1887

Abstract

The use of silver as an antimicrobial therapeutic is limited by its toxicity to host cells compared with that required to kill bacterial pathogens.

To use aptamer targeting of DNA scaffolded silver nanoclusters as an antimicrobial agent for treating infections.

Antimicrobial activity was assessed in planktonic cultures and using an invertebrate model of infection.

The aptamer conjugates that we call aptabiotics have potent antimicrobial activity. Targeted silver nanoclusters were more effective at killing than the equivalent quantity of untargeted silver nanoclusters. The aptabiotics have an IC of 1.3–2.6 µM against planktonically grown bacteria. Propidium iodide staining showed that they rapidly depolarize bacterial cells to kill approximately 50 % of the population within 10 min following treatment. testing in the model of infection prolonged survival from an otherwise lethal infection.

Using as a model, we show that targeting of DNA-scaffolded silver nanoclusters with an aptamer has effective fast-acting antimicrobial activity and in an animal model.

Funding
This study was supported by the:
  • Wellington Medical Research Foundation (Award 2015/257)
    • Principle Award Recipient: Darren Day
Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.001174
2020-03-03
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jmm/69/4/640.html?itemId=/content/journal/jmm/10.1099/jmm.0.001174&mimeType=html&fmt=ahah

References

  1. D'Costa VM, King CE, Kalan L, Morar M, Sung WWL et al. Antibiotic resistance is ancient. Nature 2011; 477:457–461 [View Article][PubMed]
    [Google Scholar]
  2. Li X, Zhao Q, Qiu L. Smart ligand: aptamer-mediated targeted delivery of chemotherapeutic drugs and siRNA for cancer therapy. J Control Release 2013; 171:152–162 [View Article][PubMed]
    [Google Scholar]
  3. Shangguan D, Li Y, Tang Z, Cao ZC, Chen HW et al. Aptamers evolved from live cells as effective molecular probes for cancer study. Proc Natl Acad Sci U S A 2006; 103:11838–11843 [View Article][PubMed]
    [Google Scholar]
  4. Song Y, Zhu Z, An Y, Zhang W, Zhang H et al. Selection of DNA aptamers against epithelial cell adhesion molecule for cancer cell imaging and circulating tumor cell capture. Anal Chem 2013; 85:4141–4149 [View Article][PubMed]
    [Google Scholar]
  5. Soundy J, Day D. Selection of DNA aptamers specific for live Pseudomonas aeruginosa. PLoS One 2017; 12:e0185385–11 [View Article][PubMed]
    [Google Scholar]
  6. Willyard C. The drug-resistant bacteria that pose the greatest health threats. Nature 2017; 543:15 [View Article][PubMed]
    [Google Scholar]
  7. Lyczak JB, Cannon CL, Pier GB. Lung infections associated with cystic fibrosis. Clin Microbiol Rev 2002; 15:194–222 [View Article][PubMed]
    [Google Scholar]
  8. Mulcahy LR, Isabella VM, Lewis K. Pseudomonas aeruginosa biofilms in disease. Microb Ecol 2014; 68:1–12 [View Article][PubMed]
    [Google Scholar]
  9. Amaral L, Martins A, Spengler G, Molnar J. Efflux pumps of gram-negative bacteria: what they do, how they do it, with what and how to deal with them. Front Pharmacol 2014; 4:1–11 [View Article]
    [Google Scholar]
  10. De KT, Parkins M, Gillis R, Srikumar R, Ceri H et al. Multidrug efflux pumps: expression patterns and contribution to antibiotic resitatnce. Antimicrob Agents Chemother 2001; 45:1761–1770
    [Google Scholar]
  11. Delmar JA, Su C-C, Yu EW. Bacterial multidrug efflux transporters. Annu Rev Biophys 2014; 43:93–117 [View Article][PubMed]
    [Google Scholar]
  12. Li X-Z, Plésiat P, Nikaido H. The challenge of efflux-mediated antibiotic resistance in gram-negative bacteria. Clin Microbiol Rev 2015; 28:337–418 [View Article][PubMed]
    [Google Scholar]
  13. Alexander JW. History of the medical use of silver. Surg Infect 2009; 10:289–292 [View Article][PubMed]
