Furanone quorum-sensing inhibitors with potential as novel therapeutics against Free

Abstract

Micro-organisms use quorum sensing (QS), a cell density-dependent process, to communicate. This QS mode of interchange leads to the production of a variety of virulence factors, co-ordination of complex bacterial behaviours, such as swarming motility, degradation of host tissue and biofilm formation. QS is implicated in numerous human infections and consequently researchers have sought ways of effectively inhibiting the process in pathogenic bacteria. Two decades ago, furanones were the first class of chemical compounds identified as QS inhibitors (QSIs). is a ubiquitous organism, capable of causing a wide range of infections in humans, including eye and ear infections, wound infections and potentially fatal bacteraemia and thus novel treatments against this organism are greatly needed. This review provides a brief background on QS and the use of furanones as QSIs. Based on the effectiveness of action, both and we will explore the use of furanones as potential antimicrobial therapeutics and conclude with open questions.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.001144
2020-01-23
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/69/2/195.html?itemId=/content/journal/jmm/10.1099/jmm.0.001144&mimeType=html&fmt=ahah

References

  1. Fuqua WC, Winans SC, Greenberg EP. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 1994; 176:269–275 [View Article]
    [Google Scholar]
  2. Seed PC, Passador L, Iglewski BH. Activation of the Pseudomonas aeruginosa lasI gene by LasR and the Pseudomonas autoinducer PAI: an autoinduction regulatory hierarchy. J Bacteriol 1995; 177:654–659 [View Article]
    [Google Scholar]
  3. Cvitkovitch DG, Li Y-H, Ellen RP. Quorum sensing and biofilm formation in streptococcal infections. J Clin Invest 2003; 112:1626–1632 [View Article]
    [Google Scholar]
  4. Lynch MJ, Swift S, Kirke DF, Keevil CW, Dodd CER et al. The regulation of biofilm development by quorum sensing in Aeromonas hydrophila . Environ Microbiol 2002; 4:18–28 [View Article]
    [Google Scholar]
  5. Hammer BK, Bassler BL. Quorum sensing controls biofilm formation in Vibrio cholerae . Mol Microbiol 2003; 50:101–104 [View Article]
    [Google Scholar]
  6. Labbate M, Queck SY, Koh KS, Rice SA, Givskov M et al. Quorum sensing-controlled biofilm development in Serratia liquefaciens MG1. J Bacteriol 2004; 186:692–698 [View Article]
    [Google Scholar]
  7. Rice SA, Koh KS, Queck SY, Labbate M, Lam KW et al. Biofilm formation and sloughing in Serratia marcescens are controlled by quorum sensing and nutrient cues. J Bacteriol 2005; 187:3477–3485 [View Article]
    [Google Scholar]
  8. Köhler T, Curty LK, Barja F, van Delden C, Pechère JC. Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J Bacteriol 2000; 182:5990–5996 [View Article]
    [Google Scholar]
  9. Andersson RA, Eriksson AR, Heikinheimo R, Mäe A, Pirhonen M et al. Quorum sensing in the plant pathogen Erwinia carotovora subsp. carotovora: the role of expR Ecc . Mol Plant Microbe Interact 2000; 13:384–393 [View Article]
    [Google Scholar]
  10. Parsek MR, Val DL, Hanzelka BL, Cronan JE, Greenberg EP. Acyl homoserine-lactone quorum-sensing signal generation. Proc Natl Acad Sci U S A 1999; 96:4360–4365 [View Article]
    [Google Scholar]
  11. Gambello MJ, Kaye S, Iglewski BH. LasR of Pseudomonas aeruginosa is a transcriptional activator of the alkaline protease gene (apr) and an enhancer of exotoxin A expression. Infect Immun 1993; 61:1180–1184 [View Article]
    [Google Scholar]
  12. Gambello MJ, Iglewski BH. Cloning and characterization of the Pseudomonas aeruginosa lasR gene, a transcriptional activator of elastase expression. J Bacteriol 1991; 173:3000–3009 [View Article]
