1887

Abstract

is one of the most important opportunistic pathogens, whose clinical relevance is not only due to the high morbidity/mortality of the infections caused, but also to its striking capacity for antibiotic resistance development. In the current scenario of a shortage of effective antipseudomonal drugs, it is essential to have thorough knowledge of the pathogen’s biology from all sides, so as to find weak points for drug development. Obviously, one of these points could be the peptidoglycan, given its essential role for cell viability. Meanwhile, immune weapons targeting this structure could constitute an excellent model to be taken advantage of in order to design new therapeutic strategies. In this context, this review gathers all the information regarding the activity of mammalian peptidoglycan-targeting innate immunity (namely lysozyme and peptidoglycan recognition proteins), specifically against . All the published studies were considered, from both and fields, including works that envisage these weapons as options not only to potentiate their innate effects within the host or for use as exogenously administered treatments, but also harnessing their inflammatory and immune regulatory capacity to finally reduce damage in the patient. Altogether, this review has the objective of anticipating and discussing whether these innate immune resources, in combination or not with other drugs attacking certain targets leading to its increased sensitization, could be valid therapeutic antipseudomonal allies.

Funding
This study was supported by the:
  • Antonio Oliver , Instituto de Salud Carlos III , (Award RD16/0016)
  • Antonio Oliver , Instituto de Salud Carlos III , (Award PI18/00076)
  • Carlos Juan , Instituto de Salud Carlos III , (Award PI18/00681)
Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.001167
2020-02-19
2020-06-02
Loading full text...

Full text loading...

/deliver/fulltext/jmm/69/4/492.html?itemId=/content/journal/jmm/10.1099/jmm.0.001167&mimeType=html&fmt=ahah

References

  1. Park JT, Uehara T. How bacteria consume their own exoskeletons (turnover and recycling of cell wall peptidoglycan). Microbiol Mol Biol Rev 2008; 72:211–227 [CrossRef][PubMed]
    [Google Scholar]
  2. Silhavy TJ, Kahne D, Walker S. The bacterial cell envelope. Cold Spring Harb Perspect Biol 2010; 2:a000414 [CrossRef][PubMed]
    [Google Scholar]
  3. den Blaauwen T, de Pedro MA, Nguyen-Distèche M, Ayala JA. Morphogenesis of rod-shaped sacculi. FEMS Microbiol Rev 2008; 32:321–344 [CrossRef][PubMed]
    [Google Scholar]
  4. de Pedro MA, Cava F. Structural constraints and dynamics of bacterial cell wall architecture. Front Microbiol 2015; 6:449 [CrossRef][PubMed]
    [Google Scholar]
  5. Juan C, Torrens G, Barceló IM, Oliver A. Interplay between peptidoglycan biology and virulence in gram-negative pathogens. Microbiol Mol Biol Rev 2018; 82:e00033–18 [CrossRef][PubMed]
    [Google Scholar]
  6. Irazoki O, Hernandez SB, Cava F. Peptidoglycan muropeptides: release, perception, and functions as signaling molecules. Front Microbiol 2019; 10:500 [CrossRef]
    [Google Scholar]
  7. Vollmer W, Bertsche U. Murein (peptidoglycan) structure, architecture and biosynthesis in Escherichia coli . Biochim Biophys Acta 2008; 1778:1714–1734 [CrossRef][PubMed]
    [Google Scholar]
  8. Dik DA, Fisher JF, Mobashery S. Cell-Wall recycling of the gram-negative bacteria and the nexus to antibiotic resistance. Chem Rev 2018; 118:5952–5984 [CrossRef]
