1887

Abstract

During infections, bacterial pathogens can engage in a variety of interactions with each other, ranging from the cooperative sharing of resources to deadly warfare. This is especially relevant in opportunistic infections, where different strains and species often co-infect the same patient and interact in the host. Here, we review the relevance of these social interactions during opportunistic infections using the human pathogen as a case example. In particular, we discuss different types of pathogen–pathogen interactions, involving both cooperation and competition, and elaborate on how they impact virulence in multi-strain and multi-species infections. We then review evolutionary dynamics within pathogen populations during chronic infections. We particuarly discuss how local adaptation through niche separation, evolutionary successions and antagonistic co-evolution between pathogens can alter virulence and the damage inflicted on the host. Finally, we outline how studying bacterial social dynamics could be used to manage infections. We show that a deeper appreciation of bacterial evolution and ecology in the clinical context is important for understanding microbial infections and can inspire novel treatment strategies.

Funding
This study was supported by the:
  • Rolf Kümmerli , European Research Council , (Award 681295)
  • Elisa T. Granato , Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung , (Award P400PB_183878)
  • Rolf Kümmerli , Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung , (Award 31003A_182499)
Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.001134
2020-01-21
2020-02-28
Loading full text...

Full text loading...

References

  1. Koch C, Høiby N. Pathogenesis of cystic fibrosis. The Lancet 1993; 341:1065–1069 [CrossRef]
    [Google Scholar]
  2. Shoenfeld Y, Agmon-Levin N, Rose NR. Infection and Autoimmunity, Second Edi. ed. Academic Press; 2015
    [Google Scholar]
  3. Krishna S, Miller LS. Host–pathogen interactions between the skin and Staphylococcus aureus. Curr Opin Microbiol 2012; 15:28–35 [CrossRef]
    [Google Scholar]
  4. Krzyściak W, Pluskwa KK, Jurczak A, Kościelniak D. The pathogenicity of the Streptococcus genus. Eur J Clin Microbiol Infect Dis 2013; 32:1361–1376 [CrossRef]
    [Google Scholar]
  5. Mahenthiralingam E, Urban TA, Goldberg JB. The multifarious, multireplicon Burkholderia cepacia complex. Nat Rev Microbiol 2005; 3:144–156 [CrossRef]
    [Google Scholar]
  6. Moradali MF, Ghods S, Rehm BHA. Pseudomonas aeruginosa lifestyle: a paradigm for adaptation, survival, and persistence. Front Cell Infect Microbiol 2017; 7:39 [CrossRef]
    [Google Scholar]
  7. Balmer O, Tanner M. Prevalence and implications of multiple-strain infections. Lancet Infect Dis 2011; 11:868–878 [CrossRef]
    [Google Scholar]
  8. Brogden K, Guthmiller J, Taylor C, Guthmiller JM. Human polymicrobial infections. The Lancet 2005; 365:253–255 [CrossRef]
    [Google Scholar]
  9. Short FL, Murdoch SL, Ryan RP. Polybacterial human disease: the ills of social networking. Trends Microbiol 2014; 22:508–516 [CrossRef]
    [Google Scholar]
  10. Tay WH, Chong KKL, Kline KA. Polymicrobial–Host interactions during infection. J Mol Biol 2016; 428:3355–3371 [CrossRef]
    [Google Scholar]
  11. Amin AN, Deruelle D. Healthcare-associated infections, infection control and the potential of new antibiotics in development in the USA. Future Microbiol 2015; 10:1049–1062 [CrossRef]
    [Google Scholar]
  12. Rahme L, Stevens E, Wolfort S, Shao J, Tompkins R et al. Common virulence factors for bacterial pathogenicity in plants and animals. Science 1995; 268:1899–1902 [CrossRef]
    [Google Scholar]
  13. Gellatly SL, Hancock REW. Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathog Dis 2013; 67:159–173 [CrossRef]
    [Google Scholar]
  14. Mahajan-Miklos S, Tan M-W, Rahme LG, Ausubel FM. Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa– Caenorhabditis elegans pathogenesis model. Cell 1999; 96:47–56 [CrossRef]
    [Google Scholar]
  15. van Delden C. Virulence factors in Pseudomonas aeruginosa. FEMS Immunol Med Microbiol 2004; 59:29
    [Google Scholar]
  16. HJ W, Wang AHJ, Jennings MP. Discovery of virulence factors of pathogenic bacteria. Curr Opin Chem Biol 2008; 12:93–101
    [Google Scholar]