    [Google Scholar]
  13. Schuster M, Lostroh CP, Ogi T, Greenberg EP. Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J Bacteriol 2003; 185:2066–2079 [View Article]
    [Google Scholar]
  14. Arevalo-Ferro C, Hentzer M, Reil G, Görg A, Kjelleberg S et al. Identification of quorum-sensing regulated proteins in the opportunistic pathogen Pseudomonas aeruginosa by proteomics. Environ Microbiol 2003; 5:1350–1369 [View Article]
    [Google Scholar]
  15. Lee J, Wu J, Deng Y, Wang J, Wang C et al. A cell-cell communication signal integrates quorum sensing and stress response. Nat Chem Biol 2013; 9:339–343 [View Article]
    [Google Scholar]
  16. Toder DS, Gambello MJ, Iglewski BH. Pseudomonas aeruginosa LasA: a second elastase under the transcriptional control of lasR. Mol Microbiol 1991; 5:2003–2010 [View Article]
    [Google Scholar]
  17. Pesci EC, Pearson JP, Seed PC, Iglewski BH. Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa . J Bacteriol 1997; 179:3127–3132 [View Article]
    [Google Scholar]
  18. Latifi A, Foglino M, Tanaka K, Williams P, Lazdunski A. A hierarchical quorum-sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhIR (VsmR) to expression of the stationary-phase sigma factor rpoS. Mol Microbiol 1996; 21:1137–1146 [View Article]
    [Google Scholar]
  19. Wade DS, Calfee MW, Rocha ER, Ling EA, Engstrom E et al. Regulation of Pseudomonas quinolone signal synthesis in Pseudomonas aeruginosa . J Bacteriol 2005; 187:4372–4380 [View Article]
    [Google Scholar]
  20. Pearson JP, Pesci EC, Iglewski BH. Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J Bacteriol 1997; 179:5756–5767 [View Article]
    [Google Scholar]
  21. Pessi G, Haas D. Transcriptional control of the hydrogen cyanide biosynthetic genes hcnABC by the anaerobic regulator ANR and the quorum-sensing regulators LasR and RhlR in Pseudomonas aeruginosa . J Bacteriol 2000; 182:6940–6949 [View Article]
    [Google Scholar]
  22. Rutherford ST, Bassler BL. Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med 2012; 2:a012427–25 [View Article]
    [Google Scholar]
  23. Papenfort K, Bassler BL. Quorum sensing signal–response systems in gram-negative bacteria. Nat Rev Microbiol 2016; 14:576–588 [View Article]
    [Google Scholar]
  24. Koutsoudis MD, Tsaltas D, Minogue TD, von Bodman SB. Quorum-sensing regulation governs bacterial adhesion, biofilm development, and host colonization in Pantoea stewartii subspecies stewartii . Proc Natl Acad Sci U S A 2006; 103:5983–5988 [View Article]
    [Google Scholar]
  25. Kim SG, Yoon YH, Choi JW, Rha KS, Park YH. Effect of furanone on experimentally induced Pseudomonas aeruginosa biofilm formation: in vitro study. Int J Pediatr Otorhinolaryngol 2012; 76:1575–1578 [View Article]
    [Google Scholar]
  26. Keays T, Ferris W, Vandemheen KL, Chan F, Yeung S-W et al. A retrospective analysis of biofilm antibiotic susceptibility testing: a better predictor of clinical response in cystic fibrosis exacerbations. J Cyst Fibros 2009; 8:122–127 [View Article]
    [Google Scholar]
  27. McCarty SM, Percival SL. Proteases and delayed wound healing. Adv wound care 2013; 2:438–447 [View Article]
    [Google Scholar]
  28. Flemming H-C, Wingender J, Szewzyk U, Steinberg P, Rice SA et al. Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 2016; 14:563–575 [View Article]
    [Google Scholar]
  29. Crouzet M, Claverol S, Lomenech A-M, Le Sénéchal C, Costaglioli P et al. Pseudomonas aeruginosa cells attached to a surface display a typical proteome early as 20 minutes of incubation. PLoS One 2017; 12:e0180341–24 [View Article]
    [Google Scholar]
  30. Siryaporn A, Kuchma SL, O’Toole GA, Gitai Z, Ausubel FM. Surface attachment induces Pseudomonas aeruginosa virulence. Proc Natl Acad Sci U S A 2014; 111:16860–16865 [View Article]