    [Google Scholar]
  9. Juan C, Torrens G, González-Nicolau M, Oliver A. Diversity and regulation of intrinsic β-lactamases from non-fermenting and other gram-negative opportunistic pathogens. FEMS Microbiol Rev 2017; 41:781–815 [CrossRef]
    [Google Scholar]
  10. Torrens G, Hernández SB, Ayala JA, Moya B, Juan C et al. Regulation of AmpC-Driven β-lactam resistance in Pseudomonas aeruginosa: different pathways, different signaling. mSystems 2019; 4:e00524–19 [CrossRef][PubMed]
    [Google Scholar]
  11. Tipper DJ. Mode of action of β-lactam antibiotics. Pharmacol Ther 1985; 27:1–35 [CrossRef]
    [Google Scholar]
  12. Moradali MF, Ghods S, Rehm BHA. Pseudomonas aeruginosa Lifestyle: A Paradigm for Adaptation, Survival, and Persistence. Front Cell Infect Microbiol 2017; 7:39 [CrossRef]
    [Google Scholar]
  13. Lyczak JB, Cannon CL, Pier GB. Lung infections associated with cystic fibrosis. Clin Microbiol Rev 2002; 15:194–222 [CrossRef]
    [Google Scholar]
  14. Driscoll JA, Brody SL, Kollef MH. The Epidemiology, Pathogenesis and Treatment of Pseudomonas aeruginosa Infections. Drugs 2007; 67:351–368 [CrossRef]
    [Google Scholar]
  15. Gellatly SL, Hancock REW. Pseudomonas aeruginosa : new insights into pathogenesis and host defenses. Pathog Dis 2013; 67:159–173 [CrossRef]
    [Google Scholar]
  16. Hattemer A, Hauser A, Diaz M, Scheetz M, Shah N et al. Bacterial and clinical characteristics of health care- and community-acquired bloodstream infections due to Pseudomonas aeruginosa . Antimicrob Agents Chemother 2013; 57:3969–3975 [CrossRef]
    [Google Scholar]
  17. Poole K. Pseudomonas aeruginosa: resistance to the max. Front Microbiol 2011; 2:65 [CrossRef]
    [Google Scholar]
  18. Callewaert L, Michiels CW. Lysozymes in the animal Kingdom. J Biosci 2010; 35:127–160 [CrossRef]
    [Google Scholar]
  19. Irwin DM, Gong ZM. Molecular evolution of vertebrate goose-type lysozyme genes. J Mol Evol 2003; 56:234–242 [CrossRef]
    [Google Scholar]
  20. Irwin DM. Evolution of the vertebrate goose-type lysozyme gene family. BMC Evol Biol 2014; 14:188 [CrossRef]
    [Google Scholar]
  21. Irwin DM, Biegel JM, Stewart C-B. Evolution of the mammalian lysozyme gene family. BMC Evol Biol 2011; 11:166 [CrossRef]
    [Google Scholar]
  22. Ibrahim HR, Thomas U, Pellegrini A. A helix-loop-helix peptide at the upper lip of the active site cleft of lysozyme confers potent antimicrobial activity with membrane permeabilization action. J Biol Chem 2001; 276:43767–43774 [CrossRef][PubMed]
    [Google Scholar]
  23. Ibrahim HR, Matsuzaki T, Aoki T. Genetic evidence that antibacterial activity of lysozyme is independent of its catalytic function. FEBS Lett 2001; 506:27–32 [CrossRef]
    [Google Scholar]
  24. Nash JA, Ballard TNS, Weaver TE, Akinbi HT. The peptidoglycan-degrading property of lysozyme is not required for bactericidal activity in vivo. J Immunol 2006; 177:519–526 [CrossRef]
    [Google Scholar]
  25. Düring K, Porsch P, Mahn A, Brinkmann O, Gieffers W. The non-enzymatic microbicidal activity of lysozymes. FEBS Lett 1999; 449:93–100 [CrossRef]
    [Google Scholar]
  26. Karlsen S, Eliassen BE, Hansen LK, Larsen RL, Riise BW et al. Refined crystal structure of lysozyme from the rainbow trout (Oncorhynchus mykiss). Acta Crystallogr D Biol Crystallogr 1995; 51:354–367 [CrossRef]
    [Google Scholar]
