1887

Abstract

The worldwide emergence of carbapenem resistance in Gram-negative bacteria makes the development of simple tests mandatory to identify antimicrobial resistance mechanisms. Enzymatic and membrane barriers are the prominent resistance mechanisms described in these bacteria. Several tests are currently used to detect carbapenemase activities.

However, a simple test for the identification of membrane-associated mechanisms of resistance is not yet available and this mechanism is often inferred after the exclusion of a carbapenemase in carbapenem-resistant Gram-negative bacteria.

Different media (liquid and solid) containing a membrane permeabilizer were tested to identify the existence of a membrane barrier. Here, polymyxin B nonapeptide (PMBN) was selected to bypass the role of impermeability in clinical carbapenem-resistant , including , and isolates. In parallel, the expression of porins (OmpC and OmpF types) was checked in the various bacterial strains in order to search for a correlation between the restoration of susceptibility and the expression of porin.

Using a large number of clinical isolates, PMBN associated with a carbapenem allowed us to detect porin-deficient isolates with a sensitivity ranging from 89 to 93 % and a specificity ranging from 86 to 100 %.

This paves the way for a diagnostic assay allowing the detection of this membrane-associated mechanism of resistance in .

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.001129
2020-01-06
2020-01-24
Loading full text...

Full text loading...

