1887

Abstract

is one of over fifty species of bacteria classified into the group. Generally considered a harmless commensal, these bacteria are studied for their plant-growth promotion (PGP) and biocontrol characteristics. Intriguingly, is closely related to , which is classified as an opportunistic phytopathogen. Twenty-one genomes have been sequenced to date. In the current review, genomes of and strains from the clade were mined for regions associated with PGP, biocontrol and pathogenicity. We discovered that ‘beneficial’ bacteria and those classified as plant pathogens have many genes in common; thus, only a fine line separates beneficial/harmless commensals from those capable of causing disease in plants. The genotype and physiological state of the plant, the presence of biotic/abiotic stressors, and the ability of bacteria to manipulate the plant immune system collectively contribute to how the bacterial-plant interaction plays out. Because production of extracellular metabolites is energetically costly, these compounds are expected to impart a fitness advantage to the producer. is able to reduce the threat of nematode predation through release of metabolites involved in biocontrol. Moreover this bacterium has the unique ability to form biofilms on the head of as a second mechanism of predator avoidance. Rhizobacteria, plants, fungi, and microfaunal predators have occupied a shared niche for millions of years and, in many ways, they function as a single organism. Accordingly, it is essential that we appreciate the dynamic interplay among these members of the community.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.001145
2020-01-24
2020-02-28
Loading full text...

Full text loading...

References

  1. Wasi S, Tabrez S, Ahmad M. Use of Pseudomonas spp. for the bioremediation of environmental pollutants: a review. Environ Monit Assess 2013;185:8147–8155 [CrossRef]
    [Google Scholar]
  2. Haas D, Défago G. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 2005;3:307–319 [CrossRef]
    [Google Scholar]
  3. Weller DM, Raaijmakers JM, Gardener BBM, Thomashow LS. Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 2002;40:309–348 [CrossRef]
    [Google Scholar]
  4. Mulet M, Lalucat J, García-Valdés E. DNA sequence-based analysis of the Pseudomonas species. Environ Microbiol 2010;12:1513–1530 [CrossRef]
    [Google Scholar]
  5. Achouak W, Sutra L, Heulin T, Meyer JM, Fromin N et al. Pseudomonas brassicacearum sp. nov. and Pseudomonas thivervalensis sp. nov., two root-associated bacteria isolated from Brassica napus and Arabidopsis thaliana. Int J Syst Evol Microbiol 2000;50 Pt 1:9–18 [CrossRef]
    [Google Scholar]
  6. Ortet P, Barakat M, Lalaouna D, Fochesato S, Barbe V et al. Complete genome sequence of a beneficial plant root-associated bacterium, Pseudomonas brassicacearum. J Bacteriol 2011;193:3146 [CrossRef]
    [Google Scholar]
  7. Khayi S, Raoul des Essarts Y, Mondy S, Moumni M, Hélias V et al. Draft genome sequences of the three Pectobacterium-antagonistic bacteria Pseudomonas brassicacearum PP1-210F and PA1G7 and Bacillus simplex BA2H3: table 1. Genome Announc 2015;3: [CrossRef]
    [Google Scholar]
  8. Landa BB, Mavrodi OV, Schroeder KL, Allende-Molar R, Weller DM. Enrichment and genotypic diversity of phlD-containing fluorescent Pseudomonas spp. in two soils after a century of wheat and flax monoculture. FEMS Microbiol Ecol 2006;55:351–368 [CrossRef]
    [Google Scholar]
  9. Loewen PC, Switala J, Fernando WGD, de Kievit T. Genome sequence of Pseudomonas brassicacearum DF41. Genome Announc 2014;2: [CrossRef]
    [Google Scholar]
  10. Novinscak A, Gadkar VJ, Joly DL, Filion M. Complete Genome Sequence of Pseudomonas brassicacearum LBUM300, a Disease-Suppressive Bacterium with Antagonistic Activity toward Fungal, Oomycete, and Bacterial Plant Pathogens. Genome Announc 2016;4: [CrossRef]
    [Google Scholar]