  17. West SA, Diggle SP, Buckling A, Gardner A, Griffin AS. The social lives of microbes. Annu Rev Ecol Evol Syst 2007a; 38:53–77 [CrossRef]
    [Google Scholar]
  18. Diard M, Hardt WD. Evolution of bacterial virulence. FEMS Microbiol Rev 2017; 41:679–697 [CrossRef]
    [Google Scholar]
  19. Granato ET, Ziegenhain C, Marvig RL, Kümmerli R. Low spatial structure and selection against secreted virulence factors attenuates pathogenicity in Pseudomonas aeruginosa . ISME J 2018; 12:2907–2918 [CrossRef]
    [Google Scholar]
  20. Harrison F, Browning LE, Vos M, Buckling A. Cooperation and virulence in acute Pseudomonas aeruginosainfections. BMC Biol 2006a; 4:21 [CrossRef]
    [Google Scholar]
  21. Jansen G, Crummenerl LL, Gilbert F, Mohr T, Pfefferkorn R et al. Evolutionary transition from pathogenicity to Commensalism: global regulator mutations mediate fitness gains through virulence attenuation. Mol Biol Evol 2015; 32:2883–2896 [CrossRef]
    [Google Scholar]
  22. Köhler T, Buckling A, van Delden C. Cooperation and virulence of clinical Pseudomonas aeruginosa populations. Proc Natl Acad Sci U S A 2009; 106:6339–6344 [CrossRef]
    [Google Scholar]
  23. Leggett HC, Brown SP, Reece SE. War and peace: social interactions in infections. Phil. Trans. R. Soc. B 2014; 369:20130365 [CrossRef]
    [Google Scholar]
  24. Nadal Jimenez P, Koch G, Thompson JA, Xavier KB, Cool RH et al. The multiple signaling systems regulating virulence in Pseudomonas aeruginosa . Microbiology and Molecular Biology Reviews 2012; 76:46–65 [CrossRef]
    [Google Scholar]
  25. Buckling A, Harrison F, Vos M, Brockhurst MA, Gardner A et al. Siderophore-mediated cooperation and virulence in Pseudomonas aeruginosa. FEMS Microbiol Ecol 2007; 62:135–141 [CrossRef]
    [Google Scholar]
  26. Harrison F. Bacterial cooperation in the wild and in the clinic: are pathogen social behaviours relevant outside the laboratory?. BioEssays 2013; 35:108–112 [CrossRef]
    [Google Scholar]
  27. Folkesson A, Jelsbak L, Yang L, Johansen HK, Ciofu O et al. Adaptation of Pseudomonas aeruginosa to the cystic fibrosis airway: an evolutionary perspective. Nat Rev Microbiol 2012; 10:841–851 [CrossRef]
    [Google Scholar]
  28. Hamilton WD. The genetical evolution of social behaviour, I & II. J Theor Biol 1964
    [Google Scholar]
  29. Bourke AFG. Principles of Social Evolution Oxford University Press; 2011
    [Google Scholar]
  30. West SA, Griffin AS, Gardner A, Diggle SP. Social evolution theory for microorganisms. Nat Rev Microbiol 2006; 4:597–607 [CrossRef]
    [Google Scholar]
  31. Buckling A, Brockhurst MA. Kin selection and the evolution of virulence. Heredity 2008; 100:484–488 [CrossRef]
    [Google Scholar]
  32. Parkins MD, Somayaji R, Waters VJ. Epidemiology, Biology, and Impact of Clonal Pseudomonas aeruginosa Infections in Cystic Fibrosis. Clin Microbiol Rev 2018; 31: [CrossRef]
    [Google Scholar]
  33. Williams D, Fothergill JL, Evans B, Caples J, Haldenby S, Brockhurst MA, Winstanley C et al. Transmission and lineage displacement drive rapid population genomic flux in cystic fibrosis airway infections of a Pseudomonas aeruginosa epidemic strain. Microb Genomics 2018; 4:1–9 [CrossRef]
    [Google Scholar]
  34. Williams D, Evans B, Haldenby S, Walshaw MJ, Brockhurst MA et al. Divergent, Coexisting Pseudomonas aeruginosa Lineages in Chronic Cystic Fibrosis Lung Infections. Am J Respir Crit Care Med 2015; 191:775–785 [CrossRef]
    [Google Scholar]
  35. Kümmerli R, Griffin AS, West SA, Buckling A, Harrison F. Viscous medium promotes cooperation in the pathogenic bacterium Pseudomonas aeruginosa . Proc. R. Soc. B 2009; 276:3531–3538 [CrossRef]
    [Google Scholar]
  36. Lehmann L, Keller L. The evolution of cooperation and altruism – a general framework and a classification of models. J Evol Biol 2006; 19:1365–1376 [CrossRef]
    [Google Scholar]
  37. West SA, Griffin AS, Gardner A. Social semantics: altruism, cooperation, mutualism, strong reciprocity and group selection. J Evol Biol 2007b; 20:415–432 [CrossRef]
    [Google Scholar]
  38. Harrison F, Browning LE, Vos M, Buckling A. Cooperation and virulence in acute Pseudomonas aeruginosa infections. BMC Biol 2006b; 4:1–5 [CrossRef]
    [Google Scholar]
  39. Rezzoagli C, Granato E, Kuemmerli R. In vivo microscopy reveals the impact of Pseudomonas aeruginosa social interactions on host colonization. ISME J 2019
