1887

Abstract

spp. are commensals of the human microbiota, and a leading cause of opportunistic nosocomial infections. The incidence of multidrug resistant (MDR) strains of causing serious infections is increasing, and is an emerging pathogen. Alternative strategies to tackle infections caused by these bacteria are required as strains become resistant to last-resort antibiotics such as colistin. Bacteriophages (phages) are viruses that can infect and kill bacteria. They and their gene products are now being considered as alternatives or adjuncts to antimicrobial therapies. Several and studies have shown the potential for lytic phages to combat MDR infections. Ready access to cheap sequencing technologies has led to a large increase in the number of genomes available for -infecting phages, with these phages being heterogeneous at the whole-genome level. This review summarizes our current knowledge on phages of spp. and highlights technological and biological issues relevant to the development of phage-based therapies targeting these bacteria.

Funding
This study was supported by the:
  • Lesley Hoyles , Medical Research Council , (Award MR/L01632X/1)
Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.001141
2020-01-24
2020-02-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/69/2/176.html?itemId=/content/journal/jmm/10.1099/jmm.0.001141&mimeType=html&fmt=ahah

References

  1. Podschun R, Ullmann U. Klebsiella spp. as Nosocomial Pathogens: Epidemiology, Taxonomy, Typing Methods, and Pathogenicity Factors. Clin Microbiol Rev 1998; 11:589–603 [CrossRef]
    [Google Scholar]
  2. Shon AS, Bajwa RPS, Hypervirulent RTA. hypermucoviscous) Klebsiella pneumoniae: a new and dangerous breed. Virulence 2013; 4:107–118
    [Google Scholar]
  3. World Health Organization Global antimicrobial resistance surveillance system (glass) report. early implementation 2017-2018; 2018
  4. Chong Y, Yakushiji H, Ito Y, Kamimura T. Clinical and molecular epidemiology of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae in a long-term study from Japan. Eur J Clin Microbiol Infect Dis 2011; 30:83–87 [CrossRef]
    [Google Scholar]
  5. Khan E, Schneiders T, Zafar A, Aziz E, Parekh A et al. Emergence of CTX-M Group 1-ESBL producing Klebsiella pneumonia from a tertiary care centre in Karachi, Pakistan. J Infect Dev Ctries 2010; 4:472–476 [CrossRef]
    [Google Scholar]
  6. Mshana SE, Hain T, Domann E, Lyamuya EF, Chakraborty T et al. Predominance of Klebsiella pneumoniaeST14 carrying CTX-M-15 causing neonatal sepsis in Tanzania. BMC Infect Dis 2013; 13:466 [CrossRef]
    [Google Scholar]
  7. Valenza G, Nickel S, Pfeifer Y, Eller C, Krupa E et al. Extended-spectrum-β-lactamase-producing Escherichia coli as intestinal colonizers in the German community. Antimicrob Agents Chemother 2014; 58:1228–1230 [CrossRef]
    [Google Scholar]
  8. Grundmann H, Glasner C, Albiger B, Aanensen DM, Tomlinson CT et al. Occurrence of carbapenemase-producing Klebsiella pneumoniae and Escherichia coli in the European survey of carbapenemase-producing Enterobacteriaceae (EuSCAPE): a prospective, multinational study. Lancet Infect Dis 2017; 17:153–163 [CrossRef]
    [Google Scholar]
  9. England PH. Carbapenemase-producing Enterobacteriaceae: laboratory confirmed cases, 2003 to 2015. Gov.uk 2016
    [Google Scholar]
  10. Potron A, Poirel L, Rondinaud E, Nordmann P. Intercontinental spread of OXA-48 beta-lactamase-producing Enterobacteriaceae over a 11-year period, 2001 to 2011. Euro Surveill 2013; 18:20549–22 [CrossRef]
    [Google Scholar]
  11. Johnson AP, Woodford N. Global spread of antibiotic resistance: the example of New Delhi metallo-β-lactamase (NDM)-mediated carbapenem resistance. J Med Microbiol 2013; 62:499–513 [CrossRef]
    [Google Scholar]
  12. Nordmann P, Poirel L, Walsh TR, Livermore DM. The emerging NDM carbapenemases. Trends Microbiol 2011; 19:588–595 [CrossRef]
    [Google Scholar]
  13. Glasner C, Albiger B, Buist G, Tambić Andrašević A, Cantón R et al. Carbapenemase-producing Enterobacteriaceae in Europe: a survey among national experts from 39 countries, February 2013. Eurosurveillance 2013; 18: [CrossRef]
    [Google Scholar]
  14. David S, Reuter S, Harris SR, Glasner C, Feltwell T et al. Epidemic of carbapenem-resistant Klebsiella pneumoniae in Europe is driven by nosocomial spread. Nat Microbiol 20191–11
    [Google Scholar]
  15. Broberg CA, Palacios M, Miller VL. Klebsiella: a long way to go towards understanding this enigmatic jet-setter. F1000Prime Rep 2014; 6:64 [CrossRef]
    [Google Scholar]
  16. Moradigaravand D, Martin V, Peacock SJ, Parkhill J. Population structure of multidrug-resistant Klebsiella oxytoca within hospitals across the United Kingdom and ireland identifies sharing of virulence and resistance genes with K. pneumoniae . Genome Biol Evol 2017; 9:574–584 [CrossRef]
    [Google Scholar]
  17. Eades C, Davies F, Donaldson H, Hopkins K, Hill R et al. GES-5 carpabapenemase-producing Klebsiella oxytoca causing clinical infection in a UK haematopoetic stem cell transplantation unit.