  11. Raaijmakers JM, Weller DM. Exploiting genotypic diversity of 2,4-diacetylphloroglucinol-producing Pseudomonas spp.: characterization of superior root-colonizing P. fluorescens strain Q8r1-96. Appl Environ Microbiol 2001;67:2545–2554 [CrossRef]
    [Google Scholar]
  12. Schlatter D, Kinkel L, Thomashow L, Weller D, Paulitz T. Disease suppressive soils: new insights from the soil microbiome. Phytopathology 2017;107:1284–1297 [CrossRef]
    [Google Scholar]
  13. Weller DM, Landa BB, Mavrodi OV, Schroeder KL, De La Fuente L et al. Role of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. in the defense of plant roots. Plant Biol 2007;9:4–20 [CrossRef]
    [Google Scholar]
  14. Zachow C, Müller H, Monk J, Berg G. Complete genome sequence of Pseudomonas brassicacearum strain L13-6-12, a biological control agent from the rhizosphere of potato. Stand Genomic Sci 2017;12:6 [CrossRef]
    [Google Scholar]
  15. Zhou T, Chen D, Li C, Sun Q, Li L et al. Isolation and characterization of Pseudomonas brassicacearum J12 as an antagonist against Ralstonia solanacearum and identification of its antimicrobial components. Microbiol Res 2012;167:388–394 [CrossRef]
    [Google Scholar]
  16. Fromin N, Achouak W, ThiÃry JM, Heulin T. The genotypic diversity of Pseudomonas brassicacearum populations isolated from roots of Arabidopsis thaliana: influence of plant genotype. FEMS Microbiol Ecol 2001;37:21–29 [CrossRef]
    [Google Scholar]
  17. Ivanova EP, Christen R, Bizet C, Clermont D, Motreff L et al. Pseudomonas brassicacearum subsp. neoaurantiaca subsp. nov., orange-pigmented bacteria isolated from soil and the rhizosphere of agricultural plants. Int J Syst Evol Microbiol 2009;59:2476–2481 [CrossRef]
    [Google Scholar]
  18. Ross IL, Alami Y, Harvey PR, Achouak W, Ryder MH. Genetic diversity and biological control activity of novel species of closely related pseudomonads isolated from wheat field soils in South Australia. Appl Environ Microbiol 2000;66:1609–1616 [CrossRef]
    [Google Scholar]
  19. Huang H, Tao X, Jiang Y, Khan A, Wu Q et al. The naphthalene catabolic protein NahG plays a key role in hexavalent chromium reduction in Pseudomonas brassicacearum LZ-4. Sci Rep 2017;7:9670 [CrossRef]
    [Google Scholar]
  20. Nelkner J, Tejerizo GT, Hassa J, Lin TW, Witte J et al. Genetic potential of the biocontrol agent Pseudomonas brassicacearum (formerly P. trivialis) 3Re2-7 unraveled by genome sequencing and mining, comparative genomics and transcriptomics. Genes 2019;10:601 [CrossRef]
    [Google Scholar]
  21. Martin DE. Investigation of the biocontrol activity in vitro and in planta of different Pseudomonas species against important crown, stem, foliar and root pathogens of ornamental crops 2017
    [Google Scholar]
  22. Berry C, Fernando WGD, Loewen PC, de Kievit TR. Lipopeptides are essential for Pseudomonas sp. DF41 biocontrol of Sclerotinia sclerotiorum. Biological Control 2010;55:211–218 [CrossRef]
    [Google Scholar]
  23. Berry CL, Brassinga AKC, Donald LJ, Fernando WGD, Loewen PC et al. Chemical and biological characterization of sclerosin, an antifungal lipopeptide. Can J Microbiol 2012;58:1027–1034 [CrossRef]
    [Google Scholar]
  24. Berry CL, Nandi M, Manuel J, Brassinga AKC, Fernando WGD et al. Characterization of the Pseudomonas sp. DF41 quorum sensing locus and its role in fungal antagonism. Biological Control 2014;69:82–89 [CrossRef]
    [Google Scholar]
  25. Nandi M, Berry C, Brassinga AKC, Belmonte MF, Fernando WGD et al. Pseudomonas brassicacearum strain DF41 kills Caenorhabditis elegans through biofilm-dependent and biofilm-independent mechanisms. Appl Environ Microbiol 2016;82:6889–6898 [CrossRef]
    [Google Scholar]
  26. Aly H. Role of Pseudomonas produced hydrogen cyanide in biological control of plant-parasitic nematodes (PhD thesis). 2011;https://irl.umsl.edu/dissertation/384
  27. Elahi F. Identification of the causal agent of bacterial soft rot of potato and its management in Bangladesh 2018
