1887

Abstract

Limited data regarding the epidemiology and susceptibility profiles of cryptococcosis are available in the Middle East.

Our study aimed to evaluate the molecular diversity, mating types and antifungal susceptibility pattern of species (=14) isolated from 320 suspected patients with cryptococcosis.

The gene was subjected to restriction fragment length polymorphism and sequence analysis. In addition, antifungal susceptibility testing was performed by Clinical and Laboratory Standards Institute (CLSI) M27-A4 and M59 guidelines.

Overall, 14 (4.4 %) patients were confirmed as cryptococcosis. Based on molecular type, 85.7 and 14.3 % of the isolates were VN I and VN II, respectively. Phylogenetic analysis of gene sequences revealed clustering of VN I and VN II isolates into two distinct clades with a substantial difference within each molecular type. Voriconazole and 5-fluorocytosine, respectively, had the lowest (0.031 μg ml) and highest (8 µg ml) MICs. The epidemiological cutoff values (ECVs) for amphotericin B, fluconazole, voriconazole and 5-fluorocytosine encompassed ≥97 % of all 14 . VN I species. However, according to the CLSI document M59, ECVs for itraconazole (7; 50 % of the isolates) and for posaconazole (1; 7.1 % of the isolate), were one log2 dilution higher than the wild type range. Combinations of amphotericin B with 5-fluorocytosine, amphotericin B with fluconazole and fluconazole with 5-fluorocytosine exhibited synergistic effects against 37, 31 and 12.5 % of the isolates, respectively.

Our findings may significantly contribute to the development of management strategies for patients at a higher risk of cryptococcosis, particularly HIV-positive individuals.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.001101
2020-01-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jmm/69/1/72.html?itemId=/content/journal/jmm/10.1099/jmm.0.001101&mimeType=html&fmt=ahah