  18. Liu P, Li X, Luo M, Xu X, Su K et al. Risk Factors for Carbapenem-Resistant Klebsiella pneumoniae Infection: A Meta-Analysis. Microbial Drug Resistance 2018; 24:190–198 [CrossRef]
    [Google Scholar]
  19. Nouvenne A, Ticinesi A, Lauretani F, Maggio M, Lippi G et al. Comorbidities and disease severity as risk factors for carbapenem-resistant Klebsiella pneumoniae colonization: report of an experience in an internal medicine unit. PLoS One 2014; 9:e110001 [CrossRef]
    [Google Scholar]
  20. Shaikh S, Fatima J, Shakil S, Rizvi SMD, Kamal MA. Risk factors for acquisition of extended spectrum beta lactamase producing Escherichia coli and Klebsiella pneumoniae in North-Indian hospitals. Saudi J Biol Sci 2015; 22:37–41 [CrossRef]
    [Google Scholar]
  21. Tuon FF, Kruger M, Terreri M, Penteado-Filho SR, Gortz L. Klebsiella ESBL bacteremia-mortality and risk factors. Brazilian Journal of Infectious Diseases 2011; 15:594–598 [CrossRef] [CrossRef]
    [Google Scholar]
  22. Tumbarello M, Spanu T, Sanguinetti M, Citton R, Montuori E et al. Bloodstream Infections Caused by Extended-Spectrum- -Lactamase-Producing Klebsiella pneumoniae: Risk Factors, Molecular Epidemiology, and Clinical Outcome. Antimicrob Agents Chemother 2006; 50:498–504 [CrossRef]
    [Google Scholar]
  23. Yu J, Tan K, Rong Z, Wang Y, Chen Z et al. Nosocomial outbreak of KPC-2- and NDM-1-producing Klebsiella pneumoniae in a neonatal ward: a retrospective study. BMC Infect Dis 2016; 16:563 [CrossRef]
    [Google Scholar]
  24. Meatherall BL, Gregson D, Ross T, Pitout JDD, Laupland KB. Incidence, risk factors, and outcomes of Klebsiella pneumoniae bacteremia. Am J Med 2009; 122:866–873 [CrossRef]
    [Google Scholar]
  25. Lee C-H, Chen I-L, Chuah S-K, Tai W-C, Chang C-C et al. Impact of glycemic control on capsular polysaccharide biosynthesis and opsonophagocytosis of Klebsiella pneumoniae: implications for invasive syndrome in patients with diabetes mellitus. Virulence 2016; 7:770–778 [CrossRef]
    [Google Scholar]
  26. Silva N, Oliveira M, Bandeira AC, Brites C. Risk factors for infection by extended-spectrum beta-lactamase producing Klebsiella pneumoniae in a tertiary hospital in Salvador, Brazil. Brazilian Journal of Infectious Diseases 2006; 10:191–193 [CrossRef]
    [Google Scholar]
  27. Zollner‐Schwetz I, Högenauer C, Joainig M, Weberhofer P, Gorkiewicz G et al. Role of Klebsiella oxytoca in Antibiotic‐Associated Diarrhea. Clinical Infectious Diseases 2008; 47:e74–e78 [CrossRef]
    [Google Scholar]
  28. Herzog KAT, Schneditz G, Leitner E, Feierl G, Hoffmann KM et al. Genotypes of Klebsiella oxytoca isolates from patients with nosocomial pneumonia are distinct from those of isolates from patients with antibiotic-associated hemorrhagic colitis. J Clin Microbiol 2014; 52:1607–1616 [CrossRef]
    [Google Scholar]
  29. Singh L, Cariappa MP, Kaur M. Klebsiella oxytoca: An emerging pathogen?. Medical Journal Armed Forces India 2016; 72:S59–S61 [CrossRef]
    [Google Scholar]
  30. Wyres KL, Wick RR, Gorrie C, Jenney A, Follador R et al. Identification of Klebsiella capsule synthesis loci from whole genome data. Microb Genomics 2016; 2:e000102 [CrossRef]
    [Google Scholar]
  31. Cortés G et al. Molecular analysis of the contribution of the capsular polysaccharide and the lipopolysaccharide O side chain to the virulence of Klebsiella pneumoniae in a murine model of pneumonia. Infect Immun 2002; 70:2583–2590 [CrossRef]
    [Google Scholar]
  32. Yoshida K, Yamaguchi K, Uchida Kou, Tsujimoto S, Matsumoto T et al. Role of bacterial capsule in local and systemic inflammatory responses of mice during pulmonary infection with Klebsiella pneumoniae . J Med Microbiol 2000; 49:1003–1010 [CrossRef]
    [Google Scholar]
  33. Lawlor MS, Handley SA, Miller VL. Comparison of the host responses to wild-type and cpsB mutant Klebsiella pneumoniae infections. Infect Immun 2006; 74:5402–5407 [CrossRef]
    [Google Scholar]
  34. Follador R, Heinz E, Wyres KL, Ellington MJ, Kowarik M et al. The diversity of Klebsiella pneumoniae surface polysaccharides. Microb Genomics 2016; 2:e000073 [CrossRef]
    [Google Scholar]
  35. Merino S, Camprubí S, Albertí S, Benedí VJ, Tomás JM. Mechanisms of Klebsiella pneumoniae resistance to complement-mediated killing. Infect Immun 1992; 60:2529–2535 [CrossRef]
    [Google Scholar]
  36. Paczosa MK, Mecsas J. Klebsiella pneumoniae: going on the offense with a strong defense. Microbiol. Mol. Biol. Rev. 2016; 80:629–661 [CrossRef]
    [Google Scholar]
