1887

Abstract

, a versatile Gram-negative pathogen that can cause a wide range of infections, is the most common causative agent in cases of bacterial keratitis associated with contact-lens use. Corneal infections with often have poor clinical outcomes and can result in long and costly treatments. During the infection process, the pathogen exploits its large genome, encoding complex regulatory networks and a wide range of virulence factors, including motility and the secretion of various proteases and toxins. Although antibiotic resistance levels in the UK are low, higher levels have been seen in some other countries. In the face of increasing antibiotic resistance, alternative therapeutic approaches such as antivirulence strategies and phage therapy are being developed. There is increasing evidence to suggest that keratitis infections are associated with a phylogenetic subgroup of isolates carrying the gene encoding the potent cytotoxin exotoxin U, one of two mutually exclusive exotoxins secreted via the type III secretion system. The mechanisms behind this association are unclear, but understanding the genetic differences that predispose to cause corneal infections may allow for the development of targeted and more effective future treatments to reduce the morbidity of keratitis. In order to minimize the risk of severe eye infections, a wide range of contact-lens disinfection solutions are available. Constant exposure to biocides at a range of concentrations, from sub-inhibitory to inhibitory, could contribute to the development of resistance to both antibiotics and disinfectants.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.001110
2019-11-21
2019-12-09
Loading full text...

Full text loading...

References

  1. Collier SA, Gronostaj MP, MacGurn AK, Cope JR, Awsumb KL et al. Estimated Burden of Keratitis - United States, 2010. Morb Mortal Wkly Rep 2014;63: 1027– 1030
    [Google Scholar]
  2. Al-Mujaini A, Al-Kharusi N, Thakral A, Wali UK. Bacterial keratitis: perspective on epidemiology, clinico-pathogenesis, diagnosis and treatment. Sultan Qaboos Univ Med J 2009;9: 184– 195
    [Google Scholar]
  3. Virdee J, Moussa G, Gooch N, Kigozi J, Penaloza C et al. Calculating the health economic burden of microbial keratitis (MK) admission in a tertiary referral centre in the UK. Invest Ophthalmol Vis Sci 2016;57: 3883
    [Google Scholar]
  4. Eltis M. Contact-lens-related microbial keratitis: case report and review. J Optom 2011;4: 122– 127 [CrossRef]
    [Google Scholar]
  5. Saeed A, D'Arcy F, Stack J, Collum LM, Power W et al. Risk factors, microbiological findings, and clinical outcomes in cases of microbial keratitis admitted to a tertiary referral center in Ireland. Cornea 2009;28: 285– 292 [CrossRef]
    [Google Scholar]
  6. Hoddenbach JG, Boekhoorn SS, Wubbels R, Vreugdenhil W, Van Rooij J et al. Clinical presentation and morbidity of contact lens–associated microbial keratitis: a retrospective study. Graefes Arch Clin Exp Ophthalmol 2014;252: 299– 306 [CrossRef]
    [Google Scholar]
  7. Stapleton F, Naduvilath T, Keay L, Radford C, Dart J et al. Risk factors and causative organisms in microbial keratitis in daily disposable contact lens wear. PLoS One 2017;12: e0181343 [CrossRef]
    [Google Scholar]
  8. Stapleton F, Carnt N. Contact lens-related microbial keratitis: how have epidemiology and genetics helped us with pathogenesis and prophylaxis. Eye 2012;26: 185– 193 [CrossRef]
    [Google Scholar]
  9. Cavanagh HD, Robertson DM, Petroll WM, Jester JV. Castroviejo lecture 2009: 40 years in search of the perfect contact lens. Cornea 2010;29: 1075– 1085 [CrossRef]
