1887

Abstract

. is responsible for several types of oral and systemic infections. In light of emerging resistance to antifungals, studies have demonstrated the antifungal effect of lactoferrin (LF), which is part of the innate immune system, has anticandidal activities.

. (2×10 c.f.u. ml) were incubated either with PBS or human LF (hLF) (100 µg ml) at 37 °C for 24 h and then RNA was isolated and virulence factors analysed. (1×10 c.f.u.) was injected into the tail vein of immunocompromised wild-type and . Then, 24 h later, the I mice received hLF intravenously (100 µg g body weight), while the control group received PBS. Then, 48 h later, the organs were collected, homogenized and c.f.u.s were counted. In addition, the inflammatory mediators of kidneys and the virulence factors of were analysed.

. hLF-treated I mice showed significant clearance of in different organ tissues when compared to untreated I mice. The inflammatory cytokines, such as IL-1, IL- TNF- and and iNOS were downregulated in hLF-treated I mice when compared to untreated I mice. Whereas, IL-10 and IL-17A were upregulated at 72 h post infection when compared to C mice. Histological analysis also revealed a significant decrease in the size and number of infectious foci in the hLF-treated groups. hLF treatment significantly downregulated several virulence factors of both and .

. We concluded that hLF-treated mice can reduce the severity of -induced systemic infection.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.001098
2019-11-08
2019-11-14
Loading full text...

Full text loading...

