Runyen-Janecky LJ, West SE, Iglewski BH. Vfr controls quorum sensing in Pseudomonas aeruginosa . J Bacteriol 1997; 179:3928–3935
    [Google Scholar]
  78. Croda-Garcia G, Grosso-Becerra V, Gonzalez-Valdez A, Servin-Gonzalez L, Soberon-Chavez G. Transcriptional regulation of Pseudomonas aeruginosa rhlR: role of the CRP orthologue Vfr (virulence factor regulator) and quorum-sensing regulators LasR and RhlR. Microbiology 2011; 157:2545–2555
    [Google Scholar]
  79. Burton MO, Campbell JJ, Eagles BA. The mineral requirements for pyocyanin production. Canadian Journal of Research 1948; 26:15–22
    [Google Scholar]
  80. Totter JR, Moseley FT. Influence of the concentration of iron on the production of fluorescin by Pseudomonas aeruginosa . J Bacteriol 1953; 65:45–47
    [Google Scholar]
  81. Oogai Y, Matsuo M, Hashimoto M, Kato F, Sugai M et al. Expression of virulence factors by Staphylococcus aureus grown in serum. Appl Environ Microbiol 2011; 77:8097–8105
    [Google Scholar]
  82. Omidvar Z, Asoodeh A, Chamani J. Studies on the antagonistic behavior between cyclophosphamide hydrochloride and aspirin with human serum albumin: time-resolved fluorescence spectroscopy and isothermal titration calorimetry. J Solution Chem 2013; 42:1005–1017
    [Google Scholar]
  83. Nafisi S, Bagheri Sadeghi G, PanahYab A. Interaction of aspirin and vitamin C with bovine serum albumin. J Photochem Photobiol B 2011; 105:198–202
    [Google Scholar]
  84. King EO, Ward MK, Raney DE. Two simple media for the demonstration of pyocyanin and fluorescin. The Journal of Laboratory and Clinical Medicine 1954; 44:301–307
    [Google Scholar]
  85. Lamichhane JR, Varvaro L. A new medium for the detection of fluorescent pigment production by pseudomonads. Plant Pathol 2013; 62:624–632
    [Google Scholar]
  86. Rust L, Messing CR, Iglewski BH. Elastase assays. Methods in enzymology 1994; 235:554–562
    [Google Scholar]
  87. Rajamani S, Hilda A. Plate assay to screen fungi for proteolytic activity. Current Science 1987; 56:1179–1181
    [Google Scholar]
  88. Dobler L, de Carvalho BR, Alves WS, Neves BC, Freire DMG et al. Enhanced rhamnolipid production by Pseudomonas aeruginosa overexpressing estA in a simple medium. PloS one 2017; 12:e0183857
    [Google Scholar]
  89. Koch AK, Kappeli O, Fiechter A, Reiser J. Hydrocarbon assimilation and biosurfactant production in Pseudomonas aeruginosa mutants. J Bacteriol 1991; 173:4212–4219
    [Google Scholar]
  90. O'Toole GA. Microtiter dish biofilm formation assay. Journal of visualized experiments : JoVE 2011
    [Google Scholar]
  91. Garde C, Bjarnsholt T, Givskov M, Jakobsen TH, Hentzer M et al. Quorum sensing regulation in Aeromonas hydrophila . Journal of molecular biology 2010; 396:849–857
    [Google Scholar]
  92. Seviour T, Hansen SH, Yang L, Yau YH, Wang VB et al. Functional amyloids keep quorum-sensing molecules in check. J Biol Chem 2015; 290:6457–6469
    [Google Scholar]
  93. Martinez-Solano L, Macia MD, Fajardo A, Oliver A, Martinez JL. Chronic Pseudomonas aeruginosa infection in chronic obstructive pulmonary disease. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 2008; 47:1526–1533
    [Google Scholar]
  94. Meyer JM, Halle F, Hohnadel D, Lemanceau P, Ratefiarivelo H. Siderophores of Pseudomonas–biological properties. In Winkelmann G, Van der Helm D, Neilands JB. (editors) Iron Transport in Microbes, Plants, and Animals Weinheim Germany: VCH; 1987 pp 189–205
    [Google Scholar]
  95. Charney J, Tomarelli RM. A colorimetric method for the determination of the proteolytic activity of duodenal juice. J Biol Chem 1947; 171:501–505
    [Google Scholar]
  96. Schmidtchen A, Wolff H, Hansson C. Differential proteinase expression by Pseudomonas aeruginosa derived from chronic leg ulcers. Acta Derm Venereol 2001; 81:406–409
    [Google Scholar]
  97. Yang L, Barken KB, Skindersoe ME, Christensen AB, Givskov M et al. Effects of iron on DNA release and biofilm development by Pseudomonas aeruginosa . Microbiology 2007; 153:1318–1328
    [Google Scholar]
  98. Pearson JP, Pesci EC, Iglewski BH. Roles of Pseudomonas aeruginosa LAS and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J Bacteriol 1997; 179:5756–5767
    [Google Scholar]
  99. Wang VB, Chua SL, Cao B, Seviour T, Nesatyy VJ et al. Engineering PQS biosynthesis pathway for enhancement of bioelectricity production in Pseudomonas aeruginosa microbial fuel cells. PloS one 2013; 8:e63129
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.001188
Loading
/content/journal/jmm/10.1099/jmm.0.001188
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error