    [Google Scholar]
  10. Poggio EC, Glynn RJ, Schein OD, Seddon JM, Shannon MJ et al. The incidence of ulcerative keratitis among users of daily-wear and extended-wear soft contact lenses. N Engl J Med 1989;321: 779– 783 [CrossRef]
    [Google Scholar]
  11. Schein OD, Glynn RJ, Poggio EC, Seddon JM, Kenyon KR et al. The relative risk of ulcerative keratitis among users of daily-wear and extended-wear soft contact lenses. N Engl J Med 1989;321: 773– 778 [CrossRef]
    [Google Scholar]
  12. Cheng KH, Leung SL, Hoekman HW, Beekhuis WH, Mulder PGH et al. Incidence of contact-lens-associated microbial keratitis and its related morbidity. The Lancet 1999;354: 181– 185 [CrossRef]
    [Google Scholar]
  13. Stapleton F, Keay L, Edwards K, Naduvilath T, Dart JKG et al. The incidence of contact lens-related microbial keratitis in Australia. Ophthalmology 2008;115: 1655– 1662 [CrossRef]
    [Google Scholar]
  14. Green M, Apel A, Stapleton F. Risk factors and causative organisms in microbial keratitis. Cornea 2008;27: 22– 27 [CrossRef]
    [Google Scholar]
  15. Lyczak JB, Cannon CL, Pier GB. Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes Infect 2000;2: 1051– 1060 [CrossRef]
    [Google Scholar]
  16. Pendleton JN, Gorman SP, Gilmore BF. Clinical relevance of the ESKAPE pathogens. Expert Rev Anti Infect Ther 2013;11: 297– 308 [CrossRef]
    [Google Scholar]
  17. World Health Organization 2017; WHO publishes list of bacteria for which new antibiotics are urgently needed [Internet]. http://www.who.int/news-room/detail/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed
  18. de Bentzmann S, Plésiat P. The Pseudomonas aeruginosa opportunistic pathogen and human infections. Environ Microbiol 2011;13: 1655– 1665 [CrossRef]
    [Google Scholar]
  19. Yildiz EH, Airiani S, Hammersmith KM, Rapuano CJ, Laibson PR et al. Trends in contact lens-related corneal ulcers at a tertiary referral center. Cornea 2012;31: 1097– 1102 [CrossRef]
    [Google Scholar]
  20. AL N, KK T, Choi CC, Yuen LH, Yim S et al. Predisposing factors, microbial characteristics, and clinical outcome of microbial keratitis in a tertiary centre in Hong Kong: a 10-year experience. J Ophthalmol 2015;769436:
    [Google Scholar]
  21. Silby MW, Winstanley C, Godfrey SAC, Levy SB, Jackson RW. Pseudomonas genomes: diverse and adaptable. FEMS Microbiol Rev 2011;35: 652– 680 [CrossRef]
    [Google Scholar]
  22. Valot B, Guyeux C, Rolland JY, Mazouzi K, Bertrand X et al. What it takes to be a Pseudomonas aeruginosa? the core genome of the opportunistic pathogen updated. PLoS One 2015;10: e0126468 [CrossRef]
    [Google Scholar]
  23. Freschi L, Vincent AT, Jeukens J, Emond-Rheault J-G, Kukavica-Ibrulj I et al. The Pseudomonas aeruginosa Pan-Genome Provides New Insights on Its Population Structure, Horizontal Gene Transfer, and Pathogenicity. Genome Biol Evol 2019;11: 109– 120 [CrossRef]
    [Google Scholar]
  24. Balasubramanian D, Schneper L, Kumari H, Mathee K. A dynamic and intricate regulatory network determines Pseudomonas aeruginosa virulence. Nucleic Acids Res 2013;41: 1– 20 [CrossRef]
    [Google Scholar]
  25. Lee DG, Urbach JM, Wu G, Liberati NT, Feinbaum RL et al. Genomic analysis reveals that Pseudomonas aeruginosa virulence is combinatorial. Genome Biol 2006;7: R90 [CrossRef]
    [Google Scholar]
  26. Lee J, Zhang L. The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell 2015;6: 26– 41 [CrossRef]
    [Google Scholar]
  27. Lee J, Wu J, Deng Y, Wang J, Wang C et al. A cell-cell communication signal integrates quorum sensing and stress response. Nat Chem Biol 2013;9: 339– 343 [CrossRef]