References

  1. Kumamoto CA. Inflammation and gastrointestinal Candida colonization. Curr Opin Microbiol 2011;14: 386– 391 [CrossRef]
    [Google Scholar]
  2. McManus BA, Coleman DC. Molecular epidemiology, phylogeny and evolution of Candida albicans. Infect Genet Evol 2014;21: 166– 178 [CrossRef]
    [Google Scholar]
  3. Martin GS, Mannino DM, Eaton S, Moss M, David MM. The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med 2003;348: 1546– 1554 [CrossRef]
    [Google Scholar]
  4. Schaller M, Borelli C, Korting HC, Hube B. Hydrolytic enzymes as virulence factors of Candida albicans. Mycoses 2005;48: 365– 377 [CrossRef]
    [Google Scholar]
  5. Hoyer LL. The ALS gene family of Candida albicans. Trends Microbiol 2001;9: 176– 180 [CrossRef]
    [Google Scholar]
  6. Sundstrom P. Adhesion in Candida spp. Cell Microbiol 2002;4: 461– 469 [CrossRef]
    [Google Scholar]
  7. Gow NAR, Brown AJP, Odds FC. Fungal morphogenesis and host invasion. Curr Opin Microbiol 2002;5: 366– 371 [CrossRef]
    [Google Scholar]
  8. Chander J, Singla N, Sidhu SK, Gombar S. Epidemiology of Candida blood stream infections: experience of a tertiary care centre in North India. J Infect Dev Ctries 2013;7: 670– 675 [CrossRef]
    [Google Scholar]
  9. Pfaller MA, Diekema DJ. Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev 2007;20: 133– 163 [CrossRef]
    [Google Scholar]
  10. Pappas PG, Kauffman CA, Andes D, Benjamin DK Jr., Calandra TF et al. Clinical practice guidelines for the management of candidiasis: 2009 update by the infectious diseases Society of America. Clin Infect Dis 2009;48: 503– 535 [CrossRef]
    [Google Scholar]
  11. da Costa VG, Quesada RMB, Abe ATS, Furlaneto-Maia L, Furlaneto MC. Nosocomial bloodstream Candida infections in a tertiary-care hospital in South Brazil: a 4-year survey. Mycopathologia 2014;178: 243– 250 [CrossRef]
    [Google Scholar]
  12. Awasthi AK, Jain A, Awasthi S, Ambast A, Singh K et al. Epidemiology and microbiology of nosocomial pediatric candidemia at a northern Indian tertiary care hospital. Mycopathologia 2011;172: 269– 277 [CrossRef]
    [Google Scholar]
  13. Xu YY, Samaranayake YH, Samaranayake LP, Nikawa H. In vitro susceptibility of Candida species to lactoferrin. Med Mycol 1999;37: 35– 41 [CrossRef]
    [Google Scholar]
  14. Actor JK, Hwang SA, Kruzel ML. Lactoferrin as a natural immune modulator. Curr Pharm Des 2009;15: 1956– 1973 [CrossRef]
    [Google Scholar]
  15. van der Strate BWA, Beljaars L, Molema G, Harmsen MC, Meijer DKF. Antiviral activities of lactoferrin. Antiviral Res 2001;52: 225– 239 [CrossRef]
    [Google Scholar]
  16. Legrand D, Pierce A, Elass E, Carpentier M, Mariller C et al. Lactoferrin structure and functions. Adv Exp Med Biol 2008;606: 163– 194 [CrossRef]
    [Google Scholar]
  17. Garcia-Montoya IA, Cendon TS, Arevalo-Gallegos S, Rascon-Cruz Q. Lactoferrin a multiple bioactive protein: an overview. Biochimica et biophysica acta 1820;2012: 226– 236
    [Google Scholar]
  18. Andrés MT, Viejo-Díaz M, Fierro JF. Human lactoferrin induces apoptosis-like cell death in Candida albicans: critical role of K+-channel-mediated K+ efflux. Antimicrob Agents Chemother 2008;52: 4081– 4088 [CrossRef]
    [Google Scholar]
  19. Teraguchi S, Shin K, Ogata T, Kingaku M, Kaino A et al. Orally administered bovine lactoferrin inhibits bacterial translocation in mice fed bovine milk. Appl Environ Microbiol 1995;61: 4131– 4134
    [Google Scholar]
  20. Takakura N, Wakabayashi H, Ishibashi H, Yamauchi K, Teraguchi S et al. Effect of orally administered bovine lactoferrin on the immune response in the oral candidiasis murine model. J Med Microbiol 2004;53: 495– 500 [CrossRef]
    [Google Scholar]
  21. Zimecki M, Kapp J, Machnicki M, Zagulski T, Wlaszczyk A et al. Lactoferrin. its role in maturation and function of cells of the immune system and protection against shock in mice. Adv Exp Med Biol 1998;443: 331– 336
    [Google Scholar]
  22. Yamaguchi M, Matsuura M, Kobayashi K, Sasaki H, Yajima T et al. Lactoferrin protects against development of hepatitis caused by sensitization of Kupffer cells by lipopolysaccharide. Clin Diagn Vaccine Immuno 2001;8: 1234– 1239 [CrossRef]