    [Google Scholar]
  40. Cornelis P, Dingemans J. Pseudomonas aeruginosa adapts its iron uptake strategies in function of the type of infections. Front Cell Infect Microbiol 2013; 3:1–7 [CrossRef]
    [Google Scholar]
  41. Darch SE, Simoska O, Fitzpatrick M, Barraza JP, Stevenson KJ et al. Spatial determinants of quorum signaling in a Pseudomonas aeruginosa infection model. Proc Natl Acad Sci U S A 2018; 115:4779–4784 [CrossRef]
    [Google Scholar]
  42. Rumbaugh KP, Diggle SP, Watters CM, Ross-Gillespie A, Griffin AS et al. Quorum sensing and the social evolution of bacterial virulence. Current Biology 2009; 19:341–345 [CrossRef]
    [Google Scholar]
  43. Miller MB, Bassler BL. Quorum sensing in bacteria. Annu Rev Microbiol 2001; 55:165–199 [CrossRef]
    [Google Scholar]
  44. Diggle SP, Griffin AS, Campbell GS, West SA. Cooperation and conflict in quorum-sensing bacterial populations. Nature 2007; 450:411–414 [CrossRef]
    [Google Scholar]
  45. West SA, Buckling A. Cooperation, virulence and siderophore production in bacterial parasites. Proc. R. Soc. Lond. B 2003; 270:37–44 [CrossRef]
    [Google Scholar]
  46. Rumbaugh KP, Trivedi U, Watters C, Burton-Chellew MN, Diggle SP et al. Kin selection, quorum sensing and virulence in pathogenic bacteria. Proc. R. Soc. B 2012; 279:3584–3588 [CrossRef]
    [Google Scholar]
  47. Granato ET, Harrison F, Kümmerli R, Ross-Gillespie A. Do Bacterial “Virulence Factors” Always Increase Virulence? A Meta-Analysis of Pyoverdine Production in Pseudomonas aeruginosa As a Test Case. Front Microbiol 2016; 7:1952 [CrossRef]
    [Google Scholar]
  48. Weigert M, Ross-Gillespie A, Leinweber A, Pessi G, Brown SP et al. Manipulating virulence factor availability can have complex consequences for infections. Evol Appl 2017; 10:91–101 [CrossRef]
    [Google Scholar]
  49. Flemming H-C, Wingender J, Szewzyk U, Steinberg P, Rice SA et al. Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 2016; 14:563–575 [CrossRef]
    [Google Scholar]
  50. Irie Y, Roberts AEL, Kragh KN, Gordon VD, Hutchison J et al. The Pseudomonas aeruginosa PSL Polysaccharide Is a Social but Noncheatable Trait in Biofilms. MBio 2017; 8:1–13 [CrossRef]
    [Google Scholar]
  51. Jennings LK, Storek KM, Ledvina HE, Coulon C, Marmont LS et al. Pel is a cationic exopolysaccharide that cross-links extracellular DNA in the Pseudomonas aeruginosa biofilm matrix. Proc Natl Acad Sci U S A 2015; 112:11353–11358 [CrossRef]
    [Google Scholar]
  52. Billings N, Ramirez Millan M, Caldara M, Rusconi R, Tarasova Y et al. The extracellular matrix component Psl provides fast-acting antibiotic defense in Pseudomonas aeruginosa biofilms. PLoS Pathog 2013; 9:e1003526 [CrossRef]
    [Google Scholar]
  53. Pestrak MJ, Chaney SB, Eggleston HC, Dellos-Nolan S, Dixit S et al. Pseudomonas aeruginosa rugose small-colony variants evade host clearance, are hyper-inflammatory, and persist in multiple host environments. PLoS Pathog 2018; 14:e1006842–22 [CrossRef]
    [Google Scholar]
  54. Nadell CD, Drescher K, Foster KR. Spatial structure, cooperation and competition in biofilms. Nat Rev Microbiol 2016; 14:589–600 [CrossRef]
    [Google Scholar]
  55. J, Givskov M, Bjarnsholt T, Moser C. The immune system vs. Pseudomonas aeruginosa biofilms. FEMS Immunol Med Microbiol 2010; 59:292–305
    [Google Scholar]
  56. Stewart PS, William Costerton J, Costerton JW. Antibiotic resistance of bacteria in biofilms. The Lancet 2001; 358:135–138 [CrossRef]
    [Google Scholar]
  57. Tolker-Nielsen T. Pseudomonas aeruginosa biofilm infections: From molecular biofilm biology to new treatment possibilities. APMIS 2014; 122:1–51 [CrossRef]
    [Google Scholar]
  58. Ghoul M, Griffin AS, West SA. Toward an evolutionary definition of cheating. Evolution 2014; 68:318–331 [CrossRef]
    [Google Scholar]
  59. Griffin AS, West SA, Buckling A. Cooperation and competition in pathogenic bacteria. Nature 2004; 430:1024–1027 [CrossRef]
    [Google Scholar]
  60. Xavier JB, Kim W, Foster KR. A molecular mechanism that stabilizes cooperative secretions in Pseudomonas aeruginosa. Mol Microbiol 2011; 79:166–179 [CrossRef]
    [Google Scholar]
  61. Brown SP, Hochberg ME, Grenfell BT. Does multiple infection select for raised virulence?. Trends Microbiol 2002; 10:401–405 [CrossRef]