    [Google Scholar]
  28. Schuster M, Greenberg EP. A network of networks: quorum-sensing gene regulation in Pseudomonas aeruginosa. Int J Med Microbiol 2006;296: 73– 81 [CrossRef]
    [Google Scholar]
  29. Lakkis C, Fleiszig SM. Resistance of Pseudomonas aeruginosa isolates to hydrogel contact lens disinfection correlates with cytotoxic activity. J Clin Microbiol 2001;39: 1477– 1486 [CrossRef]
    [Google Scholar]
  30. Zhu H, Conibear TCR, Bandara R, Aliwarga Y, Stapleton F et al. Type III secretion system-associated toxins, proteases, serotypes, and antibiotic resistance of Pseudomonas aeruginosa isolates associated with keratitis. Curr Eye Res 2006;31: 297– 306 [CrossRef]
    [Google Scholar]
  31. Borkar DS, Fleiszig SMJ, Leong C, Lalitha P, Srinivasan M et al. Association between cytotoxic and invasive Pseudomonas aeruginosa and clinical outcomes in bacterial keratitis. JAMA Ophthalmol 2013;131: 147 [CrossRef]
    [Google Scholar]
  32. Würtele M, Wolf E, Pederson KJ, Buchwald G, Ahmadian MR et al. How the Pseudomonas aeruginosa ExoS toxin downregulates Rac. Nat Struct Biol 2001;8: 23– 26 [CrossRef]
    [Google Scholar]
  33. Sato H, Frank DW, Hillard CJ, Feix JB, Pankhaniya RR et al. The mechanism of action of the Pseudomonas aeruginosa-encoded type III cytotoxin, ExoU. Embo J 2003;22: 2959– 2969 [CrossRef]
    [Google Scholar]
  34. Finck-Barbançon V, Goranson J, Zhu L, Sawa T, Wiener-Kronish JP et al. ExoU expression by Pseudomonas aeruginosa correlates with acute cytotoxicity and epithelial injury. Mol Microbiol 1997;25: 547– 557 [CrossRef]
    [Google Scholar]
  35. Fleiszig SM, Wiener-Kronish JP, Miyazaki H, Vallas V, Mostov KE et al. Pseudomonas aeruginosa-mediated cytotoxicity and invasion correlate with distinct genotypes at the loci encoding exoenzyme S. Infect Immun 1997;65: 579– 586
    [Google Scholar]
  36. Hauser AR, Kang PJ, Engel JN, PepA EJN. PepA, a secreted protein of Pseudomonas aeruginosa, is necessary for cytotoxicity and virulence. Mol Microbiol 1998;27: 807– 818 [CrossRef]
    [Google Scholar]
  37. Coburn J, Frank DW. Macrophages and epithelial cells respond differently to the Pseudomonas aeruginosa type III secretion system. Infect Immun 1999;67: 3151– 3154
    [Google Scholar]
  38. Lomholt JA, Poulsen K, Kilian M. Epidemic population structure of Pseudomonas aeruginosa: evidence for a clone that is pathogenic to the eye and that has a distinct combination of virulence factors. Infect Immun 2001;69: 6284– 6295 [CrossRef]
    [Google Scholar]
  39. Winstanley C, Kaye SB, Neal TJ, Chilton HJ, Miksch S et al. Genotypic and phenotypic characteristics of Pseudomonas aeruginosa isolates associated with ulcerative keratitis. J Med Microbiol 2005;54: 519– 526 [CrossRef]
    [Google Scholar]
  40. Stewart RMK, Wiehlmann L, Ashelford KE, Preston SJ, Frimmersdorf E et al. Genetic characterization indicates that a specific subpopulation of Pseudomonas aeruginosa is associated with keratitis infections. J Clin Microbiol 2011;49: 993– 1003 [CrossRef]
    [Google Scholar]
  41. Shankar J, Sueke H, Wiehlmann L, Horsburgh MJ, Tuft S et al. Genotypic analysis of UK keratitis-associated Pseudomonas aeruginosa suggests adaptation to environmental water as a key component in the development of eye infections. FEMS Microbiol Lett 2012;334: 79– 86 [CrossRef]
    [Google Scholar]
  42. Tang A, Marquart ME, Fratkin JD, McCormick CC, Caballero AR et al. Properties of PASP: a Pseudomonas protease capable of mediating corneal erosions. Invest Ophthalmol Vis Sci 2009;50: 3794 [CrossRef]
    [Google Scholar]