References

  1. Fang W, Fa Z, Liao W. Epidemiology of Cryptococcus and cryptococcosis in China. Fungal Genet Biol 2015; 78:7–15 [View Article]
    [Google Scholar]
  2. Viviani MA, Cogliati M, Esposto MC, Lemmer K, Tintelnot K et al. Molecular analysis of 311 Cryptococcus neoformans isolates from a 30-month ECMM survey of cryptococcosis in Europe. FEMS Yeast Res 2006; 6:614–619 [View Article]
    [Google Scholar]
  3. Meyer W, Castañeda A, Jackson S, Huynh M, Castañeda E et al. Molecular Typing of IberoAmerican Cryptococcus neoformans Isolates. Emerg Infect Dis 2003; 9:189–195 [View Article]
    [Google Scholar]
  4. Kwon-Chung KJ, Fraser JA, Doering TL, Wang ZA, Janbon G et al. Cryptococcus neoformans and Cryptococcus gattii, the etiologic agents of cryptococcosis. Cold Spring Harb Perspect Med 2014; 4:19760 [View Article]
    [Google Scholar]
  5. Kwon-Chung KJ, Bennett JE, Wickes BL, Meyer W, Cuomo CA et al. The case for adopting the “Species Complex” Nomenclature for the etiologic agents of cryptococcosis. mSphere 2017; 2:pii: e00357-16 [View Article]
    [Google Scholar]
  6. Bertout S, Renaud F, Swinne D, Mallié M, Bastide JM. Genetic multilocus studies of different strains of Cryptococcus neoformans: taxonomy and genetic structure. J Clin Microbiol 1999; 37:715–720
    [Google Scholar]
  7. Chaturvedi S, Rodeghier B, Fan J, McClelland CM, Wickes BL et al. Direct PCR of Cryptococcus neoformans MATalpha and MATa pheromones to determine mating type, ploidy, and variety: a tool for epidemiological and molecular pathogenesis studies. J Clin Microbiol 2000; 38:2007–2009
    [Google Scholar]
  8. Diaz MR, Boekhout T, Theelen B, Fell JW. Molecular sequence analyses of the intergenic spacer (IGS) associated with rDNA of the two varieties of the pathogenic yeast, Cryptococcus neoformans . Syst Appl Microbiol 2000; 23:535–545 [View Article]
    [Google Scholar]
  9. Perfect JR, Ketabchi N, Cox GM, Ingram CW, Beiser CL. Karyotyping of Cryptococcus neoformans as an epidemiological tool. J Clin Microbiol 1993; 31:3305–3309
    [Google Scholar]
  10. Chen SC, Brownlee AG, Sorrell TC, Ruma P, Nimmo G et al. Identification by random amplification of polymorphic DNA of a common molecular type of Cryptococcus neoformans var. neoformans in patients with AIDS or other immunosuppressive conditions. J Infect Dis 1996; 173:754–757 [View Article]
    [Google Scholar]
  11. Boekhout T, Dromer F, Fell JW, Hop WCJ, Theelen B et al. Hybrid genotypes in the pathogenic yeast Cryptococcus neoformans . Microbiol 2001; 147:891–907 [View Article]
    [Google Scholar]
  12. Meyer W, Marszewska K, Amirmostofian M, Igreja RP, Hardtke C et al. Molecular typing of global isolates of Cryptococcus neoformans var. neoformans by polymerase chain reaction fingerprinting and randomly amplified polymorphic DNA-A pilot study to standardize techniques on which to base a detailed epidemiological survey. Electrophoresis 1999; 20:1790–1799 [View Article]
    [Google Scholar]
  13. Hiremath SS, Chowdhary A, Kowshik T, Randhawa HS, Sun S et al. Long-distance dispersal and recombination in environmental populations of Cryptococcus neoformans var. grubii from India. Microbiology 2008; 154:1513–1524 [View Article]
    [Google Scholar]
  14. Gillece JD, Schupp JM, Balajee SA, Harris J, Pearson T et al. Whole genome sequence analysis of Cryptococcus gattii from the Pacific Northwest reveals unexpected diversity. PLoS One 2011; 6:e28550 [View Article]
    [Google Scholar]
  15. Taj‐Aldeen SJ, Chandra P, Denning DW. Burden of fungal infections in Qatar. Mycoses 2015; 58:51–57 [View Article]
    [Google Scholar]
  16. Badali H, Alian S, Fakhim H, Falahatinejad M, Moradi A et al. Cryptococcal meningitis due to Cryptococcus neoformans genotype AFLP1/VNI in Iran: a review of the literature. Mycoses 2015; 58:689–693 [View Article]
    [Google Scholar]
  17. Nabaei G, Afhami S, Sh A. Disseminated cryptococcosis and active pulmonary tuberculosis co-infection in an otherwise healthy adult. Iran J Neurol 2015; 14:174–176
    [Google Scholar]
  18. Aghazadeh K, Nadji SA, Shokouhi S, Tabarsi P, Niyati R. Concurrent presence of cryptococcal meningitis and neoplastic meningitis in a recipient of hematopoietic stem cell transplantation: a case report. Arch Clin Infect Dis 2016; 11:1–3 [View Article]
    [Google Scholar]
  19. Haghighi S, Seyed Ahadi M, Naser Moghadasi A, Ahadi MS, Moghadasi AN. Cryptococcal meningitis in a human immunodeficiency virus-negative patient with rheumatoid arthritis. Iran J Neurol 2016; 15:106–108
    [Google Scholar]
  20. Ekhtiari M, Farahyar S, Falahati M, Razmjou E, Ashrafi-Khozani M et al. The first report of onychomycosis caused by Cryptococcus friedmannii (Naganishia friedmannii) a basidiomycetous yeast. Med Mycol Case Rep 2017; 15:25–27 [View Article]
    [Google Scholar]
  21. Aghaei Gharehbolagh S, Nasimi M, Agha Kuchak Afshari S, Ghasemi Z, Rezaie S et al. First case of superficial infection due to Naganishia albida (formerly Cryptococcus albidus) in Iran: A review of the literature. Curr Med Mycol 2017; 3:33–37 [View Article]
    [Google Scholar]
  22. Ghajari A, Lotfali E, Norouzi M, Arab-Mazar Z. First report of Vulvovaginitis due to Cryptococcus magnus in Iran. Curr Med Mycol 2018; 4:30 [View Article]
    [Google Scholar]
  23. Kapila K, Sharma YV, Kotwal J, Banerjee A, Kaur J. Cryptococcal meningitis: a clinicopathological account of seven cases encountered in a military setting. Med J Armed Forces India 2003; 59:189–193 [View Article]
    [Google Scholar]
  24. Paliwal DK, Randhawa HS. Evaluation of a simplified Guizotia abyssinica seed medium for differentiation of Cryptococcus neoformans . J Clin Microbiol 1978; 7:346–348