    [Google Scholar]
  31. Davey ME, Caiazza NC, O'Toole GA. Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J Bacteriol 2003; 185:1027–1036 [View Article]
    [Google Scholar]
  32. Sauer K, Cullen MC, Rickard AH, Zeef LAH, Davies DG et al. Characterization of nutrient-induced dispersion in Pseudomonas aeruginosa PAO1 biofilm. J Bacteriol 2004; 186:7312–7326 [View Article]
    [Google Scholar]
  33. O'Toole GA, Kolter R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 1998; 30:295–304 [View Article]
    [Google Scholar]
  34. Brackman G, Coenye T. Quorum sensing inhibitors as anti-biofilm agents. Curr Pharm Des 2014; 21:5–11 [View Article]
    [Google Scholar]
  35. de Nys R, Wright AD, König GM, Sticher O. New halogenated furanones from the marine alga Delisea pulchra (cf. fimbriata). Tetrahedron 1993; 49:11213–11220 [View Article]
    [Google Scholar]
  36. Slaughter JC. The naturally occurring furanones: formation and function from pheromone to food. Biol Rev Camb Philos Soc 1999; 74:259–276 [View Article]
    [Google Scholar]
  37. Arihara K, Yokoyama I, Ohata M. DMHF (2,5-dimethyl-4-hydroxy-3(2H)-furanone), a volatile food component with attractive sensory properties, brings physiological functions through inhalation. In Advances in Food and Nutrition Research Elsevier Inc; 2019239–258
    [Google Scholar]
  38. Wang Y, Ho C-T. Formation of 2,5-dimethyl-4-hydroxy-3(2H)-furanone through methylglyoxal: a Maillard reaction intermediate. J Agric Food Chem 2008; 56:7405–7409 [View Article]
    [Google Scholar]
  39. Dahlen T, Hauck T, Wein M, Schwab W. 2,5-Dimethyl-4-hydroxy-3(2H)-furanone as a secondary metabolite from D-fructose-1,6-diphosphate metabolism by Zygosaccharomyces rouxii . J Biosci Bioeng 2001; 91:352–358 [View Article]
    [Google Scholar]
  40. Phainuphong P, Rukachaisirikul V, Tadpetch K, Sukpondma Y, Saithong S et al. γ -Butenolide and furanone derivatives from the soil-derived fungus Aspergillus sclerotiorum PSU-RSPG178. Phytochemistry 2017; 137:165–173 [View Article]
    [Google Scholar]
  41. Tanabe Y, Ohno N. Novel and efficient synthesis of 2(5H)-furanone derivatives. J Org Chem 1988; 53:1560–1563 [View Article]
    [Google Scholar]
  42. Caine D, Ukachukwu VC. A new synthesis of 3-n-butyl-4-bromo-5(Z)-bromomethylidene-2(5H)-furanone, a naturally occurring fimbrolide from Delisia fimbriata (Bonnemaisoniaceae). J Org Chem 1985; 50:2195–2198 [View Article]
    [Google Scholar]
  43. Rodin JO, Himel CM, Silverstein RM, Leeper RW, Gortner WA. Volatile flavor and aroma components of pineapple. l. Isolation and tentative identification of 2,5-dimethyl-4-hydroxy-3(2H)-furanone. J Food Sci 1965; 30:280–285 [View Article]
    [Google Scholar]
  44. Kendall EC, Hajos ZG. Tetrahydro-3,4-furandione. I. Preparation and properties. J Am Chem Soc 1960; 82:3219–3220 [View Article]
    [Google Scholar]
  45. Nealson KH, Platt T, Hastings JW. Cellular control of the synthesis and activity of the bacterial luminescent system. J Bacteriol 1970; 104:313–322
    [Google Scholar]
  46. Eberhard A, Burlingame AL, Eberhard C, Kenyon GL, Nealson KH et al. Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry 1981; 20:2444–2449 [View Article]
    [Google Scholar]
  47. Givskov M, de Nys R, Manefield M, Gram L, Maximilien R et al. Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling. J Bacteriol 1996; 178:6618–6622 [View Article]
    [Google Scholar]
  48. Manefield M, de Nys R, Naresh K, Roger R, Givskov M et al. Evidence that halogenated furanones from Delisea pulchra inhibit acylated homoserine lactone (AHL)-mediated gene expression by displacing the AHL signal from its receptor protein. Microbiology 1999; 145:283–291 [View Article]
    [Google Scholar]