  27. Masschalck B, Garcıa Graells C, Van Haver E, Michiels CW. Inactivation of high pressure resistant Escherichia coli by lysozyme and nisin under high pressure. Innov Food Sci Emerg Technol 2000; 1:39–47 [CrossRef]
    [Google Scholar]
  28. Ellison RT, Giehl TJ, Giehl TJ. Killing of gram-negative bacteria by lactoferrin and lysozyme. J Clin Invest 1991; 88:1080–1091 [CrossRef][PubMed]
    [Google Scholar]
  29. Callewaert L, Aertsen A, Deckers D, Vanoirbeek KGA, Vanderkelen L et al. A new family of lysozyme inhibitors contributing to lysozyme tolerance in gram-negative bacteria. PLoS Pathog 2008; 4:e1000019 [CrossRef]
    [Google Scholar]
  30. Ragland SA, Criss AK. From bacterial killing to immune modulation: recent insights into the functions of lysozyme. PLoS Pathog 2017; 13:e1006512 [CrossRef]
    [Google Scholar]
  31. Ibrahim HR, Hamasaki K, Miyata T. Novel peptide motifs from lysozyme suppress pro-inflammatory cytokines in macrophages by antagonizing Toll-like receptor and LPS-scavenging action. Eur J Pharm Sci 2017; 107:240–248 [CrossRef][PubMed]
    [Google Scholar]
  32. Nakatsuji T, Gallo RL. Antimicrobial peptides: old molecules with new ideas. J Invest Dermatol 2012; 132:887–895 [CrossRef][PubMed]
    [Google Scholar]
  33. Klüter T, Fitschen-Oestern S, Lippross S, Weuster M, Mentlein R et al. The antimicrobial peptide lysozyme is induced after multiple trauma. Mediators Inflamm 2014; 2014:1–7 [CrossRef][PubMed]
    [Google Scholar]
  34. Dostal SM, Fang Y, Guerrette JC, Scanlon TC, Griswold KE. Genetically enhanced lysozyme evades a pathogen derived inhibitory protein. ACS Chem Biol 2015; 10:1110–1117 [CrossRef]
    [Google Scholar]
  35. Callewaert L, Van Herreweghe JM, Vanderkelen L, Leysen S, Voet A et al. Guards of the great wall: bacterial lysozyme inhibitors. Trends Microbiol 2012; 20:501–510 [CrossRef]
    [Google Scholar]
  36. Torrens G, Pérez-Gallego M, Moya B, Munar-Bestard M, Zamorano L et al. Targeting the permeability barrier and peptidoglycan recycling pathways to disarm Pseudomonas aeruginosa against the innate immune system. PLoS One 2017; 12:e0181932 [CrossRef]
    [Google Scholar]
  37. Kang D, Liu G, Lundstrom A, Gelius E, Steiner H. A peptidoglycan recognition protein in innate immunity conserved from insects to humans. Proc Natl Acad Sci U S A 1998; 95:10078–10082 [CrossRef]
    [Google Scholar]
  38. Liu C, Gelius E, Liu G, Steiner H, Dziarski R. Mammalian peptidoglycan recognition protein binds peptidoglycan with high affinity, is expressed in neutrophils, and inhibits bacterial growth. J Biol Chem 2000; 275:24490–24499 [CrossRef][PubMed]
    [Google Scholar]
  39. Liu C, Xu Z, Gupta D, Dziarski R. Peptidoglycan recognition proteins. J Biol Chem 2001; 276:34686–34694 [CrossRef]
    [Google Scholar]
  40. Lu X, Wang M, Qi J, Wang H, Li X et al. Peptidoglycan recognition proteins are a new class of human bactericidal proteins. J Biol Chem 2006; 281:5895–5907 [CrossRef][PubMed]
    [Google Scholar]
  41. Wang M, Liu L-H, Wang S, Li X, Lu X et al. Human peptidoglycan recognition proteins require zinc to kill both gram-positive and gram-negative bacteria and are synergistic with antibacterial peptides. J Immunol 2007; 178:3116–3125 [CrossRef]
    [Google Scholar]
  42. Dziarski R, Kashyap DR, Gupta D. Mammalian peptidoglycan recognition proteins kill bacteria by activating two-component systems and modulate microbiome and inflammation. Microb Drug Resist 2012; 18:280–285 [CrossRef][PubMed]