    [Google Scholar]
  23. Tanida T, Rao F, Hamada T, Ueta E, Osaki T. Lactoferrin peptide increases the survival of Candida albicans-inoculated mice by upregulating neutrophil and macrophage functions, especially in combination with amphotericin B and granulocyte-macrophage colony-stimulating factor. Infect Immun 2001;69: 3883– 3890 [CrossRef]
    [Google Scholar]
  24. Okamoto T, Tanida T, Wei B, Ueta E, Yamamoto T et al. Regulation of fungal infection by a combination of amphotericin B and peptide 2, a lactoferrin peptide that activates neutrophils. Clin Diagn Lab Immunol 2004;11: 1111– 1119 [CrossRef]
    [Google Scholar]
  25. Lupetti A, Brouwer CPJM, Bogaards SJP, Welling MM, de Heer E et al. Human lactoferrin-derived peptide's antifungal activities against disseminated Candida albicans infection. J Infect Dis 2007;196: 1416– 1424 [CrossRef]
    [Google Scholar]
  26. Velliyagounder K, Alsaedi W, Alabdulmohsen W, Markowitz K, Fine DH. Oral lactoferrin protects against experimental candidiasis in mice. J Appl Microbiol 2015;118: 212– 221 [CrossRef]
    [Google Scholar]
  27. Naglik JR, Moyes D, Makwana J, Kanzaria P, Tsichlaki E et al. Quantitative expression of the Candida albicans secreted aspartyl proteinase gene family in human oral and vaginal candidiasis. Microbiology 2008;154: 3266– 3280 [CrossRef]
    [Google Scholar]
  28. Green CB, Cheng G, Chandra J, Mukherjee P, Ghannoum MA et al. Rt-Pcr detection of Candida albicans ALS gene expression in the reconstituted human epithelium (RHE) model of oral candidiasis and in model biofilms. Microbiology 2004;150: 267– 275 [CrossRef]
    [Google Scholar]
  29. Pierce JV, Kumamoto CA. Variation in Candida albicans Efg1 expression enables host-dependent changes in colonizing fungal populations. mBio 2012;3: e00117– 12 [CrossRef]
    [Google Scholar]
  30. Moyes DL, Wilson D, Richardson JP, Mogavero S, Tang SX et al. Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature 2016;532: 64– 68 [CrossRef]
    [Google Scholar]
  31. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001;25: 402– 408 [CrossRef]
    [Google Scholar]
  32. Lachke SA, Srikantha T, Tsai LK, Daniels K, Soll DR. Phenotypic switching in Candida glabrata involves phase-specific regulation of the metallothionein gene MT-II and the newly discovered hemolysin gene HLP. Infect Immun 2000;68: 884– 895 [CrossRef]
    [Google Scholar]
  33. Velusamy SK, Fine DH, Velliyagounder K. Prophylactic effect of human lactoferrin against Streptococcus mutans bacteremia in lactoferrin knockout mice. Microbes Infect 2014;16: 762– 767 [CrossRef]
    [Google Scholar]
  34. Grocott RG. A stain for fungi in tissue sections and smears using Gomori's methenamine-silver nitrate technic. Am J Clin Pathol 1955;25: 975– 979
    [Google Scholar]
  35. Andes D, Lepak A, Pitula A, Marchillo K, Clark J. A simple approach for estimating gene expression in Candida albicans directly from a systemic infection site. J Infect Dis 2005;192: 893– 900 [CrossRef]
    [Google Scholar]
  36. Jacobsen ID, Wilson D, Wächtler B, Brunke S, Naglik JR et al. Candida albicans dimorphism as a therapeutic target. Expert Rev Anti Infect Ther 2012;10: 85– 93 [CrossRef]
    [Google Scholar]
  37. Yang YL. Virulence factors of Candida species. J Microbiol Immunol Infect 2003;36: 223– 228
    [Google Scholar]
  38. Berman J, Sudbery PE. Candida albicans: a molecular revolution built on lessons from budding yeast. Nat Rev Genet 2002;3: 918– 931 [CrossRef]
    [Google Scholar]
  39. Saville SP, Lazzell AL, Monteagudo C, Lopez-Ribot JL. Engineered control of cell morphology in vivo reveals distinct roles for yeast and filamentous forms of Candida albicans during infection. Eukaryot Cell 2003;2: 1053– 1060 [CrossRef]
    [Google Scholar]
  40. Chin VK, Foong KJ, Maha A, Rusliza B, Norhafizah M et al. Multi-step pathogenesis and induction of local immune response by systemic Candida albicans infection in an intravenous challenge mouse model. Int J Mol Sci 2014;15: 14848– 14867 [CrossRef]
    [Google Scholar]
  41. Welsh KJ, Hwang SA, Boyd S, Kruzel ML, Hunter RL et al. Influence of oral lactoferrin on Mycobacterium tuberculosis induced immunopathology. Tuberculosis 2011;91: S105– S113 [CrossRef]