    [Google Scholar]
  14. Dissemond J, Böttrich JG, Braunwarth H, Hilt J, Wilken P et al. Evidence for silver in wound care – meta-analysis of clinical studies from 2000–2015. JDDG - J Ger Soc Dermatology 2017; 15:524–535
    [Google Scholar]
  15. Marambio-Jones C, Hoek EMV. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 2010; 12:1531–1551 [View Article]
    [Google Scholar]
  16. Durán N, Marcato PD, Conti RD, Alves OL, Costa FTM et al. Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action. J Braz Chem Soc 2010; 21:949–959 [View Article]
    [Google Scholar]
  17. Kędziora A, Speruda M, Krzyżewska E, Rybka J, Łukowiak A et al. Similarities and differences between silver ions and silver in nanoforms as antibacterial agents. Int J Mol Sci 2018; 19:444–17 [View Article][PubMed]
    [Google Scholar]
  18. Salomoni R, Léo P, Montemor AF, Rinaldi BG, Rodrigues M. Antibacterial effect of silver nanoparticles in Pseudomonas aeruginosa . Nanotechnol Sci Appl 2017; 10:115–121 [View Article][PubMed]
    [Google Scholar]
  19. Al-Tamemi SA, Al-Hasnawy HH. Inhibitory effect of silver nano particles (AgNPs) against biofilm formation in multidrug resistance P. aeruginosa isolated from burn infections. J Glob Pharma Technol 2017; 9:166–173
    [Google Scholar]
  20. Yeom J-H, Lee B, Kim D, Lee J-K, Kim S et al. Gold nanoparticle-DNA aptamer conjugate-assisted delivery of antimicrobial peptide effectively eliminates intracellular Salmonella enterica serovar typhimurium. Biomaterials 2016; 104:43–51 [View Article][PubMed]
    [Google Scholar]
  21. Chen LQ, Xiao SJ, Peng L, Wu T, Ling J et al. Aptamer-Based silver nanoparticles used for intracellular protein imaging and single nanoparticle spectral analysis. J Phys Chem B 2010; 114:3655–3659 [View Article][PubMed]
    [Google Scholar]
  22. Brown AN, Smith K, Samuels TA, Lu J, Obare SO et al. Nanoparticles functionalized with ampicillin destroy multiple-antibiotic-resistant isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and methicillin-resistant Staphylococcus aureus. Appl Environ Microbiol 2012; 78:2768–2774 [View Article][PubMed]
    [Google Scholar]
  23. Shang L, Dong S, Nienhaus GU. Ultra-small fluorescent metal nanoclusters: synthesis and biological applications. Nano Today 2011; 6:401–418 [View Article]
    [Google Scholar]
  24. Díez I, Ras RHA. Fluorescent silver nanoclusters. Nanoscale 2011; 3:1963–1970 [View Article][PubMed]
    [Google Scholar]
  25. Yuan Z, Chen Y-C, Li H-W, Chang H-T. Fluorescent silver nanoclusters stabilized by DNA scaffolds. Chem Commun 2014; 50:9800–9815 [View Article][PubMed]
    [Google Scholar]
  26. Sengupta B, Corley C, Cobb K, Saracino A, Jockusch S. Dna scaffolded silver clusters: a critical study. Molecules 2016; 21:216–15 [View Article]
    [Google Scholar]
  27. Han G-M, Jia Z-Z, Zhu Y-J, Jiao J-J, Kong D-M et al. Biostable L-DNA-templated aptamer-silver nanoclusters for cell-type-specific imaging at physiological temperature. Anal Chem 2016; 88:10800–10804 [View Article][PubMed]
    [Google Scholar]
  28. Li J, Dai Y, Wang S, Han C, Xu K. Aptamer-tagged green- and yellow-emitting fluorescent silver nanoclusters for specific tumor cell imaging. Sens Actuators B Chem 2016; 232:1–8 [View Article]
    [Google Scholar]
  29. Li J, Zhong X, Cheng F, Zhang J-R, Jiang L-P et al. One-Pot synthesis of aptamer-functionalized silver nanoclusters for cell-type-specific imaging. Anal Chem 2012; 84:4140–4146 [View Article][PubMed]
    [Google Scholar]
  30. Liu J. DNA-stabilized, fluorescent, metal nanoclusters for biosensor development. TrAC Trends in Analytical Chemistry 2014; 58:99–111 [View Article]
    [Google Scholar]