  37. Struve C, Bojer M, Krogfelt KA. Characterization of Klebsiella pneumoniae type 1 fimbriae by detection of phase variation during colonization and infection and impact on virulence. Infect Immun 2008; 76:4055–4065 [CrossRef]
    [Google Scholar]
  38. Struve C, Bojer M, Krogfelt KA. Identification of a conserved chromosomal region encoding Klebsiella pneumoniae type 1 and type 3 fimbriae and assessment of the role of fimbriae in pathogenicity. Infect Immun 2009; 77:5016–5024 [CrossRef]
    [Google Scholar]
  39. Holt KE, Wertheim H, Zadoks RN, Baker S, Whitehouse CA et al. Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proc Natl Acad Sci U S A 2015; 112:E3574–E3581 [CrossRef]
    [Google Scholar]
  40. Rodrigues C, Passet V, Rakotondrasoa A, Diallo TA, Criscuolo A et al. Description of Klebsiella africanensis sp. nov., Klebsiella variicola subsp. tropicalensis subsp. nov. and Klebsiella variicola subsp. variicola subsp. nov. Res Microbiol 2019; 170:165–170 [CrossRef]
    [Google Scholar]
  41. Jun J-B. Klebsiella pneumoniae Liver Abscess. Infect Chemother 2018; 50:210–218 [CrossRef]
    [Google Scholar]
  42. Lee C-R, Lee JH, Park KS, Jeon JH, Kim YB et al. Antimicrobial resistance of hypervirulent Klebsiella pneumoniae: epidemiology, hypervirulence-associated determinants, and resistance mechanisms. Front Cell Infect Microbiol 2017; 7:483 [CrossRef]
    [Google Scholar]
  43. Merla C, Rodrigues C, Passet V, Corbella M, Thorpe HA et al. Description of Klebsiella spallanzanii sp. nov. and of Klebsiella pasteurii sp. nov. Front Microbiol 2019; 10:2360 [CrossRef]
    [Google Scholar]
  44. On an invisible microbe antagonistic to dysentery bacilli . Note by M. F. d’Herelle, presented by M. Roux. Comptes Rendus Academie des Sciences 1917; 165:373–5. Bacteriophage 2011; 1:3–5 [CrossRef]
    [Google Scholar]
  45. Twort FW. An investigation on the nature of ultra-microscopic viruses. The Lancet 1915; 186:1241–1243 [CrossRef]
    [Google Scholar]
  46. d’Herelle F. Sur Le rôle Du microbe filtrant bactériophage dans La dysentérie bacillaire. Comptes Rendus Académie Sci 1918; 167:970–972
    [Google Scholar]
  47. Clokie MRJ, Millard AD, Letarov AV, Heaphy S. Phages in nature. Bacteriophage 2011; 1:31–45 [CrossRef]
    [Google Scholar]
  48. Wittebole X, De Roock S, Opal SM. A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence 2014; 5:226–235 [CrossRef]
    [Google Scholar]
  49. Siringan P, Connerton PL, Cummings NJ, Connerton IF. Alternative bacteriophage life cycles: the carrier state of Campylobacter jejuni . Open Biol 2014; 4:130200 [CrossRef]
    [Google Scholar]
  50. Adriaenssens EM, Ackermann H-W, Anany H, Blasdel B, Connerton IF et al. A suggested new bacteriophage genus: “Viunalikevirus”. Arch Virol 2012; 157:2035–2046 [CrossRef]
    [Google Scholar]
  51. Adriaenssens EM, Wittmann J, Kuhn JH, Turner D, Sullivan MB et al. Taxonomy of prokaryotic viruses: 2017 update from the ICTV bacterial and archaeal viruses Subcommittee. Arch Virol 2018; 163:1125–1129 [CrossRef]
    [Google Scholar]
  52. Fokine A, Rossmann MG. Molecular architecture of tailed double-stranded DNA phages. Bacteriophage 2014; 4:e28281 [CrossRef]
    [Google Scholar]
  53. Chhibber S, Nag D, Bansal S. Inhibiting biofilm formation by Klebsiella pneumoniae B5055 using an iron antagonizing molecule and a bacteriophage. BMC Microbiol 2013; 13:174 [CrossRef]
    [Google Scholar]
  54. Jamal M, Hussain T, Das CR, Andleeb S. Characterization of Siphoviridae phage Z and studying its efficacy against multidrug-resistant Klebsiella pneumoniae planktonic cells and biofilm. J Med Microbiol 2015; 64:454–462 [CrossRef]
    [Google Scholar]
  55. Kęsik-Szeloch A, Drulis-Kawa Z, Weber-Dąbrowska B, Kassner J, Majkowska-Skrobek G et al. Characterising the biology of novel lytic bacteriophages infecting multidrug resistant Klebsiella pneumoniae . Virol J 2013; 10:100 [CrossRef]
    [Google Scholar]
  56. Taha OA, Connerton PL, Connerton IF, El-Shibiny A. Bacteriophage ZCKP1: a potential treatment for Klebsiella pneumoniae isolated from diabetic foot patients. Front Microbiol 2018; 9:2127 [CrossRef]
    [Google Scholar]
  57. Hughes KA, Sutherland IW, Clark J, Jones MV. Bacteriophage and associated polysaccharide depolymerases – novel tools for study of bacterial biofilms. J Appl Microbiol 1998; 85:583–590 [CrossRef]
    [Google Scholar]
  58. Bertozzi Silva J, Storms Z, Sauvageau D. Host receptors for bacteriophage adsorption. FEMS Microbiol Lett 2016; 363:fnw002 [CrossRef]
    [Google Scholar]
  59. D’Andrea MM, Marmo P, Henrici De Angelis L, Palmieri M, Ciacci N et al. φBO1E, a newly discovered lytic bacteriophage targeting carbapenemase-producing Klebsiella pneumoniae of the pandemic Clonal Group 258 clade II lineage. Sci Rep 2017; 7:2614 [CrossRef] [CrossRef]