    [Google Scholar]
  42. van der Does AM, Joosten SA, Vroomans E, Bogaards SJP, van Meijgaarden KE et al. The antimicrobial peptide hLF1–11 drives monocyte-dendritic cell differentiation toward dendritic cells that promote antifungal responses and enhance Th17 polarization. J Innate Immun 2012;4: 284– 292 [CrossRef]
    [Google Scholar]
  43. Kagami S, Rizzo HL, Kurtz SE, Miller LS, Blauvelt A. IL-23 and IL-17A, but not IL-12 and IL-22, are required for optimal skin host defense against Candida albicans. J Immunol 2010;185: 5453– 5462 [CrossRef]
    [Google Scholar]
  44. Kolls JK, McCray PB, Chan YR. Cytokine-Mediated regulation of antimicrobial proteins. Nat Rev Immunol 2008;8: 829– 835 [CrossRef]
    [Google Scholar]
  45. Ramani K, Garg AV, Jawale CV, Conti HR, Whibley N et al. The kallikrein-kinin system: a novel mediator of IL-17-Driven anti-Candida immunity in the kidney. PLoS Pathog 2016;12: e1005952 [CrossRef]
    [Google Scholar]
  46. Staab JF, Bradway SD, Fidel PL, Sundstrom P. Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1. Science 1999;283: 1535– 1538 [CrossRef]
    [Google Scholar]
  47. Nantel A, Dignard D, Bachewich C, Harcus D, Marcil A et al. Transcription profiling of Candida albicans cells undergoing the yeast-to-hyphal transition. Mol Biol Cell 2002;13: 3452– 3465 [CrossRef]
    [Google Scholar]
  48. Staniszewska M, Bondaryk M, Malewski T, Kurzątkowski W. The in vitro expression of SAP6 gene in Candida albicans morphogenesis mutants under human serum influence. Biologia 2013;68: [CrossRef]
    [Google Scholar]
  49. Naglik JR, Newport G, White TC, Fernandes-Naglik LL, Greenspan JS et al. In vivo analysis of secreted aspartyl proteinase expression in human oral candidiasis. Infect Immun 1999;67: 2482– 2490
    [Google Scholar]
  50. Naglik JR, Rodgers CA, Shirlaw PJ, Dobbie JL, Fernandes-Naglik LL et al. Differential expression of Candida albicans secreted aspartyl proteinase and phospholipase B genes in humans correlates with active oral and vaginal infections. J Infect Dis 2003;188: 469– 479 [CrossRef]
    [Google Scholar]
  51. Schaller M, Schäfer W, Korting HC, Hube B. Differential expression of secreted aspartyl proteinases in a model of human oral candidosis and in patient samples from the oral cavity. Mol Microbiol 1998;29: 605– 615 [CrossRef]
    [Google Scholar]
  52. Staib P1 KM, Kretschmar M, Nichterlein T, Köhler G, Michel S et al. Host-Induced, stage-specific virulence gene activation in Candida albicans during infection. Mol Microbiol 1999;32: 533– 546 [CrossRef]
    [Google Scholar]
  53. Hube B, Monod M, Schofield DA, Brown AJP, Gow NAR. Expression of seven members of the gene family encoding secretory aspartyl proteinases in Candida albicans. Mol Microbiol 1994;14: 87– 99 [CrossRef]
    [Google Scholar]
  54. Chen CG, Yang YL, Cheng HH, Su CL, Huang SF et al. Non-Lethal Candida albicans cph1/cph1 efg1/efg1 transcription factor mutant establishing restricted zone of infection in a mouse model of systemic infection. Int J Immunopathol Pharmacol 2006;19: 561– 565 [CrossRef]
    [Google Scholar]
  55. Hoyer LL CJ, Hecht JE, Ehrhart EJ, Poulet FM. Detection of ALS proteins on the cell wall of Candida albicans in murine tissues. Infect Immun 1999;67: 4251– 4255
    [Google Scholar]
  56. Hoyer LL, Green CB, Oh S-H, Zhao X. Discovering the secrets of the Candida albicans agglutinin-like sequence (ALS) gene family – a sticky pursuit. Med Mycol 2008;46: 1– 15 [CrossRef]
    [Google Scholar]
  57. Walker LA, MacCallum DM, Bertram G, Gow NAR, Odds FC et al. Genome-wide analysis of Candida albicans gene expression patterns during infection of the mammalian kidney. Fungal Genet Biol 2009;46: 210– 219 [CrossRef]
    [Google Scholar]
  58. Cheng G, Wozniak K, Wallig MA, Fidel PL, Trupin SR et al. Comparison between Candida albicans agglutinin-like sequence gene expression patterns in human clinical specimens and models of vaginal candidiasis. Infect Immun 2005;73: 1656– 1663 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.001098
Loading
/content/journal/jmm/10.1099/jmm.0.001098
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error