  31. Lee J, Park J, Hee Lee H, Park H, Kim HI et al. Fluorescence switch for silver ion detection utilizing dimerization of DNA-Ag nanoclusters. Biosens Bioelectron 2015; 68:642–647 [View Article][PubMed]
    [Google Scholar]
  32. Latorre A, Lorca R, Somoza Álvaro. Fluorescent DNA stabilized silver nanoclusters as biosensors. J Chem 2013; 2013:1–6 [View Article]
    [Google Scholar]
  33. Zhang K, Wang K, Xie M, Zhu X, Xu L et al. DNA-templated silver nanoclusters based label-free fluorescent molecular beacon for the detection of adenosine deaminase. Biosens Bioelectron 2014; 52:124–128 [View Article][PubMed]
    [Google Scholar]
  34. Yuan X, Setyawati MI, Tan AS, Ong CN, Leong DT et al. Highly luminescent silver nanoclusters with tunable emissions: cyclic reduction–decomposition synthesis and antimicrobial properties. NPG Asia Mater 2013; 5:e39–8 [View Article]
    [Google Scholar]
  35. Yuan X, Setyawati MI, Leong DT, Xie J. Ultrasmall Ag+-rich nanoclusters as highly efficient nanoreservoirs for bacterial killing. Nano Res 2014; 7:301–307 [View Article]
    [Google Scholar]
  36. Zheng K, Setyawati MI, Lim T-P, Leong DT, Xie J. Antimicrobial cluster bombs: silver nanoclusters packed with daptomycin. ACS Nano 2016; 10:7934–7942 [View Article][PubMed]
    [Google Scholar]
  37. Jin J-C, Wu X-J, Xu J, Wang B-B, Jiang F-L et al. Ultrasmall silver nanoclusters: highly efficient antibacterial activity and their mechanisms. Biomater Sci 2017; 5:247–257 [View Article][PubMed]
    [Google Scholar]
  38. Javani S, Lorca R, Latorre A, Flors C, Cortajarena AL et al. Antibacterial activity of DNA-Stabilized silver nanoclusters tuned by oligonucleotide sequence. ACS Appl Mater Interfaces 2016; 8:10147–10154 [View Article][PubMed]
    [Google Scholar]
  39. Li S, Cao W, Jin S, Zhang C, Liu J et al. Near-Infrared fluorescent aptamer-templated silver nanoclusters facilely synthesized for cellular imaging applications. Chin Sci Bull 2014; 59:1868–1872 [View Article]
    [Google Scholar]
  40. Sun Z, Wang Y, Wei Y, Liu R, Zhu H et al. Ag cluster-aptamer hybrid: specifically marking the nucleus of live cells. Chem Commun 2011; 47:11960–11962 [View Article][PubMed]
    [Google Scholar]
  41. Jacobs MA, Alwood A, Thaipisuttikul I, Spencer D, Haugen E et al. Comprehensive transposon mutant library of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2003; 100:14339–14344 [View Article][PubMed]
    [Google Scholar]
  42. Tsai CJ-Y, Loh JMS, Proft T. Galleria mellonella infection models for the study of bacterial diseases and for antimicrobial drug testing. Virulence 2016; 7:214–229 [View Article][PubMed]
    [Google Scholar]
  43. Hill L, Veli N, Coote PJ. Evaluation of Galleria mellonella larvae for measuring the efficacy and pharmacokinetics of antibiotic therapies against Pseudomonas aeruginosa infection. Int J Antimicrob Agents 2014; 43:254–261 [View Article][PubMed]
    [Google Scholar]
  44. Mizerska-Dudka M, Andrejko M. Galleria mellonella hemocytes destruction after infection with Pseudomonas aeruginosa. J Basic Microbiol 2014; 54:232–246 [View Article][PubMed]
    [Google Scholar]
  45. Mukherjee K, Domann E, Hain T. The Greater Wax Moth Galleria mellonella as an Alternative Model Host for Human Pathogens. Insect Biotechnol Dordrecht: Springer Netherlands; 2011 pp 3–14
    [Google Scholar]
  46. Adamson DH, Krikstopaityte V, Coote PJ. Enhanced efficacy of putative efflux pump inhibitor/antibiotic combination treatments versus MDR strains of Pseudomonas aeruginosa in a Galleria mellonella in vivo infection model. J Antimicrob Chemother 2015; 70:2271–2278 [View Article][PubMed]
    [Google Scholar]
  47. Ignasiak K, Maxwell A. Galleria mellonella (greater wax moth) larvae as a model for antibiotic susceptibility testing and acute toxicity trials. BMC Res Notes 2017; 10:428 [View Article][PubMed]