    [Google Scholar]
  43. Skerry C, Goldman WE, Carbonetti NH. Peptidoglycan Recognition Protein 4 Suppresses Early Inflammatory Responses to Bordetella pertussis and Contributes to Sphingosine-1-Phosphate Receptor Agonist-Mediated Disease Attenuation. Infect Immun 2019; 87:e00601–00618 [CrossRef][PubMed]
    [Google Scholar]
  44. De Marzi MC, Todone M, Ganem MB, Wang Q, Mariuzza RA et al. Peptidoglycan recognition protein-peptidoglycan complexes increase monocyte/macrophage activation and enhance the inflammatory response. Immunology 2015; 145:429–442 [CrossRef]
    [Google Scholar]
  45. Saha S, Qi J, Wang S, Wang M, Li X et al. PGLYRP-2 and NOD2 are both required for peptidoglycan-induced arthritis and local inflammation. Cell Host Microbe 2009; 5:137–150 [CrossRef]
    [Google Scholar]
  46. Boneca IG. Mammalian PGRPs in the spotlight. Cell Host Microbe 2009; 5:109–111 [CrossRef]
    [Google Scholar]
  47. Saha S, Jing X, Park SY, Wang S, Li X et al. Peptidoglycan recognition proteins protect mice from experimental colitis by promoting normal gut flora and preventing induction of interferon-γ. Cell Host Microbe 2010; 8:147–162 [CrossRef]
    [Google Scholar]
  48. Royet J, Gupta D, Dziarski R. Peptidoglycan recognition proteins: modulators of the microbiome and inflammation. Nat Rev Immunol 2011; 11:837–851 [CrossRef]
    [Google Scholar]
  49. Lee J, Geddes K, Streutker C, Philpott DJ, Girardin SE. Role of Mouse Peptidoglycan Recognition Protein PGLYRP2 in the Innate Immune Response to Salmonella enterica Serovar Typhimurium Infection In Vivo . Infect Immun 2012; 80:2645–2654 [CrossRef]
    [Google Scholar]
  50. Guan R, Roychowdhury A, Ember B, Kumar S, Boons G-J et al. Structural basis for peptidoglycan binding by peptidoglycan recognition proteins. Proc Natl Acad Sci U S A 2004; 101:17168–17173 [CrossRef]
    [Google Scholar]
  51. Dziarski R, Gupta D. The peptidoglycan recognition proteins (PGRPs). Genome Biol 2006; 7:232 [CrossRef]
    [Google Scholar]
  52. Hoijer MA, Melief MJ, Debets R, Hazenberg MP. Inflammatory properties of peptidoglycan are decreased after degradation by human N-acetylmuramyl-L-alanine amidase. Eur Cytokine Netw 1997; 8:375–381[PubMed]
    [Google Scholar]
  53. Dziarski R, Gupta D. Review: mammalian peptidoglycan recognition proteins (PGRPs) in innate immunity. Innate Immun 2010; 16:168–174 [CrossRef]
    [Google Scholar]
  54. Wang Z-M, Li X, Cocklin RR, Wang M, Wang M et al. Human peptidoglycan recognition protein-L is an N-acetylmuramoyl-L-alanine amidase. J Biol Chem 2003; 278:49044–49052 [CrossRef][PubMed]
    [Google Scholar]
  55. Xu M, Wang Z, Locksley RM. Innate immune responses in peptidoglycan recognition protein L-deficient mice. Mol Cell Biol 2004; 24:7949–7957 [CrossRef]
    [Google Scholar]
  56. Dabrowski AN, Conrad C, Behrendt U, Shrivastav A, Baal N et al. Peptidoglycan Recognition Protein 2 Regulates Neutrophil Recruitment Into the Lungs After Streptococcus pneumoniae Infection. Front Microbiol 2019; 10:199 [CrossRef]
    [Google Scholar]
  57. Bobrovsky P, Manuvera V, Polina N, Podgorny O, Prusakov K et al. Recombinant human peptidoglycan recognition proteins reveal antichlamydial activity. Infect Immun 2016; 84:2124–2130 [CrossRef]
    [Google Scholar]
  58. Kashyap DR, Wang M, Liu L-H, Boons G-J, Gupta D et al. Peptidoglycan recognition proteins kill bacteria by activating protein-sensing two-component systems. Nat Med 2011; 17:676–683 [CrossRef]