  43. Caballero A, Thibodeaux B, Marquart M, Traidej M, O'Callaghan R. Pseudomonas keratitis: protease IV gene conservation, distribution, and production relative to virulence and other Pseudomonas proteases. Invest Ophthalmol Vis Sci 2004;45: 522– 530 [CrossRef]
    [Google Scholar]
  44. Tang A, Caballero AR, Marquart ME, O'Callaghan RJ. Pseudomonas aeruginosa small protease (PASP), a keratitis virulence factor. Invest Ophthalmol Vis Sci 2013;54: 2821 [CrossRef]
    [Google Scholar]
  45. Berthelot P, Attrée I, Plésiat P, Chabert J, de Bentzmann S et al. Genotypic and phenotypic analysis of type III secretion system in a cohort of Pseudomonas aeruginosa bacteremia isolates: evidence for a possible association between O serotypes and exo genes. J Infect Dis 2003;188: 512– 518 [CrossRef]
    [Google Scholar]
  46. Zolfaghar I, Evans DJ, Fleiszig SMJ. Twitching motility contributes to the role of pili in corneal infection caused by Pseudomonas aeruginosa. Infect Immun 2003;71: 5389– 5393 [CrossRef]
    [Google Scholar]
  47. Oka N, Suzuki T, Ishikawa E, Yamaguchi S, Hayashi N et al. Relationship of Virulence Factors and Clinical Features in Keratitis Caused by Pseudomonas aeruginosa. Invest Ophthalmol Vis Sci 2015;56: 6892 [CrossRef]
    [Google Scholar]
  48. Sy A, Srinivasan M, Mascarenhas J, Lalitha P, Rajaraman R et al. Pseudomonas aeruginosa keratitis: outcomes and response to corticosteroid treatment. Invest Ophthalmol Vis Sci 2012;53: 267 [CrossRef]
    [Google Scholar]
  49. Taube M-A, del Mar Cendra M, Elsahn A, Christodoulides M, Hossain P. Pattern recognition receptors in microbial keratitis. Eye 2015;29: 1399– 1415 [CrossRef]
    [Google Scholar]
  50. Sun Y, Karmakar M, Roy S, Ramadan RT, Williams SR et al. Tlr4 and TLR5 on corneal macrophages regulate Pseudomonas aeruginosa keratitis by signaling through MyD88-dependent and -independent pathways. J Immunol 2010;185: 4272– 4283 [CrossRef]
    [Google Scholar]
  51. Ross BX, Gao N, Cui X, Standiford TJ, Xu J et al. IL-24 Promotes Pseudomonas aeruginosa Keratitis in C57BL/6 Mouse Corneas. J Immunol 2017;198: 3536– 3547 [CrossRef]
    [Google Scholar]
  52. Willcox MDP. Pseudomonas aeruginosa infection and inflammation during contact lens wear: a review. Optom Vis Sci 2007;84: 273– 278 [CrossRef]
    [Google Scholar]
  53. Hazlett LD, Zucker M, Berk RS. Distribution and kinetics of the inflammatory cell response to ocular challenge with Pseudomonas aeruginosa in susceptible versus resistant mice. Ophthalmic Res 1992;24: 32– 39 [CrossRef]
    [Google Scholar]
  54. Metruccio MME, Wan SJ, Horneman H, Kroken AR, Sullivan AB et al. A novel murine model for contact lens wear reveals clandestine IL-1R dependent corneal parainflammation and susceptibility to microbial keratitis upon inoculation with Pseudomonas aeruginosa. Ocul Surf 2019;17: 119– 133 [CrossRef]
    [Google Scholar]
  55. Zhang Y, Gabriel MM, Mowrey-McKee MF, Barrett RP, McClellan S et al. Rat silicone hydrogel contact lens model: effects of high- versus low-Dk lens wear. Eye Contact Lens 2008;34: 306– 311 [CrossRef]
    [Google Scholar]
  56. Tam C, Mun JJ, Evans DJ, Fleiszig SMJ. The impact of inoculation parameters on the pathogenesis of contact lens-related infectious keratitis. Invest Ophthalmol Vis Sci 2010;51: 3100 [CrossRef]
    [Google Scholar]
  57. Wei C, Zhu M, Petroll WM, Robertson DM. Pseudomonas aeruginosa infectious keratitis in a high oxygen transmissible rigid contact lens rabbit model. Invest Ophthalmol Vis Sci 2014;55: 5890 [CrossRef]
    [Google Scholar]
  58. Vijay AK, Sankaridurg P, Zhu H, Willcox MDP. Guinea pig models of acute keratitis responses. Cornea 2009;28: 1153– 1159 [CrossRef]