  49. Welch M, Todd DE, Whitehead NA, McGowan SJ, Bycroft BW et al. N-acyl homoserine lactone binding to the CarR receptor determines quorum-sensing specificity in Erwinia . EMBO J 2000; 19:631–641 [View Article]
    [Google Scholar]
  50. Manefield M, Welch M, Givskov M, Salmond GP, Kjelleberg S. Halogenated furanones from the red alga, Delisea pulchra, inhibit carbapenem antibiotic synthesis and exoenzyme virulence factor production in the phytopathogen Erwinia carotovora . FEMS Microbiol Lett 2001; 205:131–138 [View Article]
    [Google Scholar]
  51. McGowan SJ, Barnard AML, Bosgelmez G, Sebaihia M, Simpson NJL et al. Carbapenem antibiotic biosynthesis in Erwinia carotovora is regulated by physiological and genetic factors modulating the quorum sensing-dependent control pathway. Mol Microbiol 2004; 55:526–545 [View Article]
    [Google Scholar]
  52. Ren D, Sims JJ, Wood TK, Thomas K, Biology C. Inhibition of biofilm formation and swarming of Escherichia coli by (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone. Environ Microbiol 2001; 3:731–736 [View Article]
    [Google Scholar]
  53. Shetye GS, Singh N, Gao X, Bandyopadhyay D, Yan A et al. Structures and biofilm inhibition activities of brominated furanones for Escherichia coli and Pseudomonas aeruginosa . Medchemcomm 2013; 4:1079 [View Article]
    [Google Scholar]
  54. Vestby LK, Johannesen KCS, Witsø IL, Habimana O, Scheie AA et al. Synthetic brominated furanone F202 prevents biofilm formation by potentially human pathogenic Escherichia coli O103:H2 and Salmonella ser. Agona on abiotic surfaces. J Appl Microbiol 2014; 116:258–268 [View Article]
    [Google Scholar]
  55. Witsø IL, Benneche T, Vestby LK, Nesse LL, Lönn-Stensrud J et al. Thiophenone and furanone in control of Escherichia coli O103:H2 virulence. Pathog Dis 2014; 70:297–306 [View Article]
    [Google Scholar]
  56. Hentzer M, Riedel K, Rasmussen TB, Heydorn A, Andersen JB et al. Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology 2002; 148:87–102 [View Article]
    [Google Scholar]
  57. Hentzer M, Wu H, Andersen JB, Riedel K, Rasmussen TB et al. Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J 2003; 22:3803–3815 [View Article]
    [Google Scholar]
  58. Choi S-C, Zhang C, Moon S, Oh Y-S. Inhibitory effects of 4-hydroxy-2,5-dimethyl-3(2H)-furanone (HDMF) on acyl-homoserine lactone-mediated virulence factor production and biofilm formation in Pseudomonas aeruginosa PAO1. J Microbiol 2014; 52:734–742 [View Article]
    [Google Scholar]
  59. Ren D, Zuo R, Wood TK. Quorum-sensing antagonist (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone influences siderophore biosynthesis in Pseudomonas putida and Pseudomonas aeruginosa . Appl Microbiol Biotechnol 2005; 66:689–695 [View Article]
    [Google Scholar]
  60. Defoirdt T, Miyamoto CM, Wood TK, Meighen EA, Sorgeloos P et al. The natural furanone (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone disrupts quorum sensing-regulated gene expression in Vibrio harveyi by decreasing the DNA-binding activity of the transcriptional regulator protein luxR. Environ Microbiol 2007; 9:2486–2495 [View Article]
    [Google Scholar]
  61. Kim C, Kim J, Park H-Y, Park H-J, Lee JH et al. Furanone derivatives as quorum-sensing antagonists of Pseudomonas aeruginosa . Appl Microbiol Biotechnol 2008; 80:37–47 [View Article]
    [Google Scholar]
  62. Mulcahy LR, Burns JL, Lory S, Lewis K. Emergence of Pseudomonas aeruginosa strains producing high levels of persister cells in patients with cystic fibrosis. J Bacteriol 2010; 192:6191–6199 [View Article]
    [Google Scholar]
  63. Fauvart M, De Groote VN, Michiels J. Role of persister cells in chronic infections: clinical relevance and perspectives on anti-persister therapies. J Med Microbiol 2011; 60:699–709 [View Article]