    [Google Scholar]
  28. Keel C, Weller DM, Natsch A, Défago G, Cook RJ et al. Conservation of the 2,4-diacetylphloroglucinol biosynthesis locus among fluorescent Pseudomonas strains from diverse geographic locations. Appl Environ Microbiol 1996;62:552–563 [CrossRef]
    [Google Scholar]
  29. McSpadden Gardener BB, Gutierrez LJ, Joshi R, Edema R, Lutton E. Distribution and Biocontrol Potential of phlD + Pseudomonads in Corn and Soybean Fields. Phytopathology 2005;95:715–724 [CrossRef]
    [Google Scholar]
  30. Luo C, Rodriguez-R LM, Konstantinidis KT. MyTaxa: an advanced taxonomic classifier for genomic and metagenomic sequences. Nucleic Acids Res 2014;42:e73 [CrossRef]
    [Google Scholar]
  31. Garrido-Sanz D, Meier-Kolthoff JP, Göker M, Martín M, Rivilla R et al. Genomic and genetic diversity within the Pseudomonas fluorescens complex. PLoS One 2016;11:e0150183 [CrossRef]
    [Google Scholar]
  32. Hesse C, Schulz F, Bull CT, Shaffer BT, Yan Q et al. Genome‐based evolutionary history of Pseudomonas spp. Environ Microbiol 2018;20:2142–2159 [CrossRef]
    [Google Scholar]
  33. Melnyk RA, Hossain SS, Haney CH. Convergent gain and loss of genomic islands drive lifestyle changes in plant-associated Pseudomonas. Isme J 2019;13:1575–1588 [CrossRef]
    [Google Scholar]
  34. Scarlett CM, Fletcher JT, Roberts P, LELLIOTT RA. Tomato pith necrosis caused by Pseudomonas corrugata n. sp. Ann Applied Biology 1978;88:105–114 [CrossRef]
    [Google Scholar]
  35. Strano CP, Bella P, Licciardello G, Fiore A, Lo Piero AR et al. Pseudomonas corrugata crpCDE is part of the cyclic lipopeptide corpeptin biosynthetic gene cluster and is involved in bacterial virulence in tomato and in hypersensitive response in Nicotiana benthamiana. Mol Plant Pathol 2015;16:495–506 [CrossRef]
    [Google Scholar]
  36. Catara V. Pseudomonas corrugata: plant pathogen and/or biological resource?. Mol Plant Pathol 2007;8:233–244 [CrossRef]
    [Google Scholar]
  37. Trantas EA, Sarris PF, Pentari MG, Mpalantinaki EE, Ververidis FN et al. Diversity among Pseudomonas corrugata and Pseudomonas mediterranea isolated from tomato and pepper showing symptoms of pith necrosis in Greece. Plant Pathol 2015;64:307–318 [CrossRef]
    [Google Scholar]
  38. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990;215:403–410 [CrossRef]
    [Google Scholar]
  39. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 2019;47:W81–W87 [CrossRef]
    [Google Scholar]
  40. Gross H, Loper JE. Genomics of secondary metabolite production by Pseudomonas spp. Nat Prod Rep 2009;26:1408–1446 [CrossRef]
    [Google Scholar]
  41. Loper JE, Hassan KA, Mavrodi DV, Davis EW, Lim CK et al. Comparative genomics of plant-associated Pseudomonas spp.: Insights into diversity and inheritance of traits involved in multitrophic interactions. PLoS Genet8:e1002784 [CrossRef]
    [Google Scholar]
  42. Batjes NH. A world dataset of derived soil properties by FAO?UNESCO soil unit for global modelling. Soil Use Manag 1997;13:9–16 [CrossRef]
    [Google Scholar]
  43. Vance CP, Uhde-Stone C, Allan DL. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol 2003;157:423–447 [CrossRef]
    [Google Scholar]
  44. Arcand MM, Schneider KD. Plant- and microbial-based mechanisms to improve the agronomic effectiveness of phosphate rock: a review. An Acad Bras Ciênc 2006;78:791–807 [CrossRef]
    [Google Scholar]
  45. Rodrı́guez H, Fraga R. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 1999;17:319–339 [CrossRef]
    [Google Scholar]
  46. Goldstein AH.Future trends in research on microbial phosphate solubilization: one hundred years of insolubility Effect of Certain Phosphate-Solubilizing Bacteria on Root-Knot Nematode Disease of Mungbean Dordrecht: Springer Netherlands; 2007; pp91–96
    [Google Scholar]
  47. Rodrı́guez H, Gonzalez T, Selman G. Expression of a mineral phosphate solubilizing gene from Erwinia herbicola in two rhizobacterial strains. J Biotechnol 2000;84:155–161 [CrossRef]