    [Google Scholar]
  59. Tuft S, Burton M. 2013; Microbial keratitis. The Royal College of Ophthalmologists Focus [Internet]. https://rcophth.ac.uk/wp-content/uploads/2014/08/Focus-Autumn-2013.pdf
  60. Kaye S, Tuft S, Neal T, Tole D, Leeming J et al. Bacterial susceptibility to topical antimicrobials and clinical outcome in bacterial keratitis. Invest Ophthalmol Vis Sci 2010;51: 362 [CrossRef]
    [Google Scholar]
  61. Centers for Disease Control and Prevention Antibiotic resistance threats in the United States. 2013;69
  62. Stewart PS, William Costerton J, Costerton WJ. Antibiotic resistance of bacteria in biofilms. The Lancet 2001;358: 135– 138 [CrossRef]
    [Google Scholar]
  63. Morita Y, Tomida J, Kawamura Y. Responses of Pseudomonas aeruginosa. Front Microbiol 2014;4: 30– 37
    [Google Scholar]
  64. Llanes C, Hocquet D, Vogne C, Benali-Baitich D, Neuwirth C et al. Clinical strains of Pseudomonas aeruginosa overproducing MexAB-OprM and MexXY efflux pumps simultaneously. Antimicrob Agents Chemother 2004;48: 1797– 1802 [CrossRef]
    [Google Scholar]
  65. Munita JM, Arias CA. Mechanisms of antibiotic resistance. Microbiol Spectr 2016;4: [CrossRef]
    [Google Scholar]
  66. Willcox MDP. Review of resistance of ocular isolates of Pseudomonas aeruginosa and staphylococci from keratitis to ciprofloxacin, gentamicin and cephalosporins. Clin Exp Optom 2011;94: 161– 168 [CrossRef]
    [Google Scholar]
  67. Subedi D, Vijay AK, Willcox M. Overview of mechanisms of antibiotic resistance in Pseudomonas aeruginosa: an ocular perspective. Clin Exp Optom 2018;101: 162– 171 [CrossRef]
    [Google Scholar]
  68. Subedi D, Vijay AK, Kohli GS, Rice SA, Willcox M. Comparative genomics of clinical strains of Pseudomonas aeruginosa strains isolated from different geographic sites. Sci Rep 2018;8: [CrossRef]
    [Google Scholar]
  69. Kücken D, Feucht H, Kaulfers P. Association of qacE and qacEDelta1 with multiple resistance to antibiotics and antiseptics in clinical isolates of gram-negative bacteria. FEMS Microbiol Lett 2000;183: 95– 98 [CrossRef]
    [Google Scholar]
  70. Sueke H, Kaye SB, Neal T, Hall A, Tuft S et al. An in vitro investigation of synergy or antagonism between antimicrobial combinations against isolates from bacterial keratitis. Invest Ophthalmol Vis Sci 2010;51: 4151 [CrossRef]
    [Google Scholar]
  71. Buffet-Bataillon S, Tattevin P, Maillard JY, Bonnaure-Mallet M, Jolivet-Gougeon A. Efflux pump induction by quaternary ammonium compounds and fluoroquinolone resistance in bacteria. Future Microbiol 2016;11: 81– 92 [CrossRef]
    [Google Scholar]
  72. Hegstad K, Mikalsen T, Coque TM, Werner G, Sundsfjord A. Mobile genetic elements and their contribution to the emergence of antimicrobial resistant Enterococcus faecalis and Enterococcus faecium. Clin Microbiol Infect 2010;16: 541– 554 [CrossRef]
    [Google Scholar]
  73. Smith K, Gemmell CG, Hunter IS. The association between biocide tolerance and the presence or absence of QAC genes among hospital-acquired and community-acquired MRSA isolates. J Antimicrob Chemother 2008;61: 78– 84 [CrossRef]
    [Google Scholar]
  74. Bischoff M, Bauer J, Preikschat P, Schwaiger K, Mölle G et al. First detection of the antiseptic resistance gene qacA/B in Enterococcus faecalis. Microb Drug Resist 2012;18: 7– 12 [CrossRef]
    [Google Scholar]
  75. Jaglic Z, Cervinkova D. Genetic basis of resistance to quaternary ammonium compounds – the QAC genes and their role: a review. Vet Med 2012;57: 275– 281 [CrossRef]
    [Google Scholar]