    [Google Scholar]
  60. Verma V, Harjai K, Chhibber S. Characterization of a T7-like lytic bacteriophage of Klebsiella pneumoniae B5055: a potential therapeutic agent. Curr Microbiol 2009; 59:274–281 [CrossRef]
    [Google Scholar]
  61. Loc-Carrillo C, Abedon ST. Pros and cons of phage therapy. Bacteriophage 2011; 1:111–114 [CrossRef]
    [Google Scholar]
  62. Gu J, Liu X, Li Y, Han W, Lei L et al. A method for generation phage cocktail with great therapeutic potential. PLoS One 2012; 7:e31698 [CrossRef]
    [Google Scholar]
  63. Yosef I, Goren MG, Globus R, Molshanski-Mor S, Qimron U. Extending the host range of bacteriophage particles for DNA transduction. Mol Cell 2017; 66:721–728 [CrossRef]
    [Google Scholar]
  64. Harper D. Criteria for selecting suitable infectious diseases for phage therapy. Viruses 10:177 [CrossRef]
    [Google Scholar]
  65. Kumari S, Harjai K, Chhibber S. Evidence to support the therapeutic potential of bacteriophage Kpn5 in burn wound infection caused by Klebsiella pneumoniae in BALB/c mice. J Microbiol Biotechnol 2010; 20:935–941 [CrossRef]
    [Google Scholar]
  66. Cao F, Wang X, Wang L, Li Z, Che J et al. Evaluation of the Efficacy of a Bacteriophage in the Treatment of Pneumonia Induced by Multidrug Resistance Klebsiella pneumoniae in Mice. Biomed Res Int 2015; 2015:7529309 [CrossRef]
    [Google Scholar]
  67. Hung C-H, Kuo C-F, Wang C-H, Wu C-M, Tsao N. Experimental Phage Therapy in Treating Klebsiella pneumoniae -Mediated Liver Abscesses and Bacteremia in Mice. Antimicrob Agents Chemother 2011; 55:1358–1365 [CrossRef]
    [Google Scholar]
  68. Vinodkumar CS, Neelagund YF, Kalsurmath S. Bacteriophage in the treatment of experimental septicemic mice from a clinical isolate of multidrug resistant Klebsiella pneumoniae . J Commun Dis 2005; 37:18–29
    [Google Scholar]
  69. Manohar P, Nachimuthu R, Lopes BS. The therapeutic potential of bacteriophages targeting gram-negative bacteria using Galleria mellonella infection model. BMC Microbiol 2018; 18:97 [CrossRef]
    [Google Scholar]
  70. Kumari S, Harjai K, Chhibber S. Isolation and characterization of Klebsiella pneumoniae specific bacteriophages from sewage samples. Folia Microbiol 2010; 55:221–227 [CrossRef]
    [Google Scholar]
  71. Kumari S, Harjai K, Chhibber S. Efficacy of bacteriophage treatment in murine burn wound infection induced by Klebsiella pneumoniae . J Microbiol Biotechnol 2009; 19:622–628
    [Google Scholar]
  72. Chhibber S, Kaur S, Kumari S. Therapeutic potential of bacteriophage in treating Klebsiella pneumoniae B5055-mediated lobar pneumonia in mice. J Med Microbiol 2008; 57:1508–1513 [CrossRef]
    [Google Scholar]
  73. Kumari S, Harjai K, Chhibber S. Topical treatment of Klebsiella pneumoniae B5055 induced burn wound infection in mice using natural products. J Infect Dev Ctries 2010; 4:367–377 [CrossRef]
    [Google Scholar]
  74. Kumari S, Harjai K, Chhibber S. Bacteriophage versus antimicrobial agents for the treatment of murine burn wound infection caused by Klebsiella pneumoniae B5055. J Med Microbiol 2011; 60:205–210 [CrossRef]
    [Google Scholar]
  75. Singla S, Harjai K, Katare OP, Chhibber S. Bacteriophage-Loaded Nanostructured Lipid Carrier: Improved Pharmacokinetics Mediates Effective Resolution of Klebsiella pneumoniae –Induced Lobar Pneumonia. J Infect Dis. 2015; 212:325–334 [CrossRef]
    [Google Scholar]
  76. Hsu BB, Gibson TE, Yeliseyev V, Liu Q, Lyon L et al. Dynamic modulation of the gut microbiota and metabolome by bacteriophages in a mouse model. Cell Host Microbe 2019; 25:803–814 [CrossRef]
    [Google Scholar]
  77. Bhattarai Y, Williams BB, Battaglioli EJ, Whitaker WR, Till L et al. Gut microbiota-produced tryptamine activates an epithelial G-protein-coupled receptor to increase colonic secretion. Cell Host Microbe 2018; 23:775–785 [CrossRef]
    [Google Scholar]
  78. Chadha P, Katare OP, Chhibber S. In vivo efficacy of single phage versus phage cocktail in resolving burn wound infection in BALB/c mice. Microb Pathog 2016; 99:68–77 [CrossRef]
    [Google Scholar]
  79. Tabassum R, Shafique M, Khawaja KA, Alvi IA, Rehman Y et al. Complete genome analysis of a Siphoviridae phage TSK1 showing biofilm removal potential against Klebsiella pneumoniae . Sci Rep 2018; 8:17904 [CrossRef]
    [Google Scholar]
  80. Verma V, Harjai K, Chhibber S. Restricting ciprofloxacin-induced resistant variant formation in biofilm of Klebsiella pneumoniae B5055 by complementary bacteriophage treatment. Journal of Antimicrobial Chemotherapy 2009; 64:1212–1218 [CrossRef]