    [Google Scholar]
  59. Dziarski R, Gupta D. How innate immunity proteins kill bacteria and why they are not prone to resistance. Curr Genet 2018; 64:125–129 [CrossRef]
    [Google Scholar]
  60. Kashyap DR, Rompca A, Gaballa A, Helmann JD, Chan J et al. Peptidoglycan recognition proteins kill bacteria by inducing oxidative, thiol, and metal stress. PLoS Pathog 2014; 10:e1004280 [CrossRef]
    [Google Scholar]
  61. Kashyap DR, Kuzma M, Kowalczyk DA, Gupta D, Dziarski R. Bactericidal peptidoglycan recognition protein induces oxidative stress in Escherichia coli through a block in respiratory chain and increase in central carbon catabolism. Mol Microbiol 2017; 105:755–776 [CrossRef]
    [Google Scholar]
  62. Delhaye A, Collet J-F, Laloux G. Fine-Tuning of the Cpx Envelope Stress Response Is Required for Cell Wall Homeostasis in Escherichia coli . MBio 2016; 7:e00047–16 [CrossRef]
    [Google Scholar]
  63. Yan H, Hancock REW. Synergistic interactions between mammalian antimicrobial defense peptides. Antimicrob Agents Chemother 2001; 45:1558–1560 [CrossRef]
    [Google Scholar]
  64. Piers KL, Brown MH, Hancock RE. Improvement of outer membrane-permeabilizing and lipopolysaccharide-binding activities of an antimicrobial cationic peptide by C-terminal modification. Antimicrob Agents Chemother 1994; 38:2311–2316 [CrossRef]
    [Google Scholar]
  65. Cho JH, Fraser IP, Fukase K, Kusumoto S, Fujimoto Y et al. Human peptidoglycan recognition protein S is an effector of neutrophil-mediated innate immunity. Blood 2005; 106:2551–2558 [CrossRef]
    [Google Scholar]
  66. Markart P, Faust N, Graf T, Na C-L, Weaver TE et al. Comparison of the microbicidal and muramidase activities of mouse lysozyme M and P. Biochem J 2004; 380:385–392 [CrossRef][PubMed]
    [Google Scholar]
  67. Cole AM, Thapa DR, Gabayan V, Liao H-I, Liu L et al. Decreased clearance of Pseudomonas aeruginosa from airways of mice deficient in lysozyme M. J Leukoc Biol 2005; 78:1081–1085 [CrossRef]
    [Google Scholar]
  68. Akinbi HT, Epaud R, Bhatt H, Weaver TE. Bacterial killing is enhanced by expression of lysozyme in the lungs of transgenic mice. J Immunol 2000; 165:5760–5766 [CrossRef]
    [Google Scholar]
  69. Masschalck B, Van Houdt R, Van Haver EGR, Michiels CW. Inactivation of gram-negative bacteria by lysozyme, denatured lysozyme, and Lysozyme-Derived peptides under high hydrostatic pressure. Appl Environ Microbiol 2001; 67:339–344 [CrossRef]
    [Google Scholar]
  70. Ghosh A, Lee S, Dziarski R, Chakravarti S. A novel antimicrobial peptidoglycan recognition protein in the cornea. Invest Ophthalmol Vis Sci 2009; 50:4185–4191 [CrossRef][PubMed]
    [Google Scholar]
  71. Gowda RN, Redfern R, Frikeche J, Pinglay S, Foster JW et al. Functions of peptidoglycan recognition proteins (Pglyrps) at the ocular surface: bacterial keratitis in gene-targeted mice deficient in Pglyrp-2, -3 and -4. PLoS One 2015; 10:e0137129 [CrossRef]
    [Google Scholar]
  72. Hughes WT, Koblin BA, Rosenstein BJ. Lysozyme activity in cystic fibrosis. Pediatr Res 1982; 16:874–876 [CrossRef]
    [Google Scholar]
  73. Jollès P, Jollès J. What's new in lysozyme research? Always a model system, today as yesterday. Mol Cell Biochem 1984; 63:165–189 [CrossRef][PubMed]
    [Google Scholar]