    [Google Scholar]
  64. Pan J, Bahar AA, Syed H, Ren D. Reverting antibiotic tolerance of Pseudomonas aeruginosa PAO1 persister cells by (Z)-4-bromo-5-(bromomethylene)-3-methylfuran-2(5H)-one. PLoS One 2012; 7:e45778 [View Article]
    [Google Scholar]
  65. Pan J, Ren D. Structural effects on persister control by brominated furanones. Bioorg Med Chem Lett 2013; 23:6559–6562 [View Article]
    [Google Scholar]
  66. Schaefer AL, Val DL, Hanzelka BL, Cronan JE, Greenberg EP et al. Generation of cell-to-cell signals in quorum sensing: acyl homoserine lactone synthase activity of a purified Vibrio fischeri LuxI protein. Proc Natl Acad Sci U S A 1996; 93:9505–9509 [View Article]
    [Google Scholar]
  67. Fetar H, Gilmour C, Klinoski R, Daigle DM, Dean CR et al. mexEF-oprN multidrug efflux operon of Pseudomonas aeruginosa: regulation by the MexT activator in response to nitrosative stress and chloramphenicol. Antimicrob Agents Chemother 2011; 55:508–514 [View Article]
    [Google Scholar]
  68. Yan N. Structural biology of the major facilitator superfamily transporters. Annu Rev Biophys 2015; 44:257–283 [View Article]
    [Google Scholar]
  69. Kumar S, Mukherjee MM, Varela MF. Modulation of bacterial multidrug resistance efflux pumps of the major facilitator superfamily. Int J Bacteriol 2013; 2013:1–15 [View Article]
    [Google Scholar]
  70. Du D, Wang-Kan X, Neuberger A, van Veen HW, Pos KM et al. Multidrug efflux pumps: structure, function and regulation. Nat Rev Microbiol 2018; 16:523–539 [View Article]
    [Google Scholar]
  71. Meng X-Y, Zhang H-X, Mezei M, Cui M. Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des 2011; 7:146–157 [View Article]
    [Google Scholar]
  72. Liu G-Y, Guo B-Q, Chen W-N, Cheng C, Zhang Q-L et al. Synthesis, molecular docking, and biofilm formation inhibitory activity of 5-substituted 3,4-dihalo-5H-furan-2-one derivatives on Pseudomonas aeruginosa . Chem Biol Drug Des 2012; 79:628–638 [View Article]
    [Google Scholar]
  73. Brackman G, Risseeuw M, Celen S, Cos P, Maes L et al. Synthesis and evaluation of the quorum sensing inhibitory effect of substituted triazolyldihydrofuranones. Bioorg Med Chem 2012; 20:4737–4743 [View Article]
    [Google Scholar]
  74. Castang S, Chantegrel B, Deshayes C, Dolmazon R, Gouet P et al. N-Sulfonyl homoserine lactones as antagonists of bacterial quorum sensing. Bioorg Med Chem Lett 2004; 14:5145–5149 [View Article]
    [Google Scholar]
  75. Boukraa M, Sabbah M, Soulère L, El Efrit ML, Queneau Y et al. AHL-dependent quorum sensing inhibition: synthesis and biological evaluation of α-(N-alkyl-carboxamide)-γ-butyrolactones and α-(N-alkyl-sulfonamide)-γ-butyrolactones. Bioorg Med Chem Lett 2011; 21:6876–6879 [View Article]
    [Google Scholar]
  76. Ahumedo Monterrosa M, Galindo JF, Vergara Lorduy J, Alí-Torres J, Vivas-Reyes R. The role of LasR active site amino acids in the interaction with the acyl homoserine lactones (AHLs) analogues: a computational study. J Mol Graph Model 2019; 86:113–124 [View Article]
    [Google Scholar]
  77. Chang Y, Wang P-C, Ma H-M CS-Y, Y-H F et al. Design, synthesis and evaluation of halogenated furanone derivatives as quorum sensing inhibitors in Pseudomonas aeruginosa . Eur J Pharm Sci 2019; 105058:
    [Google Scholar]
  78. Hanzelka BL, Greenberg EP. Evidence that the N-terminal region of the Vibrio fischeri LuxR protein constitutes an autoinducer-binding domain. J Bacteriol 1995; 177:815–817 [View Article]
    [Google Scholar]
  79. Choi SH, Greenberg EP. The C-terminal region of the Vibrio fischeri LuxR protein contains an inducer-independent lux gene activating domain. Proc Natl Acad Sci U S A 1991; 88:11115–11119 [View Article]
    [Google Scholar]