    [Google Scholar]
  81. Kutter E, De Vos D, Gvasalia G, Alavidze Z, Gogokhia L et al. Phage therapy in clinical practice: treatment of human infections. Curr Pharm Biotechnol 2010; 11:69–86 [CrossRef]
    [Google Scholar]
  82. Furfaro LL, Payne MS, Chang BJ. Bacteriophage therapy: clinical trials and regulatory hurdles. Front Cell Infect Microbiol 2018; 8:376 [CrossRef]
    [Google Scholar]
  83. Debarbieux L, Pirnay J-P, Verbeken G, De Vos D, Merabishvili M et al. A bacteriophage journey at the European medicines Agency. FEMS Microbiol Lett 2016; 363:fnv225 [CrossRef]
    [Google Scholar]
  84. Pirnay J-P, Verbeken G, Ceyssens P-J, Huys I, De Vos D et al. The Magistral phage. Viruses 10:64 [CrossRef]
    [Google Scholar]
  85. Rhoads DD, Wolcott RD, Kuskowski MA, Wolcott BM, Ward LS et al. Bacteriophage therapy of venous leg ulcers in humans: results of a phase I safety trial. J Wound Care 2009; 18:237–243 [CrossRef]
    [Google Scholar]
  86. Wright A, Hawkins CH, Anggård EE, Harper DR. A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; a preliminary report of efficacy. Clin Otolaryngol Off J ENT-UK Off J Neth Soc Oto-Rhino-Laryngol Cervico-Facial Surg 2009; 34:349–357
    [Google Scholar]
  87. Kuipers S, Ruth MM, Mientjes M, de Sévaux RGL, van Ingen J. Successful treatment of chronic relapsing urinary tract infection with bacteriophages in a renal transplant recipient - a Dutch case report. Antimicrob Agents Chemother
    [Google Scholar]
  88. Corbellino M, Kieffer N, Kutateladze M, Balarjishvili N, Leshkasheli L et al. Eradication of a multi-drug resistant, carbapenemase-producing Klebsiella pneumoniae isolate following oral and intra-rectal therapy with a custom-made, lytic bacteriophage preparation. Clin Infect Dis Off Publ Infect Dis Soc Am .
  89. Patel DR, Bhartiya SK, Kumar R, Shukla VK, Nath G. Use of customized bacteriophages in the treatment of chronic nonhealing wounds: a prospective study. Int J Low Extrem Wounds 2019; 1534734619881076:
    [Google Scholar]
  90. Drulis-Kawa Z, Majkowska-Skrobek G, Maciejewska B. Bacteriophages and phage-derived proteins-application approaches. Curr Med Chem 2015; 22:1757–1773 [CrossRef]
    [Google Scholar]
  91. Pyra A, Brzozowska E, Pawlik K, Gamian A, Dauter M et al. Tail tubular protein A: a dual-function tail protein of Klebsiella pneumoniae bacteriophage KP32. Sci Rep 2017; 7:2223 [CrossRef]
    [Google Scholar]
  92. Pan Y-J, Lin T-L, Chen C-C, Tsai Y-T, Cheng Y-H et al. Klebsiella phage ΦK64-1 encodes multiple depolymerases for multiple host capsular types. J Virol 2017; 91: [CrossRef]
    [Google Scholar]
  93. Majkowska-Skrobek G, Łątka A, Berisio R, Maciejewska B, Squeglia F et al. Capsule-targeting depolymerase, derived from Klebsiella KP36 phage, as a tool for the development of anti-virulent strategy. Viruses 2016; 8:324 [CrossRef]
    [Google Scholar]
  94. Majkowska-Skrobek G, Latka A, Berisio R, Squeglia F, Maciejewska B et al. Phage-borne depolymerases decrease Klebsiella pneumoniae resistance to innate defense mechanisms. Front Microbiol 2018; 9:2517 [CrossRef]
    [Google Scholar]
  95. Maciejewska B, Roszniowski B, Espaillat A, Kęsik-Szeloch A, Majkowska-Skrobek G et al. Klebsiella phages representing a novel clade of viruses with an unknown DNA modification and biotechnologically interesting enzymes. Appl Microbiol Biotechnol 2017; 101:673–684 [CrossRef]
    [Google Scholar]
  96. Briers Y, Walmagh M, Van Puyenbroeck V, Cornelissen A, Cenens W et al. Engineered endolysin-based “Artilysins” to combat multidrug-resistant gram-negative pathogens. mBio 2014; 5:e01379–01314 [CrossRef]
    [Google Scholar]
  97. Briers Y, Walmagh M, Grymonprez B, Biebl M, Pirnay J-P et al. Art-175 is a highly efficient antibacterial against multidrug-resistant strains and persisters of Pseudomonas aeruginosa . Antimicrob Agents Chemother 2014; 58:3774–3784 [CrossRef]
    [Google Scholar]
  98. Defraine V, Schuermans J, Grymonprez B, Govers SK, Aertsen A et al. Efficacy of Artilysin Art-175 against resistant and persistent Acinetobacter baumannii . Antimicrob Agents Chemother 2016; 60:3480–3488 [CrossRef]
    [Google Scholar]
  99. Colavecchio A, Cadieux B, Lo A, Goodridge LD. Bacteriophages contribute to the spread of antibiotic resistance genes among foodborne pathogens of the Enterobacteriaceae family – a review. Front Microbiol 2017; 8:1108 [CrossRef]
    [Google Scholar]
  100. Strauch E, Lurz R, Beutin L. Characterization of a Shiga toxin-encoding temperate bacteriophage of Shigella sonnei . Infect Immun 2001; 69:7588–7595 [CrossRef]
    [Google Scholar]