  74. Raphael GD, Jeney EV, Baraniuk JN, Kim I, Meredith SD et al. Pathophysiology of rhinitis. Lactoferrin and lysozyme in nasal secretions. J Clin Invest 1989; 84:1528–1535 [CrossRef][PubMed]
    [Google Scholar]
  75. Oliver A, Mena A, Maciá MD, Cassel GH. Evolution of Pseudomonas aeruginosa Pathogenicity: From Acute to Chronic Infections. In Baquero F, Nombela F, Cassel GH. (editors) Evolutionary Biology of Bacterial and Fungal Pathogens Washington, D.C: American Society of Microbiology; 2007 pp 433–444
    [Google Scholar]
  76. Vakil JR, Chandan RC, Parry RM, Shahani KM. Susceptibility of several microorganisms to milk lysozymes,. J Dairy Sci 1969; 52:1192–1197 [CrossRef]
    [Google Scholar]
  77. Deckers D, Vanlint D, Callewaert L, Aertsen A, Michiels CW. Role of the Lysozyme Inhibitor Ivy in Growth or Survival of Escherichia coli and Pseudomonas aeruginosa Bacteria in Hen Egg White and in Human Saliva and Breast Milk. Appl Environ Microbiol 2008; 74:4434–4439 [CrossRef]
    [Google Scholar]
  78. Liu Z, García-Díaz B, Catacchio B, Chiancone E, Vogel HJ. Protecting Gram-negative bacterial cell envelopes from human lysozyme: Interactions with Ivy inhibitor proteins from Escherichia coli and Pseudomonas aeruginosa . Biochim Biophys Acta 2015; 1848:3032–3046 [CrossRef][PubMed]
    [Google Scholar]
  79. Clarke CA, Scheurwater EM, Clarke AJ. The vertebrate lysozyme inhibitor ivy functions to inhibit the activity of lytic transglycosylase. J Biol Chem 2010; 285:14843–14847 [CrossRef][PubMed]
    [Google Scholar]
  80. Torrens G, Barceló IM, Pérez-Gallego M, Escobar-Salom M, Tur-Gracia S et al. Profiling the susceptibility of Pseudomonas aeruginosa strains from acute and chronic infections to cell-wall-targeting immune proteins. Sci Rep 2019; 9:3575 [CrossRef]
    [Google Scholar]
  81. Scanlon TC, Teneback CC, Gill A, Bement JL, Weiner JA et al. Enhanced antimicrobial activity of engineered human lysozyme. ACS Chem Biol 2010; 5:809–818 [CrossRef]
    [Google Scholar]
  82. Martinez JG, Waldon M, Huang Q, Alvarez S, Oren A et al. Membrane-targeted synergistic activity of docosahexaenoic acid and lysozyme against Pseudomonas aeruginosa . Biochem J 2009; 419:193–200 [CrossRef]
    [Google Scholar]
  83. Miller MJ, Wilson LA, Ahearn DG. Effects of protein, mucin, and human tears on adherence of Pseudomonas aeruginosa to hydrophilic contact lenses. J Clin Microbiol 1988; 26:513–517 [CrossRef]
    [Google Scholar]
  84. Zhang S, Borazjani RN, Salamone JC, Ahearn DG, Crow SA et al. In vitro deposition of lysozyme on etafilcon A and balafilcon a hydrogel contact lenses: effects on adhesion and survival of Pseudomonas aeruginosa and Staphylococcus aureus . Cont Lens Anterior Eye 2005; 28:113–119 [CrossRef][PubMed]
    [Google Scholar]
  85. Hukić M, Seljmo D, Ramovic A, Ibrišimović MA, Dogan S et al. The Effect of Lysozyme on Reducing Biofilms by Staphylococcus aureus, Pseudomonas aeruginosa, and Gardnerella vaginalis : An In Vitro Examination. Microb Drug Resist 2018; 24:353–358 [CrossRef]
    [Google Scholar]
  86. Hauben KJA, Wuytack EY, Soontjens CCF, Michiels CW. High-Pressure transient sensitization of Escherichia coli to lysozyme and nisin by disruption of outer-membrane permeability. J Food Prot 1996; 59:350–355 [CrossRef]
    [Google Scholar]
  87. Masschalck B, Michiels CW. Antimicrobial properties of lysozyme in relation to foodborne vegetative bacteria. Crit Rev Microbiol 2003; 29:191–214 [CrossRef]
    [Google Scholar]