    [Google Scholar]
  25. GA da Silva, Bernardi TL, Schaker PDC, Menegotto M, Valente P. Rapid yeast DNA extraction by boiling and freeze-thawing without using chemical reagents and DNA purification. Braz Arch Biol Technol 2012; 55:319–327
    [Google Scholar]
  26. Bialek R et al. Pcr based identification and discrimination of agents of mucormycosis and aspergillosis in paraffin wax embedded tissue. J Clin Pathol 2005; 58:1180–1184 [View Article]
    [Google Scholar]
  27. Agha Kuchak Afshari S, Shokohi T, Aghili R, Badali H. Epidemiology and molecular characterization of Cryptococcus neoformans isolated from pigeon excreta in Mazandaran province, northern Iran. Journal de Mycologie Médicale 2012; 22:160–166 [View Article]
    [Google Scholar]
  28. Moore TD, Edman JC. The alpha-mating type locus of Cryptococcus neoformans contains a peptide pheromone gene. Mol Cell Biol 1993; 13:1962–1970 [View Article]
    [Google Scholar]
  29. CLSI Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard, 3rd ed. Pennsylvania USA: CLSI document M27-A4 Clinical and Laboratory Standards Institute, Wayne; 2008
    [Google Scholar]
  30. CLSI Epidemiological Cutoff Values for Antifungal Susceptibility Testing, 2nd ed. Pennsylvania 19087 USA: CLSI supplement M59. Clinical and Laboratory Standards Institute, Wayne; 2018
    [Google Scholar]
  31. Vitale RG, Afeltra J, Dannaoui E. Antifungal combinations. Method Mol Med 2005; 118:143–152
    [Google Scholar]
  32. Odds FC, Synergy OFC. Synergy, antagonism, and what the chequerboard puts between them. J Antimicrob Chemother 2003; 52:1 [View Article]
    [Google Scholar]
  33. Kronstad JW, Attarian R, Cadieux B, Choi J, D'Souza CA et al. Expanding fungal pathogenesis: Cryptococcus breaks out of the opportunistic box. Nat Rev Microbiol 2011; 9:193–203 [View Article]
    [Google Scholar]
  34. Escandón P, Sánchez A, Martí­nez M, Meyer W, Castañeda E. Molecular epidemiology of clinical and environmental isolates of the Cryptococcus neoformans species complex reveals a high genetic diversity and the presence of the molecular type VGII mating type a in Colombia. FEMS Yeast Res 2006; 6:625–635 [View Article]
    [Google Scholar]
  35. Cogliati M. Global molecular epidemiology of Cryptococcus neoformans and Cryptococcus gattii: an atlas of the molecular types. Scientifica 2013; 2013:67521323 [View Article]
    [Google Scholar]
  36. Ferrara G, Panizo MM, Urdaneta E, Alarcón V, García N et al. Characterization by PCR-RFLP of the Cryptococcus neoformans and Cryptococcus gattii species complex in Venezuela. Invest Clin 2019; 59:28–40 [View Article]
    [Google Scholar]
  37. Pakshir K, Fakhim H, Vaezi A, Meis J, Mahmoodi M et al. Molecular epidemiology of environmental Cryptococcus species isolates based on amplified fragment length polymorphism. Mycoses 2018; 28:599–605
    [Google Scholar]
  38. Khayhan K, Hagen F, Pan W, Simwami S, Fisher MC et al. Geographically structured populations of Cryptococcus neoformans variety grubii in Asia correlate with HIV status and show a clonal population structure. PLoS One 2013; 8:e72222 [View Article]
    [Google Scholar]
  39. Kwon-Chung KJ, Edman JC, Wickes BL. Genetic association of mating types and virulence in Cryptococcus neoformans . Infect Immun 1992; 60:602–605
    [Google Scholar]
  40. Bertout S, Drakulovski P, Kouanfack C, Krasteva D, Ngouana T et al. Genotyping and antifungal susceptibility testing of Cryptococcus neoformans isolates from Cameroonian HIV-positive adult patients. Clin Microbiol Infect 2013; 19:763–769 [View Article]
    [Google Scholar]
  41. Worasilchai N, Tangwattanachuleeporn M, Meesilpavikkai K, Folba C, Kangogo M et al. Diversity and Antifungal Drug Susceptibility of Cryptococcus Isolates in Thailand. Med Mycol 2016; 55:680–685
    [Google Scholar]
  42. SY W, Lei Y, Kang M, Xiao YL, Chen Z. Molecular characterisation of clinical Cryptococcus neoformans and Cryptococcus gattii isolates from Sichuan province, China. Mycoses 2015; 58:280–287
    [Google Scholar]
  43. Pasqualotto AC, Xavier MO, Andreolla HF, Linden R, RJEoods L. Voriconazole therapeutic drug monitoring: focus on safety. Expert Opin Drug Saf 2010; 9:125–137 [View Article]
    [Google Scholar]
  44. Espinel-Ingroff A, Aller AI, Canton E, Castañón-Olivares LR, Chowdhary A et al. Cryptococcus neoformans-Cryptococcus gattii species complex: an international study of wild-type susceptibility endpoint distributions and epidemiological cutoff values for fluconazole, itraconazole, posaconazole, and voriconazole. Antimicrob Agents Chemother 2012; 56:5898–5906 [View Article]
    [Google Scholar]
  45. Sloan D, Parris V. Cryptococcal meningitis: epidemiology and therapeutic options. Clin Epidemiol 2014; 6:169–182 [View Article]
    [Google Scholar]
  46. Barchiesi F, Schimizzi AM, Caselli F, Novelli A, Fallani S et al. Interactions between triazoles and amphotericin B against Cryptococcus neoformans . Antimicrob Agents Chemother 2000; 44:2435–2441 [View Article]
    [Google Scholar]
  47. Nguyen MH, Barchiesi F, McGough DA, Yu VL, Rinaldi MG. In vitro evaluation of combination of fluconazole and flucytosine against Cryptococcus neoformans var. neoformans . Antimicrob Agents Chemother 1995; 39:1691–1695 [View Article]
    [Google Scholar]
  48. Cuenca-Estrella M. Combinations of antifungal agents in therapy–what value are they?. J Antimicrob Chemother 2004; 54:854–869 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.001101
Loading
/content/journal/jmm/10.1099/jmm.0.001101
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error