    [Google Scholar]
  48. Choi O, Kim J, Kim J-G, Jeong Y, Moon JS et al. Pyrroloquinoline Quinone Is a Plant Growth Promotion Factor Produced by Pseudomonas fluorescens B16. Plant Physiol 2008;146:657–668 [CrossRef]
    [Google Scholar]
  49. Mariutto M, Ongena M. Molecular patterns of rhizobacteria involved in plant immunity elicitation 2015; pp21–56
    [Google Scholar]
  50. Trapet P, Avoscan L, Klinguer A, Pateyron S, Citerne S et al. The Pseudomonas fluorescens Siderophore Pyoverdine Weakens Arabidopsis thaliana Defense in Favor of Growth in Iron-Deficient Conditions. Plant Physiol 2016;171:675–693 [CrossRef]
    [Google Scholar]
  51. Reinhart A, Oglesby-Sherrouse A. Regulation of Pseudomonas aeruginosa virulence by distinct iron sources. Genes 2016;7:126 [CrossRef] [CrossRef]
    [Google Scholar]
  52. Trantas EA, Licciardello G, Almeida NF, Witek K, Strano CP et al. Comparative genomic analysis of multiple strains of two unusual plant pathogens: Pseudomonas corrugata and Pseudomonas mediterranea. Front Microbiol 2015;6:811 [CrossRef]
    [Google Scholar]
  53. Van Der Voort M, Meijer HJG, Schmidt Y, Watrous J, Dekkers E et al. Genome mining and metabolic profiling of the rhizosphere bacterium Pseudomonas sp. SH-C52 for antimicrobial compounds. Front Microbiol 2015;6:1–14 [CrossRef]
    [Google Scholar]
  54. Carrión VJ, van der Voort M, Arrebola E, Gutiérrez-Barranquero JA, de Vicente A et al. Mangotoxin production of Pseudomonas syringae pv. syringae is regulated by MgoA. BMC Microbiol 2014;14:46 [CrossRef]
    [Google Scholar]
  55. Miller KJ, Wood JM. Osmoadaptation by rhizosphere bacteria. Annu Rev Microbiol 1996;50:101–136 [CrossRef]
    [Google Scholar]
  56. Cimermancic P, Medema MH, Claesen J, Kurita K, Wieland Brown LC et al. Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters. Cell 2014;158:412–421 [CrossRef]
    [Google Scholar]
  57. Poplawsky AR, Urban SC, Chun W. Biological role of Xanthomonadin pigments in Xanthomonas campestris pv. campestris. Appl Environ Microbiol 2000;66:5123–5127 [CrossRef]
    [Google Scholar]
  58. Rajagopal L, Sundari CS, Balasubramanian D, Sonti RV. The bacterial pigment xanthomonadin offers protection against photodamage. FEBS Lett 1997;415:125–128 [CrossRef]
    [Google Scholar]
  59. Molina-Henares MA, García-Salamanca A, Molina-Henares AJ, de la Torre J, Herrera MC et al. Functional analysis of aromatic biosynthetic pathways in Pseudomonas putida KT2440. Microb Biotechnol 2009;2:91–100 [CrossRef]
    [Google Scholar]
  60. Dakora FD, Matiru VN, Kanu AS. Rhizosphere ecology of lumichrome and riboflavin, two bacterial signal molecules eliciting developmental changes in plants. Front Plant Sci 2015;6:700 [CrossRef]
    [Google Scholar]
  61. Siddiqui IA, Haas D, Heeb S. Extracellular protease of Pseudomonas fluorescens CHA0, a biocontrol factor with activity against the root-knot nematode Meloidogyne incognita. Appl Environ Microbiol 2005;71:5646–5649 [CrossRef]
    [Google Scholar]
  62. Dunne C, Delany I, Fenton A, O'Gara F et al. Mechanisms involved in biocontrol by microbial inoculants. Agronomie 1996;16:721–729 [CrossRef]
    [Google Scholar]
  63. Shapira R, Ordentlich A, Chet I, Oppenheim AB. Control of plant diseases by chitinase expressed from cloned DNA in Escherichia coli. Phytopathology 1989;79:1246–1249 [CrossRef]
    [Google Scholar]
  64. Blomqvist K, Nikkola M, Lehtovaara P, Suihko ML, Airaksinen U et al. Characterization of the genes of the 2,3-butanediol operons from Klebsiella terrigena and Enterobacter aerogenes. J Bacteriol 1993;175:1392–1404 [CrossRef]
    [Google Scholar]
  65. Cho SM, Kang BR, Han SH, Anderson AJ, Park J-Y et al. 2R,3R-Butanediol, a Bacterial Volatile Produced by Pseudomonas chlororaphis O6, Is Involved in Induction of Systemic Tolerance to Drought in Arabidopsis thaliana. MPMI 2008;21:1067–1075 [CrossRef]