  88. Aminlari L, Mohammadi Hashemi M, Aminlari M. Modified lysozymes as novel broad spectrum natural antimicrobial agents in foods. J Food Sci 2014; 79:R1077–R1090 [CrossRef]
    [Google Scholar]
  89. Mörsky P. Turbidimetric determination of lysozyme with Micrococcus lysodeikticus cells: Reexamination of reaction conditions. Anal Biochem 1983; 128:77–85 [CrossRef]
    [Google Scholar]
  90. Helal R, Melzig MF. Determination of lysozyme activity by a fluorescence technique in comparison with the classical turbidity assay. Pharmazie 2008; 63:415–419[PubMed]
    [Google Scholar]
  91. Nakimbugwe D, Masschalck B, Atanassova M, Zewdie-Bosüner A, Michiels CW. Comparison of bactericidal activity of six lysozymes at atmospheric pressure and under high hydrostatic pressure. Int J Food Microbiol 2006; 108:355–363 [CrossRef][PubMed]
    [Google Scholar]
  92. Torrens G, Escobar-Salom M, Pol-Pol E, Camps-Munar C, Cabot G et al. Comparative Analysis of Peptidoglycans From Pseudomonas aeruginosa Isolates Recovered From Chronic and Acute Infections. Front Microbiol 1868; 2019:10
    [Google Scholar]
  93. Pang Z, Raudonis R, Glick BR, Lin T-J, Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv 2019; 37:177–192 [CrossRef]
    [Google Scholar]
  94. Wang J, Dou X, Song J, Lyu Y, Zhu X et al. Antimicrobial peptides: promising alternatives in the post feeding antibiotic era. Med Res Rev 2019; 39:831–859 [CrossRef]
    [Google Scholar]
  95. Ragland SA, Schaub RE, Hackett KT, Dillard JP, Criss AK. Two lytic transglycosylases in Neisseria gonorrhoeae impart resistance to killing by lysozyme and human neutrophils. Cell Microbiol 2017; 19:e12662 [CrossRef]
    [Google Scholar]
  96. Davis KM, Nakamura S, Weiser JN. Nod2 sensing of lysozyme-digested peptidoglycan promotes macrophage recruitment and clearance of S. pneumoniae colonization in mice. J Clin Invest 2011; 121:3666–3676 [CrossRef]
    [Google Scholar]
  97. Ganz T, Gabayan V, Liao H-I, Liu L, Oren A et al. Increased inflammation in lysozyme M–deficient mice in response to Micrococcus luteus and its peptidoglycan. Blood 2003; 101:2388–2392 [CrossRef]
    [Google Scholar]
  98. Markart P, Korfhagen TR, Weaver TE, Akinbi HT. Mouse Lysozyme M Is Important in Pulmonary Host Defense against Klebsiella pneumoniae Infection. Am J Respir Crit Care Med 2004; 169:454–458 [CrossRef]
    [Google Scholar]
  99. Lee M, Kovacs-Nolan J, Yang C, Archbold T, Fan MZ et al. Hen Egg Lysozyme Attenuates Inflammation and Modulates Local Gene Expression in a Porcine Model of Dextran Sodium Sulfate (DSS)-Induced Colitis. J Agric Food Chem 2009; 57:2233–2240 [CrossRef]
    [Google Scholar]
  100. Girardin SE, Travassos LH, Hervé M, Blanot D, Boneca IG et al. Peptidoglycan molecular requirements allowing detection by Nod1 and NOD2. J. Biol. Chem. 2003; 278:41702–41708 [CrossRef]
    [Google Scholar]
  101. Masumoto J, Yang K, Varambally S, Hasegawa M, Tomlins SA et al. Nod1 acts as an intracellular receptor to stimulate chemokine production and neutrophil recruitment in vivo. J Exp Med 2006; 203:203–213 [CrossRef]
    [Google Scholar]
  102. Caruso R, Warner N, Inohara N, Núñez G. NOD1 and NOD2: signaling, host defense, and inflammatory disease. Immunity 2014; 41:898–908 [CrossRef]
    [Google Scholar]
  103. Ogundele MO. A novel anti-inflammatory activity of lysozyme: modulation of serum complement activation. Mediators Inflamm 1998; 7:363–365 [CrossRef]
    [Google Scholar]