    [Google Scholar]
  62. Foster KR. Biomedicine: Hamiltonian medicine: why the social lives of pathogens matter. Science 2005; 308:12691270 [CrossRef]
    [Google Scholar]
  63. Harrison F, McNally A, da Silva AC, Heeb S, Diggle SP. Optimised chronic infection models demonstrate that siderophore ‘cheating’ in Pseudomonas aeruginosa is context specific. ISME J 2017; 11:2492–2509 [CrossRef]
    [Google Scholar]
  64. Ghoul M, Mitri S. The ecology and evolution of microbial competition. Trends Microbiol 2016; 24:833–845 [CrossRef]
    [Google Scholar]
  65. Granato ET, Meiller-Legrand TA, Foster KR. The evolution and ecology of bacterial warfare. Current Biology 2019; 29:R521–R537 [CrossRef]
    [Google Scholar]
  66. Michel-Briand Y, Baysse C. The pyocins of Pseudomonas aeruginosa. Biochimie 2002; 84:499–510 [CrossRef]
    [Google Scholar]
  67. Ghoul M, West SA, Johansen HK, Molin S, Harrison OB et al. Bacteriocin-mediated competition in cystic fibrosis lung infections. Proc. R. Soc. B 2015; 282:20150972 [CrossRef]
    [Google Scholar]
  68. Oluyombo O, Penfold CN, Diggle SP. Competition in Biofilms between Cystic Fibrosis Isolates of Pseudomonas aeruginosa Is Shaped by R-Pyocins. MBio 2019; 10:e01828-18–18 [CrossRef]
    [Google Scholar]
  69. Gardner A, West SA, Buckling A. Bacteriocins, spite and virulence. Proc. R. Soc. Lond. B 2004; 271:1529–1535 [CrossRef]
    [Google Scholar]
  70. Massey RC, Buckling A, ffrench–Constant R. Interference competition and parasite virulence. Proc. R. Soc. Lond. B 2004; 271:785–788 [CrossRef]
    [Google Scholar]
  71. Inglis RF, Gardner A, Cornelis P, Buckling A. Spite and virulence in the bacterium Pseudomonas aeruginosa . Proc Natl Acad Sci U S A 2009; 106:5703–5707 [CrossRef]
    [Google Scholar]
  72. Foster KR, Bell T. Competition, not cooperation, dominates interactions among culturable microbial species. Current Biology 2012; 22:1845–1850 [CrossRef]
    [Google Scholar]
  73. Murray JL, Connell JL, Stacy A, Turner KH, Whiteley M. Mechanisms of synergy in polymicrobial infections. J Microbiol. 2014; 52:188–199 [CrossRef]
    [Google Scholar]
  74. Frank SA. Models of parasite virulence. Q Rev Biol 1996
    [Google Scholar]
  75. Bashey F. Within-Host competitive interactions as a mechanism for the maintenance of parasite diversity. Philos Trans R Soc Lond B Biol Sci 2015; 370:20140301 [CrossRef]
    [Google Scholar]
  76. Alizon S, de Roode JC, Michalakis Y. Multiple infections and the evolution of virulence. Ecol Lett 2013; 16:556–567 [CrossRef]
    [Google Scholar]
  77. Bell AS, de Roode JC, Sim D, Read AF. Within-Host competition in genetically diverse malaria infections: parasite virulence and competitive success. Evolution 2006; 60:13581371 [CrossRef]
    [Google Scholar]
  78. Read AF, Taylor LH. The ecology of genetically diverse infections. Science 2001; 292:1099–1102 [CrossRef]
    [Google Scholar]
  79. de RJC, Pansini R, Cheesman SJ, Helinski MEH, Huijben S et al. Virulence and competitive ability in genetically diverse malaria infections. Proc Natl Acad Sci 2005; 102:7624–7628
    [Google Scholar]
  80. Racey D, Inglis RF, Harrison F, Oliver A, Buckling A. The effect of elevated mutation rates on the evolution of cooperation and virulence of Pseudomonas aeruginosa . Evolution 2010; 64:515–521
    [Google Scholar]
  81. Niehus R, Picot A, Oliveira NM, Mitri S, Foster KR. The evolution of siderophore production as a competitive trait. Evolution 2017; 71:1443–1455 [CrossRef]
    [Google Scholar]
  82. Valenti P, Berlutti F, Conte MP, Longhi C, Seganti L. Lactoferrin functions: current status and perspectives. J Clin Gastroenterol 2004; 38:S127–S129
    [Google Scholar]
  83. Harrison F. Microbial ecology of the cystic fibrosis lung. Microbiology 2007; 153:917–923 [CrossRef]
    [Google Scholar]
  84. Leinweber A, Weigert M, Kümmerli R. The bacterium Pseudomonas aeruginosa senses and gradually responds to interspecific competition for iron. Evolution 2018; 72:1515–1528 [CrossRef]
    [Google Scholar]
  85. Harrison F, Paul J, Massey RC, Buckling A. Interspecific competition and siderophore-mediated cooperation in Pseudomonas aeruginosa. ISME J 2008; 2:49–55 [CrossRef]
    [Google Scholar]
  86. Sass G, Nazik H, Penner J, Shah H, Ansari SR et al. Aspergillus-Pseudomonas interaction, relevant to competition in airways. Med Mycol 2019; 57:S228–S232 [CrossRef]