  101. European Commission Final Report Summary - PHAGOBURN (Evaluation of phage therapy for the treatment of Escherichia coli and Pseudomonas aeruginosa burn wound infections (Phase I-II clinical trial)); 2017
  102. Jault P, Leclerc T, Jennes S, Pirnay JP, Que Y-A et al. Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): a randomised, controlled, double-blind phase 1/2 trial. Lancet Infect Dis 2019; 19:35–45 [CrossRef]
    [Google Scholar]
  103. Abraham EP, Chain E. An enzyme from bacteria able to destroy penicillin. 1940. Rev Infect Dis 1988; 10:677–678
    [Google Scholar]
  104. Fleming A. Penicillin: Nobel Prize Lecture; 1945
  105. Philipson C, Voegtly L, Lueder M, Long K, Rice G et al. Characterizing phage genomes for therapeutic applications. Viruses 2018; 10:188 [CrossRef]
    [Google Scholar]
  106. Connor TR, Loman NJ, Thompson S, Smith A, Southgate J et al. CLIMB (the cloud infrastructure for microbial bioinformatics): an online resource for the medical microbiology community. Microb Genomics 2016; 2:e000086 [CrossRef]
    [Google Scholar]
  107. Acevedo Ugarriza LE, Michalik-Provasek J, Newkirk H, Liu M, Gill JJ et al. Complete genome sequence of Klebsiella pneumoniae myophage magnus. Microbiol Resour Announc 8: [CrossRef]
    [Google Scholar]
  108. Hsu C-R, Lin T-L, Pan Y-J, Hsieh P-F, Wang J-T. Isolation of a bacteriophage specific for a new capsular type of Klebsiella pneumoniae and characterization of its polysaccharide depolymerase. PLoS One 2013; 8:e70092 [CrossRef]
    [Google Scholar]
  109. HK O, Cha K, Hwang YJ, Cho J, Jo Y et al. Complete genome sequence of a novel bacteriophage, PBKP05, infecting Klebsiella pneumoniae . Arch Virol 2019; 164:885–888
    [Google Scholar]
  110. Villa L, Feudi C, Fortini D, Brisse S, Passet V et al. Diversity, virulence, and antimicrobial resistance of the KPC-producing Klebsiella pneumoniae ST307 clone. Microb Genomics 2017; 3:e000110 [CrossRef]
    [Google Scholar]
  111. Min L, Lessor L, O’Leary C, Bonasera R, Gill J et al. Complete genome sequence of Klebsiella pneumoniae myophage mulock. Microbiol Resour Announc 8: [CrossRef]
    [Google Scholar]
  112. Cui Z, Shen W, Wang Z, Zhang H, Me R et al. Complete genome sequence of Klebsiella pneumoniae phage JD001. J Virol 2012; 86:13843 [CrossRef]
    [Google Scholar]
  113. Zurabov F, Zhilenkov E. Complete genome sequences of lytic polysaccharide-degrading Klebsiella pneumoniae bacteriophages vB_KpnS_FZ10, vB_KpnP_FZ12, vB_KpnM_FZ14, and vB_KpnS_FZ41. Microbiol Resour Announc 8: [CrossRef]
    [Google Scholar]
  114. Ł L, Strapagiel D, Karczewska-Golec J, Golec P. Complete annotated genome sequences of four Klebsiella pneumoniae phages isolated from sewage in poland. Genome Announc 5:
    [Google Scholar]
  115. Newkirk HN, Lessor L, Gill JJ, Liu M. Complete genome sequence of Klebsiella pneumoniae myophage menlow. Microbiol Resour Announc 8: [CrossRef]
    [Google Scholar]
  116. Nguyen KT, Bonasera R, Benson G, Hernandez-Morales AC, Gill JJ et al. Complete genome sequence of Klebsiella pneumoniae myophage may. Microbiol Resour Announc 8: [CrossRef]
    [Google Scholar]
  117. Boeckman JX, Lessor L, Gill JJ, Liu M. Complete genome sequence of Klebsiella pneumoniae myophage mineola. Microbiol Resour Announc 8: [CrossRef]
    [Google Scholar]
  118. Aleshkin AV, Ershova ON, Volozhantsev NV, Svetoch EA, Popova AV et al. Phagebiotics in treatment and prophylaxis of healthcare-associated infections. Bacteriophage 2016; 6:e1251379 [CrossRef]
    [Google Scholar]
  119. Komisarova EV, Kislichkina AA, Krasilnikova VM, Bogun AG, Fursova NK et al. Complete nucleotide sequence of Klebsiella pneumoniae bacteriophage vB_KpnM_KpV477. Genome Announc 2017; 5: [CrossRef]
    [Google Scholar]
  120. Harb L, Boeckman J, Newkirk H, Liu M, Gill JJ et al. Complete genome sequence of the novel Klebsiella pneumoniae phage marfa. Microbiol Resour Announc 8: [CrossRef]
    [Google Scholar]
  121. Park E-A, Kim Y-T, Cho J-H, Ryu S, Lee J-H. Characterization and genome analysis of novel bacteriophages infecting the opportunistic human pathogens Klebsiella oxytoca and K. pneumoniae . Arch Virol 2017; 162:1129–1139 [CrossRef]
    [Google Scholar]
  122. Ciacci N, D’Andrea M, Marmo P, Demattè E, Amisano F et al. Characterization of vB_Kpn_F48, a newly discovered lytic bacteriophage for Klebsiella pneumoniae of sequence type 101. Viruses 10:482 [CrossRef]
    [Google Scholar]
  123. Koberg S, Brinks E, Fiedler G, Hüsing C, Cho G-S et al. Genome sequence of Klebsiella pneumoniae bacteriophage PMBT1 isolated from raw sewage. Genome Announc 2017; 5: [CrossRef]
    [Google Scholar]