    [Google Scholar]
  66. Han SH, Lee SJ, Moon JH, Park KH, Yang KY et al. GacS-dependent production of 2R, 3R-butanediol by Pseudomonas chlororaphis O6 Is a major determinant for eliciting systemic resistance against Erwinia carotovora but not against Pseudomonas syringae pv. tabaci in Tobacco. MPMI 2006;19:924–930 [CrossRef]
    [Google Scholar]
  67. Castric PA. Hydrogen cyanide, a secondary metabolite of Pseudomonas aeruginosa. Can J Microbiol 1975;21:613–618 [CrossRef]
    [Google Scholar]
  68. Blumer C, Haas D. Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis. Arch Microbiol 2000;173:170–177 [CrossRef]
    [Google Scholar]
  69. Flaishman MA, Eyal Z, Zilberstein A, Voisard C, Haas D. Suppression of Septoria tritici Blotch and Leaf Rust of Wheat by Recombinant Cyanide-Producing Strains of Pseudomonas putida. MPMI 1996;9:642–645 [CrossRef]
    [Google Scholar]
  70. Voisard C, Keel C, Haas D, Dèfago G. Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. Embo J 1989;8:351–358 [CrossRef]
    [Google Scholar]
  71. Gallagher LA, Manoil C. Pseudomonas aeruginosa PAO1 kills Caenorhabditis elegans by cyanide poisoning. J Bacteriol 2001;183:6207–6214 [CrossRef]
    [Google Scholar]
  72. Insunza V, Alström S, Eriksson KB. Root bacteria from nematicidal plants and their biocontrol potential against trichodorid nematodes in potato. Plant Soil 2002;241:271–278 [CrossRef]
    [Google Scholar]
  73. Meyer SLF, Halbrendt JM, Carta LK, Skantar AM, Liu T et al. Toxicity of 2,4-diacetylphloroglucinol (DAPG) to plant-parasitic and bacterial-feeding nematodes. J Nematol 2009;41:274–280
    [Google Scholar]
  74. Goldberg JB, Hancock REW, Parales RE, Loper J, Pseudomonas CP. J Bacteriol 2007;2008:2649–2662
    [Google Scholar]
  75. de Souza JT, Weller DM, Raaijmakers JM. Frequency, Diversity, and Activity of 2,4-Diacetylphloroglucinol-Producing Fluorescent Pseudomonas spp. in Dutch Take-all Decline Soils. Phytopathology 2003;93:54–63 [CrossRef]
    [Google Scholar]
  76. Yang M, Mavrodi DV, Thomashow LS, Weller DM. Differential Response of Wheat Cultivars to Pseudomonas brassicacearum and Take-All Decline Soil. Phytopathology 2018;108:1363–1372 [CrossRef]
    [Google Scholar]
  77. Licciardello G, Strano CP, Bertani I, Bella P, Fiore A et al. N-acyl-homoserine-lactone quorum sensing in tomato phytopathogenic Pseudomonas spp. is involved in the regulation of lipodepsipeptide production. J Biotechnol 2012;159:274–282 [CrossRef]
    [Google Scholar]
  78. Licciardello G, Caruso A, Bella P, Gheleri R, Strano CP et al. The LuxR regulators PcoR and RfiA co-regulate antimicrobial peptide and alginate production in Pseudomonas corrugata. Front Microbiol 2018a;9:521 [CrossRef]
    [Google Scholar]
  79. Scholz-Schroeder BK, Hutchison ML, Grgurina I, Gross DC. The contribution of syringopeptin and syringomycin to virulence of Pseudomonas syringae pv. syringae strain B301D on the Basis of sypA and syrB1 biosynthesis mutant analysis. MPMI 2001;14:336–348 [CrossRef]
    [Google Scholar]
  80. Emanuele MC, Scaloni A, Lavermicocca P, Jacobellis NS, Camoni L et al. Corceptins, new bioactive lipodepsipeptides from cultures of Pseudomonas corrugata. FEBS Lett 1998;433:317–320 [CrossRef]
    [Google Scholar]
  81. Scaloni A, Dalla Serra M, Amodeo P, Mannina L, Vitale RM et al. Structure, conformation and biological activity of a novel lipodepsipeptide from Pseudomonas corrugata: cormycin A1. Biochem J 2004;384:25–36 [CrossRef]
    [Google Scholar]
  82. Bender CL, Alarcón-Chaidez F, Gross DC. Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Microbiol Mol Biol Rev 1999;63:266–292 [CrossRef]
    [Google Scholar]
  83. Backman PA, DeVay JE. Studies on the mode of action and biogenesis of the phytotoxin syringomycin. Physiol Plant Pathol 1971;1:215–233 [CrossRef]
    [Google Scholar]
  84. Bender CL, Rangaswamy V, Loper J. Polyketide production by plant-associated Pseudomonads. Annu Rev Phytopathol 1999;37:175–196 [CrossRef]
    [Google Scholar]
  85. Raaijmakers JM, De Bruijn I, Nybroe O, Ongena M. Natural functions of lipopeptides from Bacillus and Pseudomonas : more than surfactants and antibiotics. FEMS Microbiol Rev 2010;34:1037–1062 [CrossRef]
    [Google Scholar]
  86. Kuiper I, Lagendijk EL, Pickford R, Derrick JP, Lamers GEM et al. Characterization of two Pseudomonas putida lipopeptide biosurfactants, putisolvin I and II, which inhibit biofilm formation and break down existing biofilms. Mol Microbiol 2004;51:97–113 [CrossRef]
    [Google Scholar]
  87. Huang C-J, Pauwelyn E, Ongena M, Debois D, Leclère V et al. Characterization of cichopeptins, new phytotoxic cyclic lipodepsipeptides produced by Pseudomonas cichorii SF1-54 and their role in bacterial midrib rot disease of lettuce. MPMI 2015;28:1009–1022 [CrossRef]
    [Google Scholar]
  88. Licciardello G, Bertani I, Steindler L, Bella P, Venturi V et al. Pseudomonas corrugata contains a conserved N-acyl homoserine lactone quorum sensing system; its role in tomato pathogenicity and tobacco hypersensitivity response. FEMS Microbiol Ecol 2007;61:222–234 [CrossRef]
    [Google Scholar]
  89. Licciardello G, Caruso A, Bella P, Gheleri R, Strano CP et al. The LuxR regulators pcor and rfia co-regulate antimicrobial peptide and alginate production in Pseudomonas corrugata. Front Microbiol 2018b;9:521 [CrossRef]
    [Google Scholar]
  90. Molina L, Constantinescu F, Michel L, Reimmann C, Duffy B et al. Degradation of pathogen quorum-sensing molecules by soil bacteria: a preventive and curative biological control mechanism. FEMS Microbiol Ecol 2003;45:71–81 [CrossRef]
    [Google Scholar]
  91. Bleves S, Viarre V, Salacha R, Michel GPF, Filloux A et al. Protein secretion systems in Pseudomonas aeruginosa: A wealth of pathogenic weapons. Int J Med Microbiol 2010;300:534–543 [CrossRef]
    [Google Scholar]
  92. Skandalis N, Sarris P, Panopoulos NJ. Targeting injectisomes of virulence: benefits of thirty years of research on bacterial secretion systems, to crop protection. Hell Plant Prot J 2012;5:31–47
    [Google Scholar]
  93. Redondo-Nieto M, Barret M, Morrissey J, Germaine K, Martínez-Granero F et al. Genome sequence reveals that Pseudomonas fluorescens F113 possesses a large and diverse array of systems for rhizosphere function and host interaction. BMC Genomics 2013;14:54 [CrossRef]
    [Google Scholar]
  94. Alfano JR, Collmer A. Type III secretion system effector proteins: double agents in bacterial disease and plant defense. Annu Rev Phytopathol 2004;42:385–414 [CrossRef]
    [Google Scholar]
  95. Stringlis IA, Zamioudis C, Berendsen RL, Bakker PAHM, Pieterse CMJ. Type III secretion system of beneficial rhizobacteria Pseudomonas simiae WCS417 and Pseudomonas defensor WCS374. Front Microbiol 2019;10:1631 [CrossRef]
    [Google Scholar]
  96. Bertelli C, Laird MR, Williams KP, Lau BY, Hoad G et al. IslandViewer 4: expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res 2017;45:W30–W35 [CrossRef]
    [Google Scholar]
  97. Benjamins R, Scheres B. Auxin: the looping StAR in plant development. Annu Rev Plant Biol 2008;59:443–465 [CrossRef]
    [Google Scholar]
  98. Spaepen S, Vanderleyden J, Remans R. Indole-3-Acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 2007;31:425–448 [CrossRef]
    [Google Scholar]
  99. Huot B, Yao J, Montgomery BL, He SY. Growth-defense tradeoffs in plants: a balancing act to optimize fitness. Mol Plant 2014;7:1267–1287 [CrossRef]
    [Google Scholar]
  100. Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N et al. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 2006;312:436–439 [CrossRef]
    [Google Scholar]
  101. Robert-Seilaniantz A, Grant M, Jones JDG. Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annu Rev Phytopathol 2011;49:317–343 [CrossRef]
    [Google Scholar]
  102. Cui J, Bahrami AK, Pringle EG, Hernandez-Guzman G, Bender CL et al. Pseudomonas syringae manipulates systemic plant defenses against pathogens and herbivores. Proc Natl Acad Sci U S A 2005;102:1791–1796 [CrossRef]
    [Google Scholar]
  103. Pel MJC, Pieterse CMJ. Microbial recognition and evasion of host immunity. J Exp Bot 2013;64:1237–1248 [CrossRef]
    [Google Scholar]
  104. Leveau JHJ, Gerards S. Discovery of a bacterial gene cluster for catabolism of the plant hormone indole 3-acetic acid. FEMS Microbiol Ecol 2008;65:238–250 [CrossRef]
    [Google Scholar]
  105. Chadwick AV, Burg SP. Regulation of root growth by auxin-ethylene interaction. Plant Physiol 1970;45:192–200 [CrossRef]
    [Google Scholar]
  106. Chadwick AV, Burg SP. An explanation of the inhibition of root growth caused by indole-3-acetic acid. Plant Physiol 1967;42:415–420 [CrossRef]
    [Google Scholar]
  107. Glick BR. Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012;2012:1–15 [CrossRef]
    [Google Scholar]
  108. Pilet P-E, Saugy M. Effect on root growth of endogenous and applied IAA and ABA. Plant Physiol 1987;83:33–38 [CrossRef]
    [Google Scholar]
  109. Riov J, Yang SF. Ethylene and auxin-ethylene interaction in adventitious root formation in mung bean (Vigna radiata) cuttings. J Plant Growth Regul 1989;8:131–141 [CrossRef]
    [Google Scholar]
  110. Robison MM, Griffith M, Pauls KP, Glick BR. Dual role for ethylene in susceptibility of tomato to Verticillium wilt. J Phytopathol 2008;149:385–388 [CrossRef]
    [Google Scholar]
  111. Glick BR, Bashan Y. Genetic manipulation of plant growth-promoting bacteria to enhance biocontrol of phytopathogens. Biotechnol Adv 1997;15:353–378 [CrossRef]
    [Google Scholar]
  112. Glick BR, Cheng Z, Czarny J, Duan J. Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol 2007;119:329–339 [CrossRef]
    [Google Scholar]
  113. Honma M, Shimomura T. Metabolism of 1-aminocyclopropane-1-carboxylic acid. Agric Biol Chem 1978;42:1825–1831
    [Google Scholar]
  114. Dutta S, Biggs RH. Regulation of ethylene biosynthesis in citrus leaves infected with Xanthomonas campestris pv. citri. Physiol Plant 1991;82:225–230 [CrossRef]
    [Google Scholar]
  115. Kenyon JS, Turner JG. The stimulation of ethylene synthesis in Nicotiana tabacum leaves by the phytotoxin coronatine. Plant Physiol 1992;100:219–224 [CrossRef]
    [Google Scholar]
  116. Pegg GF, Cronshaw DK. Ethylene production in tomato plants infected with Verticillium albo-atrum. Physiol Plant Pathol 1976;8:279–295 [CrossRef]
    [Google Scholar]
  117. Iavicoli A, Boutet E, Buchala A, Métraux J-P. Induced systemic resistance in arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. MPMI 2003;16:851–858 [CrossRef]
    [Google Scholar]
  118. Vacheron J, Desbrosses G, Renoud S, Padilla R, Walker V et al. Differential Contribution of Plant-Beneficial Functions from Pseudomonas kilonensis F113 to Root System Architecture Alterations in Arabidopsis thaliana and Zea mays. MPMI 2018;31:212–223 [CrossRef]
    [Google Scholar]
  119. De Vleesschauwer D, Höfte M. Rhizobacteria-induced systemic resistance. Adv Bot Res 2009;51:223–281
    [Google Scholar]
  120. Preston GM. Plant perceptions of plant growth-promoting Pseudomonas. Phil Trans R Soc Lond B 2004;359:907–918 [CrossRef]
    [Google Scholar]
  121. Strano CP, Bella P, Licciardello G, Caruso A, Catara V. Role of secondary metabolites in the biocontrol activity of Pseudomonas corrugata and Pseudomonas mediterranea. Eur J Plant Pathol 2017;149:103–115 [CrossRef]
    [Google Scholar]
  122. Belimov A, Dodd I, Safronova V, Hontzeas N, Davies W. Pseudomonas brassicacearum strain Am3 containing 1-aminocyclopropane-1-carboxylate deaminase can show both pathogenic and growth-promoting properties in its interaction with tomato. J Exp Bot 2007;58:1485–1495 [CrossRef]
    [Google Scholar]
  123. Chung B-S, Aslam Z, Kim S-W, Kim G-G, Kang H-S et al. A bacterial endophyte, Pseudomonas brassicacearum YC5480, isolated from the root of Artemisia sp. producing antifungal and phytotoxic compounds. Plant Pathol J 2008;24:461–468 [CrossRef]
    [Google Scholar]
  124. Schwachtje J, Karojet S, Kunz S, Brouwer S, van Dongen JT. Plant-growth promoting effect of newly isolated rhizobacteria varies between two Arabidopsis ecotypes. Plant Signal Behav 2012;7:623–627 [CrossRef]
    [Google Scholar]
  125. Sikorski J, Jahr H, Wackernagel W. The structure of a local population of phytopathogenic Pseudomonas brassicacearum from agricultural soil indicates development under purifying selection pressure. Environ Microbiol 2001;3:176–186 [CrossRef]
    [Google Scholar]
  126. Jousset A, Rochat L, Péchy-Tarr M, Keel C, Scheu S et al. Predators promote defence of rhizosphere bacterial populations by selective feeding on non-toxic cheaters. ISME J 2009;3:666–674 [CrossRef]
    [Google Scholar]
  127. Song C, Mazzola M, Cheng X, Oetjen J, Alexandrov T et al. Molecular and chemical dialogues in bacteria-protozoa interactions. Sci Rep 2015;5:12837 [CrossRef]
    [Google Scholar]
  128. Darby C, Cosma CL, Thomas JH, Manoil C. Lethal paralysis of Caenorhabditis elegans by Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 1999;96:15202–15207 [CrossRef]
    [Google Scholar]
  129. Couillault C, Ewbank JJ. Diverse bacteria are pathogens of Caenorhabditis elegans. Infect Immun 2002;70:4705–4707 [CrossRef]
    [Google Scholar]
  130. Darby C, Hsu JW, Ghori N, Falkow S. Caenorhabditis elegans: plague bacteria biofilm blocks food intake. Nature 2002;417:243–244 [CrossRef]
    [Google Scholar]
  131. Joshua GWP, Karlyshev A V, Smith MP, Isherwood KE, Titball RW. A Caenorhabditis elegans model of Yersinia infection: biofilm formation on a biotic surface. Microbiology 2003;149:3221–3229 [CrossRef]
    [Google Scholar]
  132. Drace K, Darby C. The hmsHFRS operon of Xenorhabdus nematophila is required for biofilm attachment to Caenorhabditis elegans. Appl Environ Microbiol 2008;74:4509–4515 [CrossRef]
    [Google Scholar]
  133. Itoh Y, Rice JD, Goller C, Pannuri A, Taylor J et al. Roles of pgaABCD genes in synthesis, modification, and export of the Escherichia coli biofilm adhesin poly- -1,6-N-Acetyl-D-Glucosamine. J Bacteriol 2008;190:3670–3680 [CrossRef]
    [Google Scholar]
  134. Wang X, Preston JF, Romeo T. The pgaABCD locus of Escherichia coli promotes the synthesis of a polysaccharide adhesin required for biofilm formation. J Bacteriol 2004;186:2724–2734 [CrossRef]
    [Google Scholar]
  135. Jackson DW, Suzuki K, Oakford L, Simecka JW, Hart ME et al. Biofilm formation and dispersal under the influence of the global regulator csrA of Escherichia coli. J Bacteriol 2002;184:290–301 [CrossRef]
    [Google Scholar]
  136. Wang X, Dubey AK, Suzuki K, Baker CS, Babitzke P et al. CsrA post-transcriptionally represses pgaABCD, responsible for synthesis of a biofilm polysaccharide adhesin of Escherichia coli. Mol Microbiol 2005;56:1648–1663 [CrossRef]
    [Google Scholar]
  137. Lapouge K, Schubert M, Allain FH-T, Haas D. Gac/Rsm signal transduction pathway of γ-Proteobacteria: from RNA recognition to regulation of social behaviour. Mol Microbiol 2007;67:241–253 [CrossRef]
    [Google Scholar]
  138. Lynch JM. The Rhizosphere Chichester: John Wiley; 1990
    [Google Scholar]
  139. Suprapta DN. Potential of microbial antagonists as biocontrol agents agianst plant fungal pathogens. J Issaas 2012;18:1–8
    [Google Scholar]
  140. Callaway RM, Maron JL. What have exotic plant invasions taught us over the past 20 years?. Trends Ecol Evol 2006;21:369–374 [CrossRef]
    [Google Scholar]
  141. Alikhan N-F, Petty NK, Ben Zakour NL, Beatson SA. Blast ring image generator (BRIG): simple prokaryote genome comparisons. BMC Genomics 2011;12:402 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.001145
Loading
/content/journal/jmm/10.1099/jmm.0.001145
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error