    [Google Scholar]
  87. Sass G, Nazik H, Penner J, Shah H, Ansari SR et al. Studies of Pseudomonas aeruginosa Mutants Indicate Pyoverdine as the Central Factor in Inhibition of Aspergillus fumigatus Biofilm. J Bacteriol 2018; 200:e00345-17 [CrossRef]
    [Google Scholar]
  88. Korgaonkar A, Trivedi U, Rumbaugh KP, Whiteley M. Community surveillance enhances Pseudomonas aeruginosa virulence during polymicrobial infection. Proc Natl Acad Sci U S A 2013; 110:1059–1064 [CrossRef]
    [Google Scholar]
  89. Pernet E, Guillemot L, Burgel P-R, Martin C, Lambeau G et al. Pseudomonas aeruginosa eradicates Staphylococcus aureus by manipulating the host immunity. Nat Commun 2014; 5:5105 [CrossRef]
    [Google Scholar]
  90. Gibson RL, Burns JL, Ramsey BW. Pathophysiology and management of pulmonary infections in cystic fibrosis. Am J Respir Crit Care Med 2003; 168:918–951 [CrossRef]
    [Google Scholar]
  91. Pereira CS, Thompson JA, Xavier KB. AI-2-mediated signalling in bacteria. FEMS Microbiol Rev 2013; 37:156–181 [CrossRef]
    [Google Scholar]
  92. Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 2000; 406:959–964 [CrossRef]
    [Google Scholar]
  93. Duan K, Dammel C, Stein J, Rabin H, Surette MG. Modulation of Pseudomonas aeruginosa gene expression by host microflora through interspecies communication. Mol Microbiol 2003; 50:1477–1491 [CrossRef]
    [Google Scholar]
  94. Kessler E, Safrin M, Olson JC, Ohman DE. Secreted LasA of Pseudomonas aeruginosa is a staphylolytic protease. J Biol Chem 1993; 268:7503–7508
    [Google Scholar]
  95. Sibley CD, Duan K, Fischer C, Parkins MD, Storey DG et al. Discerning the complexity of community interactions using a Drosophila model of polymicrobial infections. PLoS Pathog 2008; 4:e1000184 [CrossRef]
    [Google Scholar]
  96. Li H, Li X, Song C, Zhang Y, Wang Z et al. Autoinducer-2 facilitates Pseudomonas aeruginosa PAO1 pathogenicity in vitro and in vivo. Front Microbiol 2017; 8:1–9 [CrossRef]
    [Google Scholar]
  97. Lee J, Zhang L. The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell 2015; 6:26–41 [CrossRef]
    [Google Scholar]
  98. Winstanley C, Fothergill JL. The role of quorum sensing in chronic cystic fibrosis Pseudomonas aeruginosa infections. FEMS Microbiol Lett 2009; 290:1–9 [CrossRef]
    [Google Scholar]
  99. DeLeon S, Clinton A, Fowler H, Everett J, Horswill AR et al. Synergistic Interactions of Pseudomonas aeruginosa and Staphylococcus aureus in an In Vitro Wound Model. Infect Immun 2014; 82:4718–4728 [CrossRef]
    [Google Scholar]
  100. Beaudoin T, Yau YCW, Stapleton PJ, Gong Y, Wang PW et al. Staphylococcus aureus interaction with Pseudomonas aeruginosa biofilm enhances tobramycin resistance. NPJ Biofilms Microbiomes 2017; 3:1–8 [CrossRef]
    [Google Scholar]
  101. Hoffman LR, Déziel E, D'Argenio DA, Lépine F, Emerson J et al. Selection for Staphylococcus aureus small-colony variants due to growth in the presence of Pseudomonas aeruginosa . Proc Natl Acad Sci U S A 2006; 103:19890–19895 [CrossRef]
    [Google Scholar]
  102. Orazi G, O’Toole GA. Pseudomonas aeruginosa Alters Staphylococcus aureus Sensitivity to Vancomycin in a Biofilm Model of Cystic Fibrosis Infection. MBio 2017; 8:1–17 [CrossRef]
    [Google Scholar]
  103. Kahl BC, Becker K, Löffler B. Clinical significance and pathogenesis of staphylococcal small colony variants in persistent infections. Clin Microbiol Rev 2016; 29:401 LP-427427 [CrossRef]
    [Google Scholar]
  104. Didelot X, Walker AS, Peto TE, Crook DW, Wilson DJ. Within-host evolution of bacterial pathogens. Nat Rev Microbiol 2016; 14:150–162 [CrossRef]
    [Google Scholar]
  105. Clark ST, Guttman DS, Hwang DM. Diversification of Pseudomonas aeruginosa within the cystic fibrosis lung and its effects on antibiotic resistance. FEMS Microbiol Lett 2018; 365:1–13 [CrossRef]
    [Google Scholar]
  106. Jorth P, Staudinger BJ, Wu X, Hisert KB, Hayden H, Bruce JE, Timothy L et al. Regional isolation drives bacterial diversification within cystic fibrosis lungs. Cell Host Microbe 2015; 18:307–319 [CrossRef]
    [Google Scholar]
  107. Greischar MA, Koskella B. A synthesis of experimental work on parasite local adaptation. Ecol Lett 2007; 10:418–434 [CrossRef]
    [Google Scholar]
  108. Winstanley C, O’Brien S, Brockhurst MA. Pseudomonas aeruginosa evolutionary adaptation and diversification in cystic fibrosis chronic lung infections. Trends Microbiol 2016; 24:327–337 [CrossRef]
    [Google Scholar]
  109. Barbosa C, Trebosc V, Kemmer C, Rosenstiel P, Beardmore R et al. Alternative evolutionary paths to bacterial antibiotic resistance cause distinct collateral effects. Mol Biol Evol 2017; 34:2229–2244 [CrossRef]
    [Google Scholar]
  110. Marvig RL, Sommer LM, Molin S, Johansen HK. Convergent evolution and adaptation of Pseudomonas aeruginosa within patients with cystic fibrosis. Nat Genet 2015; 47:57–64 [CrossRef]
    [Google Scholar]
  111. Schick A, Kassen R. Rapid diversification of Pseudomonas aeruginosa in cystic fibrosis lung-like conditions. Proc Natl Acad Sci U S A 2018; 115:10714–10719 [CrossRef]
    [Google Scholar]
  112. Smith EE, Buckley DG, Wu Z, Saenphimmachak C, Hoffman LR et al. Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci U S A 2006; 103:8487–8492 [CrossRef]
    [Google Scholar]
  113. Andersen SB, Marvig RL, Molin S, Krogh Johansen H, Griffin AS. Long-term social dynamics drive loss of function in pathogenic bacteria. Proc Natl Acad Sci U S A 2015; 112:10756–10761 [CrossRef]
    [Google Scholar]
  114. Feltner JB, Wolter DJ, Pope CE, Groleau M, Smalley NE et al. LasR Variant Cystic Fibrosis Isolates Reveal an Adaptable Quorum-Sensing Hierarchy in Pseudomonas aeruginosa . MBio 2016; 7:e01513–01516 [CrossRef]
    [Google Scholar]
  115. Jiricny N, Molin S, Foster K, Diggle SP, Scanlan PD et al. Loss of social behaviours in populations of Pseudomonas aeruginosa infecting lungs of patients with cystic fibrosis. PLoS One 2014; 9:e83124 [CrossRef]
    [Google Scholar]
  116. Kümmerli R. Cheat invasion causes bacterial trait loss in lung infections: fig. 1. Proc Natl Acad Sci U S A 2015; 112:10577–10578 [CrossRef]
    [Google Scholar]
  117. Marvig RL, Damkiær S, Khademi SMH, Markussen TM, Molin S et al. Within-Host evolution of Pseudomonas aeruginosa reveals adaptation toward iron acquisition from hemoglobin. MBio 2014a; 5:e00966–14 [CrossRef]
    [Google Scholar]
  118. Nguyen AT, O'Neill MJ, Watts AM, Robson CL, Lamont IL et al. Adaptation of iron homeostasis pathways by a Pseudomonas aeruginosa pyoverdine mutant in the cystic fibrosis lung. J Bacteriol 2014; 196:2265–2276 [CrossRef]
    [Google Scholar]
  119. Andersen SB, Ghoul M, Marvig RL, Lee Z-B, Molin S et al. Privatisation rescues function following loss of cooperation. Elife 2018; 7:e38594 [CrossRef]
    [Google Scholar]
  120. Lamont IL, Beare PA, Ochsner U, Vasil AI, Vasil ML. Siderophore-Mediated signaling regulates virulence factor production in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2002; 99:7072–7077 [CrossRef]
    [Google Scholar]
  121. Brockhurst MA, Chapman T, King KC, Mank JE, Paterson S et al. Running with the red Queen: the role of biotic conflicts in evolution. Proc Biol Sci 2014; 281:20141382 [CrossRef]
    [Google Scholar]
  122. Liow LH, Van Valen L, Stenseth NC. Red Queen: from populations to taxa and communities. Trends Ecol Evol 2011; 26:349–358 [CrossRef]
    [Google Scholar]
  123. Van Valen L. A new evolutionary law. Evol Theory 1973; 1:1–30
    [Google Scholar]
  124. O’Brien S, Fothergill JL. The role of multispecies social interactions in shaping Pseudomonas aeruginosa pathogenicity in the cystic fibrosis lung. FEMS Microbiol Lett 2017; 364:1–10
    [Google Scholar]
  125. Tognon M, Köhler T, Gdaniec BG, Hao Y, Lam JS et al. Co-Evolution with Staphylococcus aureus leads to lipopolysaccharide alterations in Pseudomonas aeruginosa. ISME J 2017; 11:2233–2243 [CrossRef]
    [Google Scholar]
  126. Hotterbeekx A, Kumar-Singh S, Goossens H, Malhotra-Kumar S. In vivo and in vitro interactions between Pseudomonas aeruginosa and Staphylococcus spp. Front Cell Infect Microbiol 2017; 7:1–13 [CrossRef]
    [Google Scholar]
  127. Schäberle TF, Hack IM. Overcoming the current deadlock in antibiotic research. Trends Microbiol 2014; 22:165–167 [CrossRef]
    [Google Scholar]
  128. Breidenstein EBM, de la Fuente-Núñez C, Hancock REW. Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol 2011; 19:419–426 [CrossRef]
    [Google Scholar]
  129. Burrows LL. The Therapeutic Pipeline for Pseudomonas aeruginosa Infections. ACS Infect. Dis. 2018; 4:1041–1047 [CrossRef]
    [Google Scholar]
  130. Brown SP, West SA, Diggle SP, Griffin AS. Social evolution in micro-organisms and a Trojan horse approach to medical intervention strategies. Philos Trans R Soc Lond B Biol Sci 2009; 364:3157–3168 [CrossRef]
    [Google Scholar]
  131. Hughes D, Andersson DI. Evolutionary trajectories to antibiotic resistance. Annu Rev Microbiol 2017; 71:579–596 [CrossRef]
    [Google Scholar]
  132. Allen RC, Popat R, Diggle SP, Brown SP. Targeting virulence: can we make evolution-proof drugs?. Nat Rev Microbiol 2014; 12:300–308 [CrossRef]
    [Google Scholar]
  133. André J-B, Godelle B. Multicellular organization in bacteria as a target for drug therapy. Ecol Lett 2005; 8:800–810 [CrossRef]
    [Google Scholar]
  134. Clatworthy AE, Pierson E, Hung DT. Targeting virulence: a new paradigm for antimicrobial therapy. Nat Chem Biol 2007; 3:541–548 [CrossRef]
    [Google Scholar]
  135. Dickey SW, Cheung GYC, Otto M. Different drugs for bad bugs: antivirulence strategies in the age of antibiotic resistance. Nat Rev Drug Discov 2017; 16:457–471 [CrossRef]
    [Google Scholar]
  136. Maura D, Ballok AE, Rahme LG. Considerations and caveats in anti-virulence drug development. Curr Opin Microbiol 2016; 33:41–46 [CrossRef]
    [Google Scholar]
  137. Mellbye B, Schuster M. The sociomicrobiology of antivirulence drug resistance: a proof of concept. mBio 2011; 2:e00131–11 [CrossRef]
    [Google Scholar]
  138. Pepper JW. Drugs that target pathogen public goods are robust against evolved drug resistance. Evol Appl 2012; 5:757–761 [CrossRef]
    [Google Scholar]
  139. Vale PF, McNally L, Doeschl-Wilson A, King KC, Popat R et al. Beyond killing. EMPH 2016; 2016:148–157 [CrossRef]
    [Google Scholar]
  140. Gerdt JP, Blackwell HE. Competition studies confirm two major barriers that can preclude the spread of resistance to quorum-sensing inhibitors in bacteria. ACS Chem Biol 2014; 9:2291–2299 [CrossRef]
    [Google Scholar]
  141. Ross-Gillespie A, Weigert M, Brown SP, Kümmerli R. Gallium-mediated siderophore quenching as an evolutionarily robust antibacterial treatment. Evol Med Public Heal 2014; 2014:18–29 [CrossRef]
    [Google Scholar]
  142. Hentzer M, Wu H, Andersen JB, Riedel K, Rasmussen TB. Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J 2003; 22:3803–3815 [CrossRef]
    [Google Scholar]
  143. LaSarre B, Federle MJ. Exploiting quorum sensing to confuse bacterial pathogens. Microbiology and Molecular Biology Reviews 2013; 77:73–111 [CrossRef]
    [Google Scholar]
  144. Maeda T, García-Contreras R, Pu M, Sheng L, Garcia LR et al. Quorum quenching quandary: resistance to antivirulence compounds. ISME J 2012; 6:493–501 [CrossRef]
    [Google Scholar]
  145. Goss CH, Kaneko Y, Khuu L, Anderson GD, Ravishankar S et al. Gallium disrupts bacterial iron metabolism and has therapeutic effects in mice and humans with lung infections. Sci Transl Med 2018; 10:eaat7520 [CrossRef]
    [Google Scholar]
  146. Hijazi S, Visaggio D, Pirolo M, Frangipani E, Bernstein L et al. Antimicrobial activity of gallium compounds on ESKAPE pathogens. Front Cell Infect Microbiol 2018; 8:316 [CrossRef]
    [Google Scholar]
  147. Kaneko Y, Thoendel M, Olakanmi O, Britigan BE, Singh PK. The transition metal gallium disrupts Pseudomonas aeruginosa iron metabolism and has antimicrobial and antibiofilm activity. J. Clin. Invest. 2007; 117:877–888 [CrossRef]
    [Google Scholar]
  148. Rezzoagli C, Wilson D, Weigert M, Wyder S, Kümmerli R. Probing the evolutionary robustness of two repurposed drugs targeting iron uptake in Pseudomonas aeruginosa . Evol Med Public Heal 2018; 1:246–259
    [Google Scholar]
  149. García-Contreras R, Lira-Silva E, Jasso-Chávez R, Hernández-González IL, Maeda T et al. Isolation and characterization of gallium resistant Pseudomonas aeruginosa mutants. International Journal of Medical Microbiology 2013; 303:574–582 [CrossRef]
    [Google Scholar]
  150. Defoirdt T. Quorum-Sensing systems as targets for antivirulence therapy. Trends Microbiol 2018; 26:313–328 [CrossRef]
    [Google Scholar]
  151. Rampioni G, Leoni L, Williams P. The art of antibacterial warfare: deception through interference with quorum sensing–mediated communication. Bioorg Chem 2014; 55:60–68 [CrossRef]
    [Google Scholar]
  152. Scoffone VC, Trespidi G, Chiarelli LR, Barbieri G, Buroni S. Quorum sensing as antivirulence target in cystic fibrosis pathogens. Int J Mol Sci 2019; 20:1838 [CrossRef]
    [Google Scholar]
  153. Koo H, Allan RN, Howlin RP, Stoodley P, Hall-Stoodley L. Targeting microbial biofilms: current and prospective therapeutic strategies. Nat Rev Microbiol 2017; 15:740–755 [CrossRef]
    [Google Scholar]
  154. Barraud N, Hassett DJ, Hwang S-H, Rice SA, Kjelleberg S et al. Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa. J Bacteriol 2006; 188:7344–7353 [CrossRef]
    [Google Scholar]
  155. Boles BR, Thoendel M, Singh PK. Rhamnolipids mediate detachment of Pseudomonas aeruginosa from biofilms. Mol Microbiol 2005; 57:1210–1223 [CrossRef]
    [Google Scholar]
  156. Howlin RP, Cathie K, Hall-Stoodley L, Cornelius V, Duignan C et al. Low-Dose nitric oxide as targeted anti-biofilm adjunctive therapy to treat chronic Pseudomonas aeruginosa infection in cystic fibrosis. Molecular Therapy 2017; 25:2104–2116 [CrossRef]
    [Google Scholar]
  157. van Tilburg Bernardes E, Charron-Mazenod L, Reading DJ, Reckseidler-Zenteno SL, Lewenza S. Exopolysaccharide-repressing small molecules with antibiofilm and antivirulence activity against Pseudomonas aeruginosa. Antimicrob Agents Chemother 2017; 61: [CrossRef]
    [Google Scholar]
  158. Condren AR, Kahl LJ, Kritikos G, Banzhaf M, Dietrich LEP et al. Biofilm inhibitor taurolithocholic acid alters colony morphology, specialized metabolism, and virulence of Pseudomonas aeruginosa. bioRxiv 20191–33
    [Google Scholar]
  159. Roy V, Adams BL, Bentley WE. Developing next generation antimicrobials by intercepting AI-2 mediated quorum sensing. Enzyme Microb Technol 2011; 49:113–123 [CrossRef]
    [Google Scholar]
  160. Wang Z, Xiang Q, Yang T, Li L, Yang J et al. Autoinducer-2 of Streptococcus mitis as a target molecule to inhibit pathogenic multi-species biofilm formation in vitro and in an endotracheal intubation rat model. Front Microbiol 2016; 7:1–11 [CrossRef]
    [Google Scholar]
  161. Raffatellu M. Learning from bacterial competition in the host to develop antimicrobials. Nat Med 2018; 24:1097–1103 [CrossRef]
    [Google Scholar]
  162. Gonzalez D, Sabnis A, Foster KR, Mavridou DAI. Costs and benefits of provocation in bacterial warfare. Proc Natl Acad Sci U S A 2018; 115:7593–7598 [CrossRef]
    [Google Scholar]
  163. Behrens HM, Six A, Walker D, Kleanthous C. The therapeutic potential of bacteriocins as protein antibiotics. Emerg Top Life Sci 2017; 1:65–74
    [Google Scholar]
  164. Scholl D, Martin DW. Antibacterial efficacy of R-type pyocins towards Pseudomonas aeruginosa in a murine peritonitis model. Antimicrob Agents Chemother 2008; 52:1647–1652 [CrossRef]
    [Google Scholar]
  165. Redero M, López-Causapé C, Aznar J, Oliver A, Blázquez J et al. Susceptibility to R-pyocins of Pseudomonas aeruginosa clinical isolates from cystic fibrosis patients. J Antimicrob Chemother 2018; 73:2770–2776 [CrossRef]
    [Google Scholar]
  166. Kaufmann SHE, Schaible UE. 100th anniversary of Robert Koch's Nobel Prize for the discovery of the tubercle Bacillus. Trends Microbiol 2005; 13:469–475 [CrossRef]
    [Google Scholar]
  167. Byrd AL, Segre JA, Koch R. Adapting Koch's postulates. Science 2016; 351:224–226 [CrossRef]
    [Google Scholar]
  168. Surette MG. The cystic fibrosis lung microbiome. Ann Am Thorac Soc 2014; 11:S61–S65 [CrossRef]
    [Google Scholar]
  169. Rakoff-Nahoum S, Foster KR, Comstock LE. The evolution of cooperation within the gut microbiota. Nature 2016; 533:255–259 [CrossRef]
    [Google Scholar]
  170. Buffie CG, Bucci V, Stein RR, McKenney PT, Ling L et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 2015; 517:205–208 [CrossRef]
    [Google Scholar]
  171. Diard M, Garcia V, Maier L, Remus-Emsermann MNP, Regoes RR et al. Stabilization of cooperative virulence by the expression of an avirulent phenotype. Nature 2013; 494:353–356 [CrossRef]
    [Google Scholar]
  172. Ducarmon QR, Zwittink RD, Hornung BVH, van Schaik W, Young VB et al. Gut microbiota and colonization resistance against bacterial enteric infection. Microbiol Mol Biol Rev 2019; 83:e00007–00019 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.001134
Loading
/content/journal/jmm/10.1099/jmm.0.001134
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error