  104. Dickey SW, Cheung GYC, Otto M. Different drugs for bad bugs: antivirulence strategies in the age of antibiotic resistance. Nat Rev Drug Discov 2017; 16:457–471 [CrossRef]
    [Google Scholar]
  105. Torrens G, Sánchez-Diener I, Jordana-Lluch E, Barceló IM, Zamorano L et al. In vivo validation of peptidoglycan recycling as a target to disable AmpC-mediated resistance and reduce virulence enhancing the Cell-Wall-Targeting immunity. J Infect Dis 2019; 220:1729–1737 [CrossRef][PubMed]
    [Google Scholar]
  106. Lee K-M, Lee K, Go J, Park IH, Shin J-S et al. A Genetic Screen Reveals Novel Targets to Render Pseudomonas aeruginosa Sensitive to Lysozyme and Cell Wall-Targeting Antibiotics. Front Cell Infect Microbiol 2017; 7:59 [CrossRef]
    [Google Scholar]
  107. Wang J, Dong Y, Zhou T, Liu X, Deng Y et al. Pseudomonas aeruginosa cytotoxicity is attenuated at high cell density and associated with the accumulation of phenylacetic acid. PLoS One 2013; 8:e60187 [CrossRef]
    [Google Scholar]
  108. Saito H, Sakakibara Y, Sakata A, Kurashige R, Murakami D et al. Antibacterial activity of lysozyme-chitosan oligosaccharide conjugates (LYZOX) against Pseudomonas aeruginosa, Acinetobacter baumannii and Methicillin-resistant Staphylococcus aureus . PLoS One 2019; 14:e0217504 [CrossRef]
    [Google Scholar]
  109. Epaud R, Delestrain C, Weaver TE, Akinbi HT. Bacterial killing is enhanced by exogenous administration of lysozyme in the lungs. Respir Med Res 2019; 76:22–27 [CrossRef]
    [Google Scholar]
  110. Teneback CC, Scanlon TC, Wargo MJ, Bement JL, Griswold KE et al. Bioengineered Lysozyme Reduces Bacterial Burden and Inflammation in a Murine Model of Mucoid Pseudomonas aeruginosa Lung Infection. Antimicrob Agents Chemother 2013; 57:5559–5564 [CrossRef]
    [Google Scholar]
  111. Griswold KE, Bement JL, Teneback CC, Scanlon TC, Wargo MJ et al. Bioengineered lysozyme in combination therapies for Pseudomonas aeruginosa lung infections. Bioengineered 2014; 5:143–147 [CrossRef]
    [Google Scholar]
  112. Bhavsar T, Liu M, Hardej D, Liu X, Cantor J. Aerosolized recombinant human lysozyme ameliorates pseudomonas aeruginosa –induced pneumonia in hamsters. Exp Lung Res 2010; 36:94–100 [CrossRef]
    [Google Scholar]
  113. Bhavsar T, Liu M, Liu X, Cantor J. Aerosolized recombinant human lysozyme enhances the bactericidal effect of tobramycin in a hamster model of pseudomonas aeruginosa –induced pneumonia. Exp Lung Res 2011; 37:536–541 [CrossRef]
    [Google Scholar]
  114. Park SY, Gupta D, Kim CH, Dziarski R. Differential effects of peptidoglycan recognition proteins on experimental atopic and contact dermatitis mediated by Treg and Th17 cells. PLoS One 2011; 6:e24961 [CrossRef]
    [Google Scholar]
  115. Park SY, Gupta D, Hurwich R, Kim CH, Dziarski R. Peptidoglycan recognition protein Pglyrp2 protects mice from psoriasis-like skin inflammation by promoting regulatory T cells and limiting Th17 responses. J Immunol 2011; 187:5813–5823 [CrossRef]
    [Google Scholar]
  116. Nicolosi LN, del Carmen Rubio M, Martinez CD, González NN, Cruz ME. Effect of oral hygiene and 0.12% chlorhexidine gluconate oral rinse in preventing ventilator-associated pneumonia after cardiovascular surgery. Respir Care 2014; 59:504–509 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.001167
Loading
/content/journal/jmm/10.1099/jmm.0.001167
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error