  124. Mijalis EM, Lessor LE, Cahill JL, Rasche ES, Kuty Everett GF. Complete genome sequence of Klebsiella pneumoniae carbapenemase-producing K. pneumoniae Myophage Miro. Genome Announc 2015; 3: [CrossRef]
    [Google Scholar]
  125. Provasek VE, Lessor LE, Cahill JL, Rasche ES, Kuty Everett GF. Complete genome sequence of carbapenemase-producing Klebsiella pneumoniae Myophage Matisse. Genome Announc 2015; 3: [CrossRef]
    [Google Scholar]
  126. Simoliunas E, Kaliniene L, Truncaite L, Klausa V, Zajanckauskaite A et al. Genome of Klebsiella sp.-Infecting bacteriophage vB_KleM_RaK2. J Virol 2012; 86:5406 [CrossRef]
    [Google Scholar]
  127. Pan Y-J, Lin T-L, Lin Y-T, Su P-A, Chen C-T et al. Identification of capsular types in carbapenem-resistant Klebsiella pneumoniae strains by wzc sequencing and implications for capsule depolymerase treatment. Antimicrob Agents Chemother 2015; 59:1038–1047 [CrossRef]
    [Google Scholar]
  128. Karumidze N, Kusradze I, Rigvava S, Goderdzishvili M, Rajakumar K et al. Isolation and characterisation of lytic bacteriophages of Klebsiella pneumoniae and Klebsiella oxytoca . Curr Microbiol 2013; 66:251–258 [CrossRef]
    [Google Scholar]
  129. Tran R, Kongari R, Lessor L, Gill JJ, Liu M. Complete genome sequence of Klebsiella pneumoniae podophage patroon. Microbiol Resour Announc 8: [CrossRef]
    [Google Scholar]
  130. Wang C, Li P, Niu W, Yuan X, Liu H et al. Protective and therapeutic application of the depolymerase derived from a novel KN1 genotype of Klebsiella pneumoniae bacteriophage in mice. Res Microbiol 2019; 170:156–164 [CrossRef]
    [Google Scholar]
  131. Hsieh P-F, Lin H-H, Lin T-L, Chen Y-Y, Wang J-T. Two T7-like bacteriophages, K5-2 and K5-4, each encodes two capsule depolymerases: isolation and functional characterization. Sci Rep 2017; 7:4624 [CrossRef]
    [Google Scholar]
  132. Pan Yi‐Jiun, Lin Tzu‐Lung, Chen Yi‐Yin, Lai Peng‐Hsuan, Tsai Yun‐Ting et al. Identification of three podoviruses infecting Klebsiella encoding capsule depolymerases that digest specific capsular types. Microb Biotechnol 2019; 12:472–486
    [Google Scholar]
  133. Teng T, Li Q, Liu Z, Li X, Liu Z et al. Characterization and genome analysis of novel Klebsiella phage Henu1 with lytic activity against clinical strains of Klebsiella pneumoniae. Arch Virol
    [Google Scholar]
  134. Solovieva EV, Myakinina VP, Kislichkina AA, Krasilnikova VM, Verevkin VV et al. Comparative genome analysis of novel Podoviruses lytic for hypermucoviscous Klebsiella pneumoniae of K1, K2, and K57 capsular types. Virus Res 2018; 243:10–18 [CrossRef]
    [Google Scholar]
  135. Shi Y, Chen Y, Yang Z, Zhang Y, You B et al. Characterization and genome sequencing of a novel T7-like lytic phage, kpssk3, infecting carbapenem-resistant Klebsiella pneumoniae . Arch Virol 18: [CrossRef]
    [Google Scholar]
  136. Volozhantsev NV, Myakinina VP, Popova AV, Kislichkina AA, Komisarova EV et al. Complete genome sequence of novel T7-like virus vB_KpnP_KpV289 with lytic activity against Klebsiella pneumoniae . Arch Virol 2016; 161:499–501 [CrossRef]
    [Google Scholar]
  137. Gao S, Linden SB, Nelson DC. Complete genome sequence of Klebsiella pneumoniae phages SopranoGao, MezzoGao, and AltoGao. Genome Announc 2017; 5: [CrossRef]
    [Google Scholar]
  138. Meira GLS, Campos FS, Albuquerque JP, Cabral MC, Fracalanzza SEL et al. Genome sequence of KP-Rio/2015, a novel Klebsiella pneumoniae (Podoviridae) Phage. Genome Announc 2016; 4: [CrossRef]
    [Google Scholar]
  139. Eriksson H, Maciejewska B, Latka A, Majkowska-Skrobek G, Hellstrand M et al. A suggested new bacteriophage genus, “Kp34likevirus”, within the Autographivirinae Subfamily of Podoviridae . Viruses 2015; 7:1804–1822 [CrossRef]
    [Google Scholar]
  140. Drulis-Kawa Z, Mackiewicz P, Kęsik-Szeloch A, Maciaszczyk-Dziubinska E, Weber-Dąbrowska B et al. Isolation and characterisation of KP34—a novel φKMV-like bacteriophage for Klebsiella pneumoniae. Appl Microbiol Biotechnol 2011; 90:1333–1345 [CrossRef]
    [Google Scholar]
  141. Lin T-L, Hsieh P-F, Huang Y-T, Lee W-C, Tsai Y-T et al. Isolation of a bacteriophage and its depolymerase specific for K1 capsule of Klebsiella pneumoniae: implication in typing and treatment. J Infect Dis 2014; 210:1734–1744 [CrossRef]
    [Google Scholar]
  142. Shen J, Zhou J, Chen G-Q, Xiu Z-L. Efficient genome engineering of a virulent Klebsiella bacteriophage Using CRISPR-Cas9. J Virol 2018; 92: [CrossRef]
    [Google Scholar]
  143. Shang A, Liu Y, Wang J, Mo Z, Li G et al. Complete nucleotide sequence of Klebsiella phage P13 and prediction of an EPS depolymerase gene. Virus Genes 2015; 50:118–128 [CrossRef]