  76. Lin L, Kim J, Chen H, Kowalski R, Nizet V. Component analysis of multipurpose contact lens solutions to enhance activity against Pseudomonas aeruginosa and Staphylococcus aureus. Antimicrob Agents Chemother 2016;60: 4259– 4263 [CrossRef]
    [Google Scholar]
  77. Mc Cay PH, Ocampo-Sosa AA, Fleming GTA. Effect of subinhibitory concentrations of benzalkonium chloride on the competitiveness of Pseudomonas aeruginosa grown in continuous culture. Microbiology 2010;156: 30– 38 [CrossRef]
    [Google Scholar]
  78. Anderson RL, Carr JH, Bond WW, Favero MS. Susceptibility of vancomycin-resistant enterococci to environmental disinfectants. Infect Control Hosp Epidemiol 1997;18: 195– 199 [CrossRef]
    [Google Scholar]
  79. Cole EC, Addison RM, Rubino JR, Leese KE, Dulaney PD et al. Investigation of antibiotic and antibacterial agent cross-resistance in target bacteria from homes of antibacterial product users and nonusers. J Appl Microbiol 2003;95: 664– 676 [CrossRef]
    [Google Scholar]
  80. Jamal M, Bukhari SMAUS, Andleeb S, Ali M, Raza S et al. Bacteriophages: an overview of the control strategies against multiple bacterial infections in different fields. J Basic Microbiol 2019;59: 123– 133 [CrossRef]
    [Google Scholar]
  81. Fukuda K, Ishida W, Uchiyama J, Rashel M, Kato S-ichiro et al. Pseudomonas aeruginosa keratitis in mice: effects of topical bacteriophage KPP12 administration. PLoS One 2012;7: e47742 [CrossRef]
    [Google Scholar]
  82. Kim H-S, Lee S-H, Byun Y, Park H-D. 6-Gingerol reduces Pseudomonas aeruginosa biofilm formation and virulence via quorum sensing inhibition. Sci Rep 2015;5: 8656 [CrossRef]
    [Google Scholar]
  83. Kim YG, Lee JH, Kim SI, Baek KH, Lee J. Cinnamon bark oil and its components inhibit biofilm formation and toxin production. Int J Food Microbiol 2015;195: 30– 39 [CrossRef]
    [Google Scholar]
  84. Luciardi MC, Blázquez MA, Cartagena E, Bardón A, Arena ME. Mandarin essential oils inhibit quorum sensing and virulence factors of Pseudomonas aeruginosa. LWT - Food Science and Technology 2016;68: 373– 380 [CrossRef]
    [Google Scholar]
  85. Ouyang J, Sun F, Feng W, Sun Y, Qiu X et al. Quercetin is an effective inhibitor of quorum sensing, biofilm formation and virulence factors in Pseudomonas aeruginosa. J Appl Microbiol 2016;120: 966– 974 [CrossRef]
    [Google Scholar]
  86. Paczkowski JE, Mukherjee S, McCready AR, Cong J-P, Aquino CJ et al. Flavonoids Suppress Pseudomonas aeruginosa Virulence through Allosteric Inhibition of Quorum-sensing Receptors. J Biol Chem 2017;292: 4064– 4076 [CrossRef]
    [Google Scholar]
  87. Yerramothu P, Vijay AK, Inflammasomes WMDP. The eye and anti-inflammasome therapy. Eye 2018;32: 491– 505
    [Google Scholar]
  88. Thakur A, Barrett RP, Hobden JA, Hazlett LD. Caspase-1 inhibitor reduces severity of Pseudomonas aeruginosa keratitis in mice. Invest Ophthalmol Vis Sci 2004;45: 3177 [CrossRef]
    [Google Scholar]
  89. Bagge N, Schuster M, Hentzer M, Ciofu O, Givskov M et al. Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and beta-lactamase and alginate production. Antimicrob Agents Chemother 2004;48: 1175– 1187 [CrossRef]
    [Google Scholar]
  90. Maunders E, Welch M. Matrix exopolysaccharides; the sticky side of biofilm formation. FEMS Microbiol Lett 2017;364: [CrossRef]
    [Google Scholar]
  91. Thibodeaux BA, Caballero AR, Marquart ME, Tommassen J, O'Callaghan RJ. Corneal virulence of Pseudomonas aeruginosa elastase B and alkaline protease produced by Pseudomonas putida. Curr Eye Res 2007;32: 373– 386 [CrossRef]
    [Google Scholar]