    [Google Scholar]
  48. Davydova A, Vorobjeva M, Pyshnyi D, Altman S, Vlassov V et al. Aptamers against pathogenic microorganisms. Crit Rev Microbiol 2016; 42:847–865 [View Article][PubMed]
    [Google Scholar]
  49. Hamula CLA, Le XC, Li X-F. Dna aptamers binding to multiple prevalent M-types of Streptococcus pyogenes. Anal Chem 2011; 83:3640–3647 [View Article][PubMed]
    [Google Scholar]
  50. Duan N, Wu S, Chen X, Huang Y, Xia Y et al. Selection and characterization of aptamers against Salmonella typhimurium using whole-bacterium systemic evolution of ligands by exponential enrichment (SELEX). J Agric Food Chem 2013; 61:3229–3234 [View Article][PubMed]
    [Google Scholar]
  51. Savory N, Nzakizwanayo J, Abe K, Yoshida W, Ferri S et al. Selection of DNA aptamers against uropathogenic Escherichia coli NSM59 by quantitative PCR controlled Cell-SELEX. J Microbiol Methods 2014; 104:94–100 [View Article][PubMed]
    [Google Scholar]
  52. Mozioglu E, Gokmen O, Tamerler C, Kocagoz ZT, Akgoz M. Selection of nucleic acid aptamers specific for Mycobacterium tuberculosis. Appl Biochem Biotechnol 2016; 178:849–864 [View Article][PubMed]
    [Google Scholar]
  53. Suh SH, Dwivedi HP, Choi SJ, Jaykus L-A. Selection and characterization of DNA aptamers specific for Listeria species. Anal Biochem 2014; 459:39–45 [View Article][PubMed]
    [Google Scholar]
  54. Duan N, Ding X, Wu S, Xia Y, Ma X et al. In vitro selection of a DNA aptamer targeted against Shigella dysenteriae. J Microbiol Methods 2013; 94:170–174 [View Article][PubMed]
    [Google Scholar]
  55. Chen F, Zhang X, Zhou J, Liu S, Liu J. Aptamer inhibits Mycobacterium tuberculosis (H37Rv) invasion of macrophage. Mol Biol Rep 2012; 39:2157–2162 [View Article][PubMed]
    [Google Scholar]
  56. Kolovskaya OS, Savitskaya AG, Zamay TN, Reshetneva IT, Zamay GS et al. Development of bacteriostatic DNA aptamers for Salmonella. J Med Chem 2013; 56:1564–1572 [View Article][PubMed]
    [Google Scholar]
  57. Mohanty S, Mishra S, Jena P, Jacob B, Sarkar B et al. An investigation on the antibacterial, cytotoxic, and antibiofilm efficacy of starch-stabilized silver nanoparticles. nanomedicine nanotechnology. Biol Med 2012; 8:916–924
    [Google Scholar]
  58. Flores CY, Miñán AG, Grillo CA, Salvarezza RC, Vericat C et al. Citrate-capped silver nanoparticles showing good bactericidal effect against both planktonic and sessile bacteria and a low cytotoxicity to osteoblastic cells. ACS Appl Mater Interfaces 2013; 5:3149–3159 [View Article][PubMed]
    [Google Scholar]
  59. Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 2009; 27:76–83 [View Article][PubMed]
    [Google Scholar]
  60. Bondarenko O, Ivask A, Käkinen A, Kurvet I, Kahru A. Particle-Cell contact enhances antibacterial activity of silver nanoparticles. PLoS One 2013; 8:e64060–12 [View Article][PubMed]
    [Google Scholar]
  61. Das R, Nath SS, Chakdar D GG, Bhattacharjee R. Preparation of silver nanoparticles and their characterization. J Nanotech Online 2009; 5:1–6
    [Google Scholar]
  62. Zhang X-F, Liu Z-G, Shen W, Gurunathan S. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci 2016; 17:1534–34 [View Article][PubMed]
    [Google Scholar]
  63. Faiz MB, Amal R, Marquis CP, Harry EJ, Sotiriou GA et al. Nanosilver and the microbiological activity of the particulate solids versus the leached soluble silver. Nanotoxicology 2018; 12:263–273 [View Article][PubMed]
    [Google Scholar]
  64. Song MY, Nguyen D, Hong SW, Kim BC. Broadly reactive aptamers targeting bacteria belonging to different genera using a sequential toggle cell-SELEX. Sci Rep 2017; 7:1–10 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.001174
Loading
/content/journal/jmm/10.1099/jmm.0.001174
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error