    [Google Scholar]
  144. Powell JE, Lessor L, O'Leary C, Gill J, Liu M. Complete genome sequence of Klebsiella pneumoniae podophage pylas. Microbiol Resour Announc 2019; 8:e01287–19 [CrossRef]
    [Google Scholar]
  145. Yerushalmy O, Coppenhagen-Glazer S, Nir-Paz R, Tuomala H, Skurnik M et al. Complete genome sequences of Two Klebsiella pneumoniae phages isolated as part of an international effort. Microbiol Resour Announc 8: [CrossRef]
    [Google Scholar]
  146. Morozova V, Babkin I, Kozlova Y, Baykov I, Bokovaya O et al. Isolation and characterization of a novel Klebsiella pneumoniae N4-like bacteriophage KP8. Viruses 11:1115 [CrossRef]
    [Google Scholar]
  147. Lu Y, Shi H, Zhang Z, Han F, Li J et al. Isolation and characterization of a lytic bacteriophage φKp-lyy15 of Klebsiella pneumoniae . Virol Sin 2015; 30:66–68 [CrossRef]
    [Google Scholar]
  148. Carl G, Jäckel C, Grützke J, Hertwig S, Grobbel M et al. Complete genome sequence of the temperate Klebsiella pneumoniae phage KPP5665-2. Genome Announc 2017; 5: [CrossRef]
    [Google Scholar]
  149. Liu Y, Mi L, Mi Z, Huang Y, Li P et al. Complete genome sequence of IME207, a novel bacteriophage which can lyse multidrug-resistant Klebsiella pneumoniae and Salmonella . Genome Announc 2016; 4: [CrossRef]
    [Google Scholar]
  150. Nguyen DT, Lessor LE, Cahill JL, Rasche ES, Kuty Everett GF. Complete genome sequence of Klebsiella pneumoniae carbapenemase-producing K. pneumoniae siphophage sushi. Genome Announc 2015; 3: [CrossRef]
    [Google Scholar]
  151. Richardson RW, Lessor L, O'Leary C, Gill J, Liu M. Complete genome sequence of Klebsiella pneumoniae siphophage sanco. Microbiol Resour Announc 2019; 8:e01252–19 [CrossRef]
    [Google Scholar]
  152. Hoyles L, Murphy J, Neve H, Heller KJ, Turton JF et al. Klebsiella pneumoniae subsp. pneumoniae –bacteriophage combination from the caecal effluent of a healthy woman. PeerJ 2015; 3:e1061 [CrossRef]
    [Google Scholar]
  153. Saldana R, Newkirk H, Liu M, Gill JJ, Ramsey J. Complete genome sequence of shelby, a siphophage infecting carbapenemase-producing Klebsiella pneumoniae . Microbiol Resour Announc 8: [CrossRef]
    [Google Scholar]
  154. Cai R, Wang Z, Wang G, Zhang H, Cheng M et al. Biological properties and genomics analysis of vB_KpnS_GH-K3, a Klebsiella phage with a putative depolymerase-like protein. Virus Genes 2019; 55:696–706 [CrossRef]
    [Google Scholar]
  155. Castillo M, Tran R, Newkirk H, Liu M, Gill JJ et al. Complete genome sequence of Sin4, a siphophage infecting carbapenemase-producing Klebsiella pneumoniae . Microbiol Resour Announc 8: [CrossRef]
    [Google Scholar]
  156. Gramer J, Kenny S, Newkirk H, Liu M, Gill JJ et al. Complete genome sequence of Klebsiella pneumoniae siphophage skenny. Microbiol Resour Announc 8: [CrossRef]
    [Google Scholar]
  157. Martinez N, Williams E, Newkirk H, Liu M, Gill JJ et al. Complete genome sequence of Klebsiella pneumoniae phage sweeny. Microbiol Resour Announc 8: [CrossRef]
    [Google Scholar]
  158. Brown TL, Petrovski S, Hoyle D, Chan HT, Lock P et al. Characterization and formulation into solid dosage forms of a novel bacteriophage lytic against Klebsiella oxytoca . PLoS One 2017; 12:e0183510 [CrossRef]
    [Google Scholar]
  159. Casjens SR, Gilcrease EB, Huang WM, Bunny KL, Pedulla ML et al. The pKO2 linear plasmid prophage of Klebsiella oxytoca . J Bacteriol 2004; 186:1818–1832 [CrossRef]
    [Google Scholar]
  160. Salazar AJ, Lessor L, O'Leary C, Gill J, Liu M. Complete genome sequence of Klebsiella pneumoniae siphophage seifer. Microbiol Resour Announc 2019; 8:e01289–19 [CrossRef]
    [Google Scholar]
  161. Erickson SG, Lessor L, O'Leary CJ, Gill JJ, Liu M. Complete genome sequence of Klebsiella pneumoniae siphophage sugarland. Microbiol Resour Announc 7: [CrossRef]
    [Google Scholar]
  162. Xing S, Pan X, Sun Q, Pei G, An X et al. Complete genome sequence of a novel multidrug-resistant Klebsiella pneumoniae phage, vB_Kpn_IME260. Genome Announc 2017; 5: [CrossRef]
    [Google Scholar]
  163. L-T W, Chang S-Y, Yen M-R, Yang T-C, Tseng Y-H. Characterization of extended-host-range pseudo-T-even bacteriophage Kpp95 isolated on Klebsiella pneumoniae . Appl Environ Microbiol 2007; 73:2532–2540
    [Google Scholar]
  164. Nishimura Y, Yoshida T, Kuronishi M, Uehara H, Ogata H et al. ViPTree: the viral proteomic tree server. Bioinformatics 2017; 33:2379–2380 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.001141
Loading
/content/journal/jmm/10.1099/jmm.0.001141
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error