References

  1. Watkins RR, Bonomo RA. Overview: global and local impact of antibiotic resistance. Infect Dis Clin North Am 2016;30: 313– 322 [CrossRef]
    [Google Scholar]
  2. Laxminarayan R, Matsoso P, Pant S, Brower C, Røttingen J-A et al. Access to effective antimicrobials: a worldwide challenge. The Lancet 2016;387: 168– 175 [CrossRef]
    [Google Scholar]
  3. Nikaido H. Molecular basis of bacterial outer membrane permeability revisited. Microbiology and Molecular Biology Reviews 2003;67: 593– 656 [CrossRef]
    [Google Scholar]
  4. Pagès J-M, James CE, Winterhalter M. The porin and the permeating antibiotic: a selective diffusion barrier in Gram-negative bacteria. Nat Rev Microbiol 2008;6: 893– 903 [CrossRef]
    [Google Scholar]
  5. Zgurskaya HI, Löpez CA, Gnanakaran S. Permeability barrier of gram-negative cell envelopes and approaches to bypass it. ACS Infect Dis 2015;1: 512– 522 [CrossRef]
    [Google Scholar]
  6. Masi M, Réfregiers M, Pos KM, Pagès J-M. Mechanisms of envelope permeability and antibiotic influx and efflux in gram-negative bacteria. Nat Microbiol 2017;2: 17001 [CrossRef]
    [Google Scholar]
  7. Logan LK, Weinstein RA. The epidemiology of carbapenem-resistant Enterobacteriaceae: the impact and evolution of a global menace. J Infect Dis 2017;215: S28– S36 [CrossRef]
    [Google Scholar]
  8. Miller S, Humphries RM. Clinical laboratory detection of carbapenem-resistant and carbapenemase-producing Enterobacteriaceae. Expert Rev Anti Infect Ther 2016;14: 705– 717 [CrossRef]
    [Google Scholar]
  9. Lutgring JD, Limbago BM. The problem of Carbapenemase-Producing-Carbapenem-Resistant-Enterobacteriaceae detection. J Clin Microbiol 2016;54: 529– 534 [CrossRef]
    [Google Scholar]
  10. Al-Zahrani IA. Routine detection of carbapenem-resistant gram-negative bacilli in clinical laboratories. A review of current challenge. Saudi Med J 2018;39: 861– 872 [CrossRef]
    [Google Scholar]
  11. Wise MG, Horvath E, Young K, Sahm DF, Kazmierczak KM. Global survey of Klebsiella pneumoniae major porins from ertapenem non-susceptible isolates lacking carbapenemases. J Med Microbiol 2018;67: 289– 295 [CrossRef]
    [Google Scholar]
  12. Bush K, Bradford PA. β-Lactams and β-Lactamase Inhibitors: An Overview. Cold Spring Harb Perspect Med 2016;6: pii: a025247 [CrossRef]
    [Google Scholar]
  13. Kelly AM, Mathema B, Larson EL. Carbapenem-resistant Enterobacteriaceae in the community: a scoping review. Int J Antimicrob Agents 2017;50: 127– 134 [CrossRef]
    [Google Scholar]
  14. Bolla J-M, Alibert-Franco S, Handzlik J, Chevalier J, Mahamoud A et al. Strategies for bypassing the membrane barrier in multidrug resistant gram-negative bacteria. FEBS Lett 2011;585: 1682– 1690 [CrossRef]
    [Google Scholar]
  15. Pagès J-M, Peslier S, Keating TA, Lavigne J-P, Nichols WW. role of the outer membrane and porins in susceptibility of β-lactamase-producing Enterobacteriaceae to ceftazidime-avibactam. Antimicrob Agents Chemother 2016;60: 1349– 1359 [CrossRef]
    [Google Scholar]
  16. Pinet E, Franceschi C, Davin-Regli A, Zambardi G, Pagès J-M. Role of the culture medium in porin expression and piperacillin-tazobactam susceptibility in Escherichia coli. J Med Microbiol 2015;64: 1305– 1314 [CrossRef]
    [Google Scholar]
  17. CLSI Clsi Subcommittee on antimicrobial susceptibility testing. https://clsi.org/media/1974/ast_news_update_jan18.pdf
  18. Philippe N, Maigre L, Santini S, Pinet E, Claverie J-M et al. In vivo evolution of bacterial resistance in two cases of Enterobacter aerogenes infections during treatment with imipenem. PLoS One 2015;10: e0138828 [CrossRef]
    [Google Scholar]
  19. Simonet V, Mallea M, Fourel D, Bolla JM, Pages JM. Crucial domains are conserved in Enterobacteriaceae porins. FEMS Microbiol Lett 1996;136: 91– 97 [CrossRef]
    [Google Scholar]
  20. Chevalier J, Malléa M, Pagès JM. Comparative aspects of the diffusion of norfloxacin, cefepime and spermine through the F porin channel of Enterobacter cloacae. Biochem J 2000;348: 223– 227 [CrossRef]
    [Google Scholar]
  21. Simonet V, Malléa M, Pagès JM. Substitutions in the eyelet region disrupt cefepime diffusion through the Escherichia coli OmpF channel. Antimicrob Agents Chemother 2000;44: 311– 315 [CrossRef]
    [Google Scholar]
  22. Aguirre-Quiñonero A, Martínez-Martínez L. Non-molecular detection of carbapenemases in Enterobacteriaceae clinical isolates. J Infect Chemother 2017;23: 1– 11 [CrossRef]
    [Google Scholar]
  23. Simner PJ, Opene BNA, Chambers KK, Naumann ME, Carroll KC et al. Carbapenemase detection among carbapenem-resistant glucose-nonfermenting gram-negative bacilli. J Clin Microbiol 2017;55: 2858– 2864 [CrossRef]
    [Google Scholar]
  24. Sun K, Xu X, Yan J, Zhang L. Evaluation of six phenotypic methods for the detection of carbapenemases in gram-negative bacteria with characterized resistance mechanisms. Ann Lab Med 2017;37: 305– 312 [CrossRef]
    [Google Scholar]
  25. Coppi M, Antonelli A, Giani T, Spanu T, Liotti FM et al. Multicenter evaluation of the RAPIDEC® Carba NP test for rapid screening of carbapenemase-producing Enterobacteriaceae and gram-negative nonfermenters from clinical specimens. Diagn Microbiol Infect Dis 2017;88: 207– 213 [CrossRef]
    [Google Scholar]
  26. Cunningham SA, Limbago B, Traczewski M, Anderson K, Hackel M et al. Multicenter performance assessment of Carba NP test. J Clin Microbiol 2017;55: 1954– 1960 [CrossRef]
    [Google Scholar]
  27. Perry JD. A decade of development of chromogenic culture media for clinical microbiology in an era of molecular diagnostics. Clin Microbiol Rev 2017;30: 449– 479 [CrossRef]
    [Google Scholar]
  28. Mancini S, Kieffer N, Poirel L, Nordmann P. Evaluation of the RAPIDEC® Carba NP and β-CARBA® tests for rapid detection of carbapenemase-producing Enterobacteriaceae. Diagn Microbiol Infect Dis 2017;88: 293– 297 [CrossRef]
    [Google Scholar]
  29. Stavenger RA, Winterhalter M. Translocation project: how to get good drugs into bad bugs. Sci Transl Med 2014;6: 228ed7 [CrossRef]
    [Google Scholar]
  30. Allam A, Maigre L, Vergalli J, Dumont E, Cinquin B et al. Microspectrofluorimetry to dissect the permeation of ceftazidime in gram-negative bacteria. Sci Rep 2017;7: 986 [CrossRef]
    [Google Scholar]
  31. Corbett D, Wise A, Langley T, Skinner K, Trimby E et al. Potentiation of antibiotic activity by a novel cationic peptide: potency and spectrum of activity of SPR741. Antimicrob Agents Chemother 2017;61: e00200– 00217 pii [CrossRef]
    [Google Scholar]
  32. Fajardo-Lubián A, Ben Zakour NL, Agyekum A, Qi Q, Iredell JR. Host adaptation and convergent evolution increases antibiotic resistance without loss of virulence in a major human pathogen. PLoS Pathog 2019;15: e1007218 [CrossRef]
    [Google Scholar]
  33. Wong JLC, Romano M, Kerry LE, Kwong H-S, Low W-W et al. OmpK36-mediated carbapenem resistance attenuates ST258 Klebsiella pneumoniae in vivo. Nat Commun 2019;10: 3957 [CrossRef]
    [Google Scholar]
  34. Vergalli J, Bodrenko IV, Masi M, Moynié L, Acosta-Gutiérrez S et al. Porins and small-molecule translocation across the outer membrane of gram-negative bacteria. Nat Rev Microbiol 2019;33: [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.001129
Loading
/content/journal/jmm/10.1099/jmm.0.001129
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error