  92. Spencer J, Murphy LM, Conners R, Sessions RB, Gamblin SJ. Crystal structure of the LasA virulence factor from Pseudomonas aeruginosa: substrate specificity and mechanism of M23 metallopeptidases. J Mol Biol 2010;396: 908– 923 [CrossRef]
    [Google Scholar]
  93. Michalska M, Wolf P. Pseudomonas exotoxin A: optimized by evolution for effective killing. Front Microbiol 2015;6: 963 [CrossRef]
    [Google Scholar]
  94. Barbieri JT, Sun J. Pseudomonas aeruginosa ExoS and ExoT Reviews of Physiology, Biochemistry and Pharmacology Berlin, Heidelberg: Springer Berlin Heidelberg; 2004; pp 79– 92
    [Google Scholar]
  95. Galle M, Jin S, Bogaert P, Haegman M, Vandenabeele P et al. The Pseudomonas aeruginosa type III secretion system has an exotoxin S/T/Y independent pathogenic role during acute lung infection. PLoS One 2012;7: e41547 [CrossRef]
    [Google Scholar]
  96. Miao EA, Andersen-Nissen E, Warren SE, Aderem A. Tlr5 and Ipaf: dual sensors of bacterial flagellin in the innate immune system. Semin Immunopathol 2007;29: 275– 288 [CrossRef]
    [Google Scholar]
  97. Cody WL, Pritchett CL, Jones AK, Carterson AJ, Jackson D et al. Pseudomonas aeruginosa AlgR controls cyanide production in an AlgZ-dependent manner. J Bacteriol 2009;191: 2993– 3002 [CrossRef]
    [Google Scholar]
  98. Kim YJ, Lee JH, Lee Y, Jia J, Paek SH et al. Nucleoside diphosphate kinase and flagellin from Pseudomonas aeruginosa induce interleukin 1 expression via the Akt/NF-κB signaling pathways. Infect Immun 2014;82: 3252– 3260 [CrossRef]
    [Google Scholar]
  99. Terada LS, Johansen KA, Nowbar S, Vasil AI, Vasil ML. Pseudomonas aeruginosa hemolytic phospholipase C suppresses neutrophil respiratory burst activity. Infect Immun 1999;67: 2371– 2376
    [Google Scholar]
  100. Traidej M, Marquart ME, Caballero AR, Thibodeaux BA, O'Callaghan RJ. Identification of the active site residues of Pseudomonas aeruginosa protease IV. Importance of enzyme activity in autoprocessing and activation. J Biol Chem 2003;278: 2549– 2553 [CrossRef]
    [Google Scholar]
  101. Park SJ, Kim SK, YI S, Park HY, XH L. Protease IV, a quorum sensing‐dependent protease of Pseudomonas aeruginosa modulates insect innate immunity. Molecular 2014
    [Google Scholar]
  102. Lau GW, Ran H, Kong F, Hassett DJ, Mavrodi D. Pseudomonas aeruginosa pyocyanin is critical for lung infection in mice. Infect Immun 2004;72: 4275– 4278 [CrossRef]
    [Google Scholar]
  103. Gellatly SL, Hancock REW. Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathog Dis 2013;67: 159– 173 [CrossRef]
    [Google Scholar]
  104. Jimenez PN, Koch G, Thompson JA, Xavier KB, Cool RH et al. The multiple signaling systems regulating virulence in Pseudomonas aeruginosa. Microbiol Mol Biol Rev 2012;76: 46– 65 [CrossRef]
    [Google Scholar]
  105. Davey ME, Caiazza NC, O'Toole GA. Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J Bacteriol 2003;185: 1027– 1036 [CrossRef]
    [Google Scholar]
  106. Persat A, Inclan YF, Engel JN, Stone HA, Gitai Z. Type IV pili mechanochemically regulate virulence factors in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 2015;112: 7563– 7568 [CrossRef]
    [Google Scholar]
  107. European Committee on Antimicrobial Susceptibility EUCAST: Clinical breakpoints [Internet]. European Society of Clinical Microbiology and Infectious Disease. 2017
  108. Johnston SP, Sriram R, Qvarnstrom Y, Roy S, Verani J et al. Resistance of Acanthamoeba cysts to disinfection in multiple contact lens solutions. J Clin Microbiol 2009;47: 2040– 2045 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.001110
Loading
/content/journal/jmm/10.1099/jmm.0.001110
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error