  80. Bottomley MJ, Muraglia E, Bazzo R, Carfì A. Molecular insights into quorum sensing in the human pathogen Pseudomonas aeruginosa from the structure of the virulence regulator LasR bound to its autoinducer. J Biol Chem 2007; 282:13592–13600 [View Article]
    [Google Scholar]
  81. Mukherjee S, Moustafa DA, Stergioula V, Smith CD, Goldberg JB et al. The PqsE and RhlR proteins are an autoinducer synthase-receptor pair that control virulence and biofilm development in Pseudomonas aeruginosa . Proc Natl Acad Sci U S A 2018; 115:E9411–9418 [View Article]
    [Google Scholar]
  82. Wu H, Song Z, Hentzer M, Andersen JB, Molin S et al. Synthetic furanones inhibit quorum-sensing and enhance bacterial clearance in Pseudomonas aeruginosa lung infection in mice. J Antimicrob Chemother 2004; 53:1054–1061 [View Article]
    [Google Scholar]
  83. Ruffin M, Brochiero E. Repair process impairment by Pseudomonas aeruginosa in epithelial tissues: major features and potential therapeutic avenues. Front Cell Infect Microbiol 2019; 9:182 [View Article]
    [Google Scholar]
  84. Ruffin M, Bilodeau C, Maillé Émilie, LaFayette SL, McKay GA et al. Quorum-sensing inhibition abrogates the deleterious impact of Pseudomonas aeruginosa on airway epithelial repair. Faseb J 2016; 30:3011–3025 [View Article]
    [Google Scholar]
  85. Siebert A, Goren I, Pfeilschifter J, Frank S. Anti-Inflammatory effects of rosiglitazone in obesity-impaired wound healing depend on adipocyte differentiation. PLoS One 2016; 11:e0168562 [View Article]
    [Google Scholar]
  86. Attinger C, Wolcott R. Clinically addressing biofilm in chronic wounds. Adv Wound Care 2012; 1:127–132 [View Article]
    [Google Scholar]
  87. Xu X-J, Wang F, Zeng T, Lin J, Liu J et al. 4-arylamidobenzyl substituted 5-bromomethylene-2(5H)-furanones for chronic bacterial infection. Eur J Med Chem 2018; 144:164–178 [View Article]
    [Google Scholar]
  88. Janssens JCA, Steenackers H, Robijns S, Gellens E, Levin J et al. Brominated furanones inhibit biofilm formation by Salmonella enterica serovar Typhimurium. Appl Environ Microbiol 2008; 74:6639–6648 [View Article]
    [Google Scholar]
  89. Rasko DA, Sperandio V. Anti-virulence strategies to combat bacteria-mediated disease. Nat Rev Drug Discov 2010; 9:117–128 [View Article]
    [Google Scholar]
  90. Bjarnsholt T, Tolker-Nielsen T, Høiby N, Givskov M. Interference of Pseudomonas aeruginosa signalling and biofilm formation for infection control. Expert Rev Mol Med 2010; 12:e11 [View Article]
    [Google Scholar]
  91. Maeda T, García-Contreras R, Pu M, Sheng L, Garcia LR et al. Quorum quenching quandary: resistance to antivirulence compounds. ISME J 2012; 6:493–501 [View Article]
    [Google Scholar]
  92. García-Contreras R, Martínez-Vázquez M, Velázquez Guadarrama N, Villegas Pañeda AG, Hashimoto T et al. Resistance to the quorum-quenching compounds brominated furanone C-30 and 5-fluorouracil in Pseudomonas aeruginosa clinical isolates. Pathog Dis 2013; 68:8–11 [View Article]
    [Google Scholar]
  93. Feltner JB, Wolter DJ, Pope CE, Groleau M-C, Smalley NE et al. LasR variant cystic fibrosis isolates reveal an adaptable quorum-sensing hierarchy in Pseudomonas aeruginosa . mBio 2016; 7:E01513–e01513 [View Article]
    [Google Scholar]
  94. Mayer-Hamblett N, Rosenfeld M, Gibson RL, Ramsey BW, Kulasekara HD et al. Pseudomonas aeruginosa in vitro phenotypes distinguish cystic fibrosis infection stages and outcomes. Am J Respir Crit Care Med 2014; 190:289–297
    [Google Scholar]
  95. Lee J, Zhang L. The hierarchy quorum sensing network in Pseudomonas aeruginosa . Protein Cell 2015; 6:26–41 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.001144
Loading
/content/journal/jmm/10.1099/jmm.0.001144
Loading

Data & Media loading...

Most cited